Package. Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 40 V GS = 15 V, T C = 100 C.

Similar documents
Package. TAB Drain S S G. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 13.5 V GS = 15 V, T C = 100 C

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 19.7 V GS = 15 V, T C = 100 C.

Package. Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Part Number Package Marking

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 15 V GS = 15 V, T C = 100 C.

Package. Symbol Parameter Value Unit Test Conditions Note V GS = 15 V, T C = 25 C Fig. 19 A 7.5 V GS = 15 V, T C = 100 C.

Package. TAB Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 22.5 V GS = 15 V, T C = 100 C.

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 20 V, T C = 25 C Fig. 19 A 24 V GS = 20 V, T C = 100 C.

Package TO Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 6 V GS = 20 V, T C = 100 C.

Package TO Symbol Parameter Value Unit Test Conditions Note. V GS = 20 V, T C = 25 C Fig. 19 A 40 V GS = 20 V, T C = 100 C.

Package TO Symbol Parameter Value Unit Test Conditions Note. V GS =20 V, T C = 25 C Fig. 19 A 60 V GS =20 V, T C = 100 C.

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 46 V GS = 20 V, T C = 100 C. -40 to +175

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS =20 V, T C = 25 C A 71 V GS =20 V, T C = 100 C. -40 to +175

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 12.5 V GS = 20 V, T C = 100 C.

Chip Outline. Symbol Parameter Value Unit Test Conditions Note 36 A 27 V GS = 20 V, T C = 100 C. -55 to +175

CAS120M12BM2 1.2kV, 13 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec Diode

CAS300M17BM2 1.7kV, 8.0 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec TM Diode

CAS300M12BM2 1.2kV, 5.0 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

GCMS020A120B1H1 1200V 20 mohm SiC MOSFET Module

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

1.2 kv 16 mω 1.8 mj. Package. Symbol Parameter Value Unit Test Conditions Notes 117 V GS = 20V, T C

C5D05170H Silicon Carbide Schottky Diode Z-Rec Rectifier

C2D10120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

C2D05120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

C2D20120D Silicon Carbide Schottky Diode Zero Recovery Rectifier

C4D05120E Silicon Carbide Schottky Diode Z-Rec Rectifier

TO-247-3L Inner Circuit Product Summary I C) R DS(on)

Z-Rec Rectifier. C4D08120A Silicon Carbide Schottky Diode. Package. Features. Benefits. Applications

C3D04065A Silicon Carbide Schottky Diode Z-Rec Rectifier

E4D20120A. Silicon Carbide Schottky Diode E-Series Automotive. Features. Package. Benefits. Applications. Maximum Ratings (T C V DS 900 V I D 11.

C3D02060E Silicon Carbide Schottky Diode Z-Rec Rectifier

C3D08065A Silicon Carbide Schottky Diode Z-Rec Rectifier

C3D16065D Silicon Carbide Schottky Diode Z-Rec Rectifier

C3D04060F Silicon Carbide Schottky Diode Z-Rec Rectifier (Full-Pak)

LSIC1MO120E V N-channel, Enhancement-mode SiC MOSFET

GC15MPS V SiC MPS Diode

GB2X100MPS V SiC MPS Diode

GB01SLT V SiC MPS Diode

CID Insulated Gate Bipolar Transistor with Silicon Carbide Schottky Diode Zero Recovery Rectifier

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

SPECIFICATIONS (T J = 25 C, unless otherwise noted)

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

GAP3SLT33-220FP 3300 V SiC MPS Diode

SCT10N120. Silicon carbide Power MOSFET 1200 V, 12 A, 520 mω (typ., T J = 150 C) in an HiP247 package. Datasheet. Features. Applications.

