Supplemental Data. Yang et al. (2012). Plant Cell /tpc

Similar documents
Supplementary Figure S1. Amino acid alignment of selected monocot FT-like and TFL-like sequences. Sequences were aligned using ClustalW and analyzed

The Plant Cell, November. 2017, American Society of Plant Biologists. All rights reserved

Supplemental Table 1. Primers used for cloning and PCR amplification in this study

Genome-wide Identification of Lineage Specific Genes in Arabidopsis, Oryza and Populus

Supplemental Figure 1. Comparison of Tiller Bud Formation between the Wild Type and d27. (A) and (B) Longitudinal sections of shoot apex in wild-type

Nature Genetics: doi: /ng Supplementary Figure 1. The phenotypes of PI , BR121, and Harosoy under short-day conditions.

Supplemental Data. Wang et al. (2014). Plant Cell /tpc

Supplemental Data. Perea-Resa et al. Plant Cell. (2012) /tpc

Supplementary Figure 3

TCP genes: a family snapshot ten years later

Supplemental Data. Hou et al. (2016). Plant Cell /tpc

Supplemental Data. Perrella et al. (2013). Plant Cell /tpc

Genome-wide discovery of G-quadruplex forming sequences and their functional

Regulatory Change in YABBY-like Transcription Factor Led to Evolution of Extreme Fruit Size during Tomato Domestication

Supplemental Data. Fernández-Calvo et al. Plant Cell. (2011) /tpc

Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated

Supplementary Information

Supplemental Figure 1: Increased Fe deficiency gene expression in roots of nas4x-2

** LCA LCN PCA

Table S1 List of primers used for genotyping and qrt-pcr.

Supplemental Data. Chen and Thelen (2010). Plant Cell /tpc

Computational identification and analysis of MADS box genes in Camellia sinensis

. Supplementary Information

Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae)

The mode of development in animals and plants is different

Flower symmetry and shape in Antirrhinum

GFP GAL bp 3964 bp

Bioinformatics tools to analyze complex genomes. Yves Van de Peer Ghent University/VIB

Development 143: doi: /dev : Supplementary information

SUPPLEMENTARY INFORMATION

Supplementary Information for: The genome of the extremophile crucifer Thellungiella parvula

State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China

Is targeted modification of cytokinin regulatory gene activity in Rapid Cycling Brassica rapa an appropriate model for forage brassica, B. napus?

Biological Roles of Cytokinins

Supplementary Figure 1. Phenotype of the HI strain.

Plant Molecular and Cellular Biology Lecture 10: Plant Cell Cycle Gary Peter

Molecular Genetics of. Plant Development STEPHEN H. HOWELL CAMBRIDGE UNIVERSITY PRESS

MAIZE AND SORGHUM. ALMUM SORGHUM, COLUMBUS GRASS (Sorghum almum Parodi)

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

AUXIN CONJUGATE HYDROLYSIS DURING PLANT-MICROBE INTERACTION AND EVOLUTION

Three TOB1-related YABBY genes are required to maintain proper function of the spikelet and branch meristems in rice

SUPPLEMENTARY INFORMATION

Supplemental Figures. Supplemental Data. Sugliani et al. Plant Cell (2016) /tpc Clades RSH1. Rsh1[HS] RSH2 RSH3. Rsh4[HS] HYD TGS ACT

Supplementary Figure 1

BIOLOGY 317 Spring First Hourly Exam 4/20/12

Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids

A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development

UNIVERSITY OF YORK BIOLOGY. Developmental Biology

CEREALS. OATS and NAKED OATS (Avena sativa L. et Avens nuda L)

Outline. Leaf Development. Leaf Structure - Morphology. Leaf Structure - Morphology

Level 2 Part II. MSU Extension Horticulture Associate Specialist. Pages Montana Master Gardener Handbook

AtTIL-P91V. AtTIL-P92V. AtTIL-P95V. AtTIL-P98V YFP-HPR

Supplementary Methods

?Annu. Rev. Plant Physiol. Plant Mol. Biol :349 70

23-. Shoot and root development depend on ratio of IAA/CK

Leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA, ERECTA-family

Developmental Biology

Prospecting for Green Revolution Genes

Functional Conservation between CRABS CLAW Orthologues from Widely Diverged Angiosperms

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1

Nature Genetics: doi: /ng Supplementary Figure 1. The FIN and FAB genes act separately from the meristem maturation pathway.