GSID300A120S5C1 6-Pack IGBT Module

Complementary (N- and P-Channel) MOSFET

GSID040A120B1A3 IGBT Dual Boost Module

GC2X8MPS V SiC MPS Diode

OptiMOS (TM) 3 Power-Transistor

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C

Silicon carbide Power MOSFET 650 V, 90 A, 18 mω (typ., T J = 25 C) in an H²PAK-7 package. Order code V DS R DS(on) max. I D

OptiMOS 2 Power-Transistor

OptiMOS TM P3 Power-Transistor

OptiMOS 2 Power-Transistor

GSID075A060B1A4. Preliminary Data Sheet GSID075A060B1A4. IGBT Module. Features: Application:

GP1M003A080H/ GP1M003A080F GP1M003A080HH/ GP1M003A080FH

OptiMOS 3 Power-Transistor

500V N-Channel MOSFET

OptiMOS TM Power-MOSFET

CoolMOS TM Power Transistor

OptiMOS TM Power-MOSFET


GHIS075A120T2P2 Si IGBT/ SiC SBD PIM Module

CoolMOS TM Power Transistor

OptiMOS 3 Power-Transistor

OptiMOS Small-Signal-Transistor

OptiMOS 3 Power-MOSFET

OptiMOS 2 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS TM Power-MOSFET

N- & P-Channel Enhancement Mode Field Effect Transistor

OptiMOS 3 Power-Transistor

OptiMOS -P Small-Signal-Transistor

OptiMOS 3 Power-Transistor

P-Channel Enhancement Mode Mosfet

OptiMOS 2 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS 2 Small-Signal-Transistor

OptiMOS 3 Power-Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS 3 M-Series Power-MOSFET

OptiMOS 2 Small-Signal-Transistor

OptiMOS 3 Power-Transistor

Dual N-Channel OptiMOS MOSFET

OptiMOS 3 M-Series Power-MOSFET

OptiMOS TM 3 Power-Transistor

OptiMOS 3 Power-MOSFET

A I DM. W/ C V GS Gate-to-Source Voltage ± 20. Thermal Resistance Symbol Parameter Typ. Max. Units

OptiMOS TM 3 Power-Transistor

OptiMOS P2 Small-Signal-Transistor

CoolMOS Power Transistor

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-MOSFET

OptiMOS TM Power-MOSFET

OptiMOS TM Power-Transistor

OptiMOS TM 3 Power-Transistor

Transcription:

C3M39K Silicon Carbide Power MOSFET C3M TM MOSFET Technology N-Channel Enhancement Mode Features Package V DS I D @ 25 C R DS(on) 9 V 63 A 3 mω C3M TM SiC MOSFET technology Optimized package with separate driver source pin 8mm of creepage distance between drain and source High blocking voltage with low on-resistance High-speed switching with low capacitances Fast intrinsic diode with low reverse recovery (Q rr ) Halogen free, RoHS compliant TAB Drain Benefits Reduce switching losses and minimize gate ringing Higher system efficiency Reduce cooling requirements Increase power density Increase system switching frequency 1 D 2 3 4 S S G Gate (Pin 4) Drain (Pin 1, TAB) Applications Driver Source (Pin 3) Power Source (Pin 2) Solar inverters EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Part Number Package Marking C3M39K TO 247-4 C3M39K Maximum Ratings (T C = 25 C unless otherwise specified) Symbol Parameter Value Unit Test Conditions Note V DSmax Drain - Source Voltage 9 V V GS = V, I D = 1 μa V GSmax Gate - Source Voltage (dynamic) -8/+19 V AC (f >1 Hz) Note: 1 V GSop Gate - Source Voltage (static) -4/+15 V Static Note: 2 I D Continuous Drain Current 63 V GS = 15 V, T C = 25 C Fig. 19 A 4 V GS = 15 V, T C = 1 C I D(pulse) Pulsed Drain Current 2 A Pulse width t P limited by T jmax Fig. 22 P D Power Dissipation 149 W T C =25 C, T J = 15 C Fig. 2 T J, T stg Operating Junction and Storage Temperature -55 to +15 C T L Solder Temperature 26 C 1.6mm (.63 ) from case for 1s Note (1): When using MOSFET Body Diode V GSmax = -4V/+19V Note (2): MOSFET can also safely operate at /+15 V 1 C3M39K Rev. -, 1-218

Electrical Characteristics (T C = 25 C unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Test Conditions Note V (BR)DSS Drain-Source Breakdown Voltage 9 V V GS = V, I D = 1 μa V GS(th) Gate Threshold Voltage 1.7 2.4 3.5 V V DS = V GS, I D = 11 ma 1.7 V V DS = V GS, I D = 11 ma, T J = 15ºC I DSS Zero Gate Voltage Drain Current 1 1 μa V DS = 9 V, V GS = V I GSS Gate-Source Leakage Current 1 25 na V GS = 15 V, V DS = V R DS(on) g fs Drain-Source On-State Resistance Transconductance Fig. 11 3 39 V GS = 15 V, I D = 35 A Fig. 4, mω 37 V GS = 15 V, I D = 35 A, T J = 15ºC 5, 6 22 V DS= 2 V, I DS= 35 A S 21 V DS= 2 V, I DS= 35 A, T J = 15ºC C iss Input Capacitance 1864 V GS = V, V DS = 6 V Fig. 17, C oss Output Capacitance 131 pf 18 f = 1 MHz C rss Reverse Transfer Capacitance 4 VAC = 25 mv E oss C oss Stored Energy 33 μj Fig. 16 Fig. 7 E ON Turn-On Switching Energy (SiC Diode FWD).22 E OFF Turn Off Switching Energy (SiC Diode FWD).12 mj V DS = 6 V, V GS = -4 V/15 V, I D = 35 A, R G(ext) = 2.5Ω, L= 56 μh, T J = 15ºC Fig. 26, 29b E ON Turn-On Switching Energy (Body Diode FWD).4 E OFF Turn Off Switching Energy (Body Diode FWD).9 mj V DS = 6 V, V GS = -4 V/15 V, I D = 35 A, R G(ext) = 2.5Ω, L= 56 μh, T J = 15ºC Fig. 26, 29a t d(on) Turn-On Delay Time 15 t r Rise Time 22 t d(off) Turn-Off Delay Time 32 t f Fall Time 9 ns V DD = 6 V, V GS = -4 V/15 V I D = 35 A, R G(ext) = 2.5 Ω, Timing relative to V DS Inductive load R G(int) Internal Gate Resistance 3 Ω f = 1 MHz, V AC = 25 mv Q gs Gate to Source Charge 19 V DS = 6 V, V GS = -4 V/15 V Q gd Q g Gate to Drain Charge Total Gate Charge 3 87 nc I D = 35 A Per IEC6747-8-4 pg 21 Fig. 27 Fig. 12 Reverse Diode Characteristics (T C = 25 C unless otherwise specified) Symbol Parameter Typ. Max. Unit Test Conditions Note V SD Diode Forward Voltage 4.8 V V GS = -4 V, I SD = 17.5 A 4.5 V V GS = -4 V, I SD = 17.5 A, T J = 15 C Fig. 8, 9, 1 I S Continuous Diode Forward Current 3 A V GS = -4 V, T C = 25 C Note 1 I S, pulse Diode pulse Current 2 A V GS = -4 V, pulse width t P limited by T jmax Note 1 t rr Reverse Recover time 62 ns Q rr Reverse Recovery Charge 545 nc I rrm Peak Reverse Recovery Current 28 A Thermal Characteristics V GS = -4 V, I SD = 35 A, V R = 6 V dif/dt = 268 A/µs, T J = 15 C Note 1 Symbol Parameter Max. Unit Test Conditions Note R θjc Thermal Resistance from Junction to Case.84 R θja Thermal Resistance From Junction to Ambient 4 C/W Fig. 21 2 C3M39K Rev. -, 1-218