The unfolding drama of flower development:

From basic research to crop improvement. Dirk Inze VIB-UGent Center for Plant Systems Biology

EXPRESSION OF THE FIS2 PROMOTER IN ARABIDOPSIS THALIANA

Divergent Regulatory OsMADS2 Functions Control Size, Shape and Differentiation of the Highly Derived Rice Floret Second-Whorl Organ

Supplemental Data. Gao et al. (2012). Plant Cell /tpc

Linking floral symmetry genes to breeding system evolution

Arabidopsis BRANCHED1 Acts as an Integrator of Branching Signals within Axillary Buds W

Plant Development. Chapter 31 Part 1

Miloš Duchoslav and Lukáš Fischer *

Control of corolla monosymmetry in the Brassicaceae Iberis amara

Mutation of the cytosolic ribosomal protein-encoding RPS10B gene affects shoot meristematic function in Arabidopsis

Divergent regulatory OsMADS2 functions control size, shape and differentiation of


Plant Growth and Development

Functional diversification of duplicated CYC2 clade genes in regulation of. inflorescence development in Gerbera hybrida (Asteraceae)

The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis W

Supplemental Figure 1. Phenotype of ProRGA:RGAd17 plants under long day

I. GREGOR MENDEL - father of heredity

Lotus Flower. Lotus Flower Seeds OBJECTIVES SOMETHING TO SPROUT ABOUT. Something to Sprout About Grades 3 rd 5 th

SUPPLEMENTARY INFORMATION

Epigenetics and Flowering Any potentially stable and heritable change in gene expression that occurs without a change in DNA sequence

Plant Structure, Growth, and Development

Leaf and Internode. Introduction. Parts of the Monocot and Dicot Leaf. Introductory article

DEVELOPMENTAL GENETICS OF ARABIDOPSIS THALIANA

** * * * Col-0 cau1 CAU1. Actin2 CAS. Actin2. Supplemental Figure 1. CAU1 affects calcium accumulation.

TEOSINTE BRANCHED1 Regulates Inflorescence Architecture and Development in Bread Wheat (Triticum aestivum L.)

Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering

AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2. thaliana. regulate senescence and floral organ abscission in Arabidopsis.

DNA or RNA metabolism (1%) Signal transduction (2%) Development (2%) Other cellular processes (17%)

Control of cell and petal morphogenesis by R2R3 MYB transcription factors

75 Development of floral organ identity: stories from the MADS house Günter Theißen Recent studies on AGAMOUS-LIKE2-, DEFICIENS- and GLOBOSA-like MADS

Supporting Online Material for

Ethylene is critical to the maintenance of primary root growth and Fe. homeostasis under Fe stress in Arabidopsis

Slovene Plant Gene Bank (SPGB) and Genetic Resources Programme

Basal angiosperms, and plant breeding systems. Angiosperm phylogeny

Characterisation of abiotic stress inducible plant promoters and bacterial genes for osmotolerance using transgenic approach

Genome-wide analysis of TCP family in tobacco

Basal angiosperms, and plant breeding systems Today s lecture

Transcription:

Supplemental Figure 1. Mature flowers of P. heterotricha. (A) An inflorescence of P. heterotricha showing the front view of a zygomorphic flower characterized by two small dorsal petals and only two fertile ventral stamens. (B) The dissected flower showing the abortion of dorsal and lateral stamens (one dorsal stamen stops growth so early that it forms an almost invisible vestige). Dp/lp/vp represent dorsal/lateral/ventral petals, and lst/vst represent lateral/ ventral stamens. Bars = 1 cm. 1

Supplemental Figure 2. Overexpression of P. heterotricha CYC1C represses the vegetative growth of Arabidopsis T2 plants. (A) 7-day-old of T2 transgenic seedlings (right) have smaller cotyledons and poorly developed roots compared with wild-type plants (left). (B) 14-day-old of T2 transgenic plants (right) showing retarded growth compared with wild-type plants (left). (C) CYC1C overexpression continues to inhibit Arabidopsis growth. The plants were photographed 21 days after germination. (D) The much smaller leaves of T2 transgenic plants (right) than those of wild-type plants (left). (E) Strong expression of CYC1C in leaves of T2 transgenic plants (tg) but no expression in those of wild-type plants (wt). Bars = 5 cm. 2

Supplemental Figure 3. P. heterotricha CYC1C constitutive expression delays the flowering time of Arabidopsis T2 plants. (A) One wild-type plant photographed 35 days after germination. (B) One typical T2 transgenic plant photographed 55 days after germination. (C) The flowering time of wild-type (wt) and T2 transgenic (tg) plants determined by counting rosette leaf numbers and recording days of flowering after germination. At least three wild-type plants were measured (the data shown are their mean values). Bars = 1 cm. 3

Supplemental Figure 4. P. heterotricha CYC1C overexpression enhances the outgrowth of lateral branches in Arabidopsis T2 plants. The left is a wild-type plant, and the right is one representative T2 transgenic plant. Bar = 5 cm. 4

Supplemental Figure 5. Arabidopsis plants overexpressing P. heterotricha CYC1C produce smaller flowers than wide-type Arabidopsis. (A) Flowers of wide-type (left) and T2 transgenic (right) plants. (B) Petals of wide-type (bottom) and T2 transgenic (up) plants. (C) Stamens and carpels of wide-type (left) and T2 transgenic (right) plants. Bars = 2 mm. 5

Supplemental Figure 6. P. heterotricha CYC1C overexpression reduces Arabidopsis petal areas mainly by reducing petal cell sizes. The petal cells of Arabidopsis T2 plants (right) are obviously smaller than those of wide-type plants (left). Bars = µm on the SEM images, and 1 mm on the whole petals. The same numbers of petal cells are highlighted in yellow. 6

Supplemental Figure 7. The P. heterotricha CYC1C and CYC1D promoters contain sequences matching the consensus CYC-binding sites. (A) The promoter sequence of CYC1C showing the putative CYC-binding site (cbs1, boxed). (B) The promoter sequence of CYC1D showing the putative CYC-binding site (cbs2, boxed). 7