Typical Performance 2 18 16 14 12 1 8 6 4 T J = -55 C tp = < 2 µs V GS = 15V V GS = 13V V GS = 11V V GS = 9V 2 18 16 14 12 1 8 6 4 tp = < 2 µs V GS = 15V V GS = 13V V GS = 11V V GS = 9V V GS = 7V 2 V GS = 7V 2. 2.5 5. 7.5 1. 12.5 15. 17.5 2.. 2.5 5. 7.5 1. 12.5 15. 17.5 2. Figure 1. Output Characteristics T J = -55 ºC Figure 2. Output Characteristics T J = 25 ºC 2 18 16 T J = 15 C tp = < 2 µs V GS = 15V V GS = 13V V GS = 11V 2. 1.8 1.6 I DS = 35A V GS = 15V t p < 2 µs 14 12 1 8 6 4 V GS = 9V V GS = 7V On Resistance, R DS On (P.U.) 1.4 1.2 1..8.6.4 2.2. 2.5 5. 7.5 1. 12.5 15. 17.5 2.. -5-25 25 5 75 1 125 15 Junction Temperature, T J ( C) Figure 3. Output Characteristics T J = 15 ºC Figure 4. Normalized On-Resistance vs. Temperature 6 5 V GS = 15V t p < 2 µs 6 5 I DS = 35A t p < 2 µs On Resistance, R DS On (mohms) 4 3 2 1 T J = 15 C T J = -55 C On Resistance, R DS On (mohms) 4 3 2 1 V GS = 11 V V GS = 13 V V GS = 15 V 2 4 6 8 1 12 14 Figure 5. On-Resistance vs. Drain Current For Various Temperatures -5-25 25 5 75 1 125 15 Junction Temperature, T J ( C) Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 3 C3M39K Rev. -, 1-218

Typical Performance 11 1 9 8 7 6 5 4 3 2 1 V DS = 2 V tp < 2 µs T J = 15 C T J = -55 C 2 4 6 8 1 12 14 Gate-Source Voltage, V GS (V) -1-8 -6-4 -2 V GS = -4 V V GS = V V GS = -2 V T J = -55 C t p < 2 µs -2-4 -6-8 -1-12 -14-16 -18-2 Figure 7. Transfer Characteristic for Various Junction Temperatures Figure 8. Body Diode Characteristic at -55 ºC -1-8 -6-4 -2-1 -8-6 -4-2 V GS = -4 V V GS = -2 V V GS = V -2-4 -6-8 -1-12 -14 V GS = -4 V V GS = -2 V V GS = V -2-4 -6-8 -1-12 -14 T J = 25 C t p < 2 µs -16-18 -2 T J = 15 C t p < 2 µs -16-18 -2 Figure 9. Body Diode Characteristic at 25 ºC Figure 1. Body Diode Characteristic at 15 ºC Threshold Voltage, V th (V) 4. 3.5 3. 2.5 2. 1.5 1..5 Conditons V GS = V DS I DS = 11 ma Gate-Source Voltage, V GS (V) 16 12 8 4 I DS = 35 A I GS = 5 ma V DS = 6 V. -5-25 25 5 75 1 125 15 Junction Temperature T J ( C) -4 2 4 6 8 1 Gate Charge, Q G (nc) Figure 11. Threshold Voltage vs. Temperature Figure 12. Gate Charge Characteristics 4 C3M39K Rev. -, 1-218

Typical Performance -1-8 -6-4 -2-1 -8-6 -4-2 -2-2 V GS = V V GS = 5 V V GS = 1 V V GS = 15 V -4-6 -8-1 -12-14 V GS = V V GS = 5 V V GS = 1 V V GS = 15 V -4-6 -8-1 -12-14 T J = -55 C t p < 2 µs -16-18 -2 t p < 2 µs -16-18 -2 Figure 13. 3rd Quadrant Characteristic at -55 ºC Figure 14. 3rd Quadrant Characteristic at 25 ºC -1-8 -6-4 -2 7-2 6 V GS = V V GS = 5 V V GS = 1 V V GS = 15 V -4-6 -8-1 -12-14 Stored Energy, E OSS (µj) 5 4 3 2 T J = 15 C t p < 2 µs -16-18 -2 1 1 2 3 4 5 6 7 8 9 1 Drain to Source Voltage, V (V) Figure 15. 3rd Quadrant Characteristic at 15 ºC Figure 16. Output Capacitor Stored Energy 1 V AC = 25 mv f = 1 MHz 1 V AC = 25 mv f = 1 MHz C iss C iss Capacitance (pf) 1 1 C oss Capacitance (pf) 1 1 C oss 1 C rss 1 C rss 1 5 1 15 2 1 1 2 3 4 5 6 7 8 9 Figure 17. Capacitances