CYC1C MFGKSSYLHPPQVSQSLQSRGSTSAIDIVNGDEILLHDHQQQQDMLSSHYLATN-APFIETSTLYN------QDVGG-SNEDP-SALAST 81 CYC1D MLSKSSYLHPRQVSQSLESRGSTSAVDLVNGAEILLHDHHHHQDMLSDHYLAEN-VSFLEVSTLYN------QDVGG-SNEDP-SALANT 81 CYC2A CYC1C MFGKSPYLQLPHVSSSLQSRASTSVVDLN-DAEFLLHQHHH--DILSGQLVATN-APFLEASTLYN------QDVLGGINEDPNATMANT MFGKSSYLHPPQVSQSLQSRGSTSAIDIVNGDEILLHDHQQQQDMLSSHYLATN-APFIETSTLYN------QDVGG-SNEDP-SALAST 80 81 CYC2B CYC1D MFSKSTYLQLPQVSTSLQSHASTSVVDLN-GAEFLLHQHHH--DILAGHFVGTN-APFLEASTLYN------QDVIGEVNEDPNFTMANT MLSKSSYLHPRQVSQSLESRGSTSAVDLVNGAEILLHDHHHHQDMLSDHYLAEN-VSFLEVSTLYN------QDVGG-SNEDP-SALANT 80 81 CYC2A CYC1C MFGKNTYLHLPQVSSSLHSRAATSVVDLN-GNEIQLH------DMLSGHYLTTANAPVLESTALFNNNNNFNHDVVNGLNRDP----SPT MFGKSPYLQLPHVSSSLQSRASTSVVDLN-DAEFLLHQHHH--DILSGQLVATN-APFLEASTLYN------QDVLGGINEDPNATMANT MFGKSSYLHPPQVSQSLQSRGSTSAIDIVNGDEILLHDHQQQQDMLSSHYLATN-APFIETSTLYN------QDVGG-SNEDP-SALAST 79 80 81 CYC2B CYC1D MFSKSTYLQLPQVSTSLQSHASTSVVDLN-GAEFLLHQHHH--DILAGHFVGTN-APFLEASTLYN------QDVIGEVNEDPNFTMANT MLSKSSYLHPRQVSQSLESRGSTSAVDLVNGAEILLHDHHHHQDMLSDHYLAEN-VSFLEVSTLYN------QDVGG-SNEDP-SALANT 80 81 CYC1C CYC2A CYC1C FSIKQMVKKDRHSKIVTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLEWLLTKSKVAIKDLAHTKKS----SSARSTPLPSECEV MFGKNTYLHLPQVSSSLHSRAATSVVDLN-GNEIQLH------DMLSGHYLTTANAPVLESTALFNNNNNFNHDVVNGLNRDP----SPT MFGKSPYLQLPHVSSSLQSRASTSVVDLN-DAEFLLHQHHH--DILSGQLVATN-APFLEASTLYN------QDVLGGINEDPNATMANT MFGKSSYLHPPQVSQSLQSRGSTSAIDIVNGDEILLHDHQQQQDMLSSHYLATN-APFIETSTLYN------QDVGG-SNEDP-SALAST 167 79 80 81 CYC1D CYC2B CYC1D FSRNQTVKKDRHSKIVTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLEWLLTKSKVAIKDLVHTKKS----SSARSTSSPSECEV MFSKSTYLQLPQVSTSLQSHASTSVVDLN-GAEFLLHQHHH--DILAGHFVGTN-APFLEASTLYN------QDVIGEVNEDPNFTMANT MLSKSSYLHPRQVSQSLESRGSTSAVDLVNGAEILLHDHHHHQDMLSDHYLAEN-VSFLEVSTLYN------QDVGG-SNEDP-SALANT BASIC HELIX I LOOP HELIX II 167 80 81 CYC2A CYC1C CYC2A FQAKQTVKKDRHSKIVTSQGPRDRRVRLSIGMARKFFDLQEMLGFDKPSKTLEWLLTKSKAAIKDLVQMKKSDATTCTNKSISSPSECEI FSIKQMVKKDRHSKIVTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLEWLLTKSKVAIKDLAHTKKS----SSARSTPLPSECEV MFGKNTYLHLPQVSSSLHSRAATSVVDLN-GNEIQLH------DMLSGHYLTTANAPVLESTALFNNNNNFNHDVVNGLNRDP----SPT MFGKSPYLQLPHVSSSLQSRASTSVVDLN-DAEFLLHQHHH--DILSGQLVATN-APFLEASTLYN------QDVLGGINEDPNATMANT 170 167 79 80 CYC2B CYC1D CYC2B FQAKQTVKKDRHSKIVTSQGPRDRRVRLSIGMARKFFDLQEMLAFDKPSKTLEWLLTKSKAAIKELVQLKKSDASTCTNKSISSPSECEV FSRNQTVKKDRHSKIVTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLEWLLTKSKVAIKDLVHTKKS----SSARSTSSPSECEV MFSKSTYLQLPQVSTSLQSHASTSVVDLN-GAEFLLHQHHH--DILAGHFVGTN-APFLEASTLYN------QDVIGEVNEDPNFTMANT 170 167 80 Am CYC2A CYC1C FPTKQAVKKDRHSKIYTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLDWLLTKSKTAIKELVQSKST-----KSNSSSPCDDCEE FQAKQTVKKDRHSKIVTSQGPRDRRVRLSIGMARKFFDLQEMLGFDKPSKTLEWLLTKSKAAIKDLVQMKKSDATTCTNKSISSPSECEI FSIKQMVKKDRHSKIVTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLEWLLTKSKVAIKDLAHTKKS----SSARSTPLPSECEV MFGKNTYLHLPQVSSSLHSRAATSVVDLN-GNEIQLH------DMLSGHYLTTANAPVLESTALFNNNNNFNHDVVNGLNRDP----SPT 164 170 167 79 CYC2B CYC1D FQAKQTVKKDRHSKIVTSQGPRDRRVRLSIGMARKFFDLQEMLAFDKPSKTLEWLLTKSKAAIKELVQLKKSDASTCTNKSISSPSECEV FSRNQTVKKDRHSKIVTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLEWLLTKSKVAIKDLVHTKKS----SSARSTSSPSECEV 170 167 CYC1C CYC2A CYC1C VLNGEAFEHGSCLLPADSKRKSVLMNANQCKGAKDPTQSASTLAKESRAKARARARERTKEKMCIKKLNESRNM-------------NNL FPTKQAVKKDRHSKIYTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLDWLLTKSKTAIKELVQSKST-----KSNSSSPCDDCEE FQAKQTVKKDRHSKIVTSQGPRDRRVRLSIGMARKFFDLQEMLGFDKPSKTLEWLLTKSKAAIKDLVQMKKSDATTCTNKSISSPSECEI FSIKQMVKKDRHSKIVTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLEWLLTKSKVAIKDLAHTKKS----SSARSTPLPSECEV 244 164 170 167 CYC1D CYC2B CYC1D VLNGEAFENGNCLLGEDSKRKWVSINANKCKGAKDPTQSASTLAKESRAKARARARERTKEKMCIKKLNESRNMGSNLNPSVPIQR-NNL FQAKQTVKKDRHSKIVTSQGPRDRRVRLSIGMARKFFDLQEMLAFDKPSKTLEWLLTKSKAAIKELVQLKKSDASTCTNKSISSPSECEV FSRNQTVKKDRHSKIVTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLEWLLTKSKVAIKDLVHTKKS----SSARSTSSPSECEV 256 170 167 CYC2A CYC1C CYC2A IE----LENGN-YLDADSNGNFVLANTYRCIRAKDPQQDVLNLAKESRAKARARARERTREKMCMKKFTESRNMVPDLNPSIPIQARNSF VLNGEAFEHGSCLLPADSKRKSVLMNANQCKGAKDPTQSASTLAKESRAKARARARERTKEKMCIKKLNESRNM-------------NNL FPTKQAVKKDRHSKIYTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLDWLLTKSKTAIKELVQSKST-----KSNSSSPCDDCEE FQAKQTVKKDRHSKIVTSQGPRDRRVRLSIGMARKFFDLQEMLGFDKPSKTLEWLLTKSKAAIKDLVQMKKSDATTCTNKSISSPSECEI TCP domain 255 244 164 170 CYC2B CYC1D CYC2B IE----LENGN-YLDADYNGNLVPANTYRCRRAKDTQQDILNLAKESRAKARARARERTREKLCMKKFTESSNMASDLNRSIPIQARNSL VLNGEAFENGNCLLGEDSKRKWVSINANKCKGAKDPTQSASTLAKESRAKARARARERTKEKMCIKKLNESRNMGSNLNPSVPIQR-NNL FQAKQTVKKDRHSKIVTSQGPRDRRVRLSIGMARKFFDLQEMLAFDKPSKTLEWLLTKSKAAIKELVQLKKSDASTCTNKSISSPSECEV 255 256 170 Am CYC2A CYC1C VVS---VDSEN--VTDHSKGKSLKAN-NKCKEAMDSHQAA---AKESRAKARARARERTKEKMCIKQLNEAIVLR------------NHQ IE----LENGN-YLDADSNGNFVLANTYRCIRAKDPQQDVLNLAKESRAKARARARERTREKMCMKKFTESRNMVPDLNPSIPIQARNSF VLNGEAFEHGSCLLPADSKRKSVLMNANQCKGAKDPTQSASTLAKESRAKARARARERTKEKMCIKKLNESRNM-------------NNL FPTKQAVKKDRHSKIYTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLDWLLTKSKTAIKELVQSKST-----KSNSSSPCDDCEE 233 255 244 164 CYC2B CYC1D IE----LENGN-YLDADYNGNLVPANTYRCRRAKDTQQDILNLAKESRAKARARARERTREKLCMKKFTESSNMASDLNRSIPIQARNSL VLNGEAFENGNCLLGEDSKRKWVSINANKCKGAKDPTQSASTLAKESRAKARARARERTKEKMCIKKLNESRNMGSNLNPSVPIQR-NNL 255 256 CYC1C CYC2A CYC1C FEVCRPSASNSQLILHCPITDEATAATVTAT-DHIIQESNVVKRMLRHHPSFFGFHCSLPSPNINENWDVSSLTSQSN-FCDILDQQHKF VVS---VDSEN--VTDHSKGKSLKAN-NKCKEAMDSHQAA---AKESRAKARARARERTKEKMCIKQLNEAIVLR------------NHQ IE----LENGN-YLDADSNGNFVLANTYRCIRAKDPQQDVLNLAKESRAKARARARERTREKMCMKKFTESRNMVPDLNPSIPIQARNSF VLNGEAFEHGSCLLPADSKRKSVLMNANQCKGAKDPTQSASTLAKESRAKARARARERTKEKMCIKKLNESRNM-------------NNL 332 233 255 244 CYC1D CYC2B CYC1D FEVCRPSASN----IHCPITNEATTATVAATPEDLIQESNVIKRMLRHHSSFFGFHCSLPSPNVNENWDVSSLTSQSN-FCDILD-QHKF IE----LENGN-YLDADYNGNLVPANTYRCRRAKDTQQDILNLAKESRAKARARARERTREKLCMKKFTESSNMASDLNRSIPIQARNSL VLNGEAFENGNCLLGEDSKRKWVSINANKCKGAKDPTQSASTLAKESRAKARARARERTKEKMCIKKLNESRNMGSNLNPSVPIQR-NNL 340 255 256 CYC2A CYC1C CYC2A SEVCKLPPSNTEPSLHFPLANTAAAT------EDLIQESLVIRRMLKNN-SIFGFQQ-----NVNQNWDISSLTAQSN-LCDILD-QHKF FEVCRPSASNSQLILHCPITDEATAATVTAT-DHIIQESNVVKRMLRHHPSFFGFHCSLPSPNINENWDVSSLTSQSN-FCDILDQQHKF VVS---VDSEN--VTDHSKGKSLKAN-NKCKEAMDSHQAA---AKESRAKARARARERTKEKMCIKQLNEAIVLR------------NHQ IE----LENGN-YLDADSNGNFVLANTYRCIRAKDPQQDVLNLAKESRAKARARARERTREKMCMKKFTESRNMVPDLNPSIPIQARNSF 331 332 233 255 CYC2B CYC1D CYC2B SEVCEVPPSNTEPSFHFPLANTAAAT------EELIQESLVIRRILKHN-SMLGFQQ-----NVNQNCDISSLTAQSN-LCDILD-QHRF FEVCRPSASN----IHCPITNEATTATVAATPEDLIQESNVIKRMLRHHSSFFGFHCSLPSPNVNENWDVSSLTSQSN-FCDILD-QHKF IE----LENGN-YLDADYNGNLVPANTYRCRRAKDTQQDILNLAKESRAKARARARERTREKLCMKKFTESSNMASDLNRSIPIQARNSL 331 340 255 Am CYC2A CYC1C FEVSGTREAFVHPVFGFHQQNYGNAS--------------------------------------HENWDQSNLSSQSNQLCAILN-QHKF SEVCKLPPSNTEPSLHFPLANTAAAT------EDLIQESLVIRRMLKNN-SIFGFQQ-----NVNQNWDISSLTAQSN-LCDILD-QHKF FEVCRPSASNSQLILHCPITDEATAATVTAT-DHIIQESNVVKRMLRHHPSFFGFHCSLPSPNINENWDVSSLTSQSN-FCDILDQQHKF VVS---VDSEN--VTDHSKGKSLKAN-NKCKEAMDSHQAA---AKESRAKARARARERTKEKMCIKQLNEAIVLR------------NHQ R domain 284 331 332 233 CYC2B CYC1D SEVCEVPPSNTEPSFHFPLANTAAAT------EELIQESLVIRRILKHN-SMLGFQQ-----NVNQNCDISSLTAQSN-LCDILD-QHRF FEVCRPSASN----IHCPITNEATTATVAATPEDLIQESNVIKRMLRHHSSFFGFHCSLPSPNVNENWDVSSLTSQSN-FCDILD-QHKF 331 340 CYC1C CYC2A CYC1C INR---- FEVSGTREAFVHPVFGFHQQNYGNAS--------------------------------------HENWDQSNLSSQSNQLCAILN-QHKF SEVCKLPPSNTEPSLHFPLANTAAAT------EDLIQESLVIRRMLKNN-SIFGFQQ-----NVNQNWDISSLTAQSN-LCDILD-QHKF FEVCRPSASNSQLILHCPITDEATAATVTAT-DHIIQESNVVKRMLRHHPSFFGFHCSLPSPNINENWDVSSLTSQSN-FCDILDQQHKF 335 284 331 332 CYC1D CYC2B CYC1D INR---- SEVCEVPPSNTEPSFHFPLANTAAAT------EELIQESLVIRRILKHN-SMLGFQQ-----NVNQNCDISSLTAQSN-LCDILD-QHRF FEVCRPSASN----IHCPITNEATTATVAATPEDLIQESNVIKRMLRHHSSFFGFHCSLPSPNVNENWDVSSLTSQSN-FCDILD-QHKF 343 331 340 CYC2A CYC1C CYC2A INSSSNM INR---- FEVSGTREAFVHPVFGFHQQNYGNAS--------------------------------------HENWDQSNLSSQSNQLCAILN-QHKF SEVCKLPPSNTEPSLHFPLANTAAAT------EDLIQESLVIRRMLKNN-SIFGFQQ-----NVNQNWDISSLTAQSN-LCDILD-QHKF 338 335 284 331 CYC2B CYC1D CYC2B INSSSNM INR---- SEVCEVPPSNTEPSFHFPLANTAAAT------EELIQESLVIRRILKHN-SMLGFQQ-----NVNQNCDISSLTAQSN-LCDILD-QHRF 338 343 331 Am CYC2A CYC1C IN----- INSSSNM INR---- FEVSGTREAFVHPVFGFHQQNYGNAS--------------------------------------HENWDQSNLSSQSNQLCAILN-QHKF 286 338 335 284 CYC2B CYC1D INSSSNM INR---- 338 343 CYC2A CYC1C IN----- INSSSNM INR---- 286 338 335 CYC2B CYC1D INSSSNM INR---- 338 343 CYC2A IN----- INSSSNM 286 338 CYC2B INSSSNM 338 Am CYC IN----- 286 Supplemental Figure 8. Alignment of protein sequences of P. heterotricha CYC and Antirrhinum CYC. TCP (comprising BASIC, HELIX I, LOOP, and HELIX II regions) and R domains are underlined. The TCP domain of CYC1C is identical to that of CYC1D. 8

98 At TCP4 CIN At TCP2 CYC1 82 At TCP18 Lj CYC1 Floral CYC-binding symmetry site TCP-C Glyma08g28690 Glyma13g07480 Yes 89 92 Glyma19g05910 Lj CYC2 ECE 84 93 98 Mt CYC1A Lj CYC3 Glyma10g39140 Vvi Loc256607 Yes Yes No 87 85 Am CYC Am DICH 82 CYC1C CYC1D Yes CYC2 90 Mg CYC Sl TCP7 Yes No 63 CYC3 At TCP1 Br TCP1 At TCP12 No No Os PCF1 TCP-P Os PCF2 Supplemental Figure 9. The neighbor-joining tree of CYC2 clade genes using MEGA 4. Distance calculations are based on the protein sequences exclusive of the regions between TCP and R domains. Sequences were subjected to the neighbor-joining analysis. All fragments analyzed (bold) cluster within the CYC2 clade with a high bootstrap. Bootstrap values higher than 50% are shown. Am, Antirrhinum majus; At, Arabidopsis thaliana; Br, Brassica rapa; Glyma, Glycine max; Lj, Lotus japonicus; Mg, Mimulus guttatus; Mt, Medicago truncatula;, Primulina heterotricha; Sl, Solanum lycopersicum; Vvi, Vitis vinifera. Accession numbers for these sequences are: Am CYC: Y16313; Am DICH: AF199465; At TCP1: NM_001084312; At TCP2: NM_001084938; At TCP4: NM_001202967; At TCP12: NM_105554; At TCP16: NM_114384; At TCP18: NM_112741; Br TCP1: AC189200; Vvi LOC256607: XM_002279676; Mg CYC: AC182570; Mt CYC1A: XM_003637000; Sl TCP7: NM_001246868; Lj CYC1: DQ202475; Lj CYC2: DQ202476; Lj CYC3: DQ202477; PCF1: DE7260; PCF2: D87261; CYC1C: JX020500; CYC1D: JX020501; CYC2A: JX020502; CYC2B: JX020503. 9

Supplemental Table 1. Putative TCP-binding sites found in other ECE genes in the monocots. Species Gene a Sequence b Reference Oryza REP1 (EU702407) tctgggcccctctccg (-2991) Yuan et al., 2009 sativa agtagtgggcccttag (-1490) TB1 (AB088343) gggtggcccacggtt (-2215) Navaud et al., 2007 tttagtcccacatcg (-1919) tttagtcccacattg (-1837) tttagtcccacatcg (-1710) tttagtcccacatcg (-1584) ggttggcccacggtt (-1429) ccaaggccccacgtcg (-941) Zea TB1 (AF415151) ggaggaggcccaggt (-2947) Doebley et al., 1997 mays aacagggcccactacc (-1635) tacaggtcccatatg (-834) a The number in the bracket represent the accession number of each gene. b The sequences with capital letters representing the consensus CYC-binding sites. 3 kb upstream region of respective gene is analysed in this study. The number in the bracket represents the position of each site relative to the start codon of respective gene. 10

Supplemental Table 2. Primers used in this study. Primer name Sequence (from 5 to 3 ) CYC1C-F1 CYC1C-R1 CYC1D-F1 CYC1D-R1 CYC1C-F2 CYC1C-R2 CYC1D-F2 CYC1D-R2 CYC1C-F2 CYC1C-R2 CYC1D-F2 CYC1D-R2 CYC1C-F3 CYC1C-R3 CYC1C-F4 CYC1C-R4 CYC1D-F3 CYC1D-R3 CYC1C-F5 CYC1C-R5 CYC1C-F6 CYC1C-R6 ACTIN-F ACTIN-R AtEF1α-F AtEF1α-R CGCCGTTTATTGAGACTTCAACC CTAGAACTCTTCTTTGTATGAG TGTCATTTCTTGAGGTTTCAACA CTGGAACTTTTCTTTGTATGAA CAGACCATCGGCATCTAATAGCCAG CGAAAAACGAAGGATGGTGCCTCAG TGCTGTAGACCTCGTTAATGGAGC CTCAAGAAATGACACATTTTCTGC CTCGGATCCATGTTTGGCAAGAG CTTGAATTCTCACATTTTCTCCTTC CTGGATCCCTGGCCAACACAT CAAAAGCTTCGCCATTTAACAC TAACCCATGGCAACAATGTTTGGCAAGAGCTC CACTAGTCGCAGCAGCAGCAGCAGCAGCAGCAGCTATGTTTGAAGAT CATGAGTTGTTCACTGGCATACC GCTGAGATTAGAGCAGATTAAAGACCC GGTGAGTCGTTCACTGTCATACCAG GCTGTGATTAGAGCAGATT TAAGGG TGTCGTTAAAAGGATGCTGAGGCACC CTTGTGCTGCTGATCCAAAATGTCAC AGACCATGGTTGGCAAGAGCTCATAC AGAACTAGTGATGAACTTGTGCTGCTG TGTGTTGGACTCTGGTGATG TCCTCCAATCCAGACACTG TGAGCACGCTCTTCTTGCTTTCA GGTGGTGGCATCCATCTTGTTACA 11

Supplemental References: Doebley J, Stec A, Hubbard L. (1997) The evolution of apical dominance in maize. Nature. 386: 485-488. Navaud O, Dabos P, Carnus E, Tremousaygue D, HervéC. (2007) TCP transcription factors predate the emergence of land plants. J. Mol. Evol. 65: 23-33. Yuan Z, Gao S, Xue D-W, Luo D, Li L-T, Ding S-Y, Yao X, Wilson ZA, Qian Q, Zhang D-B. (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant ysiol. 149: 235-244. 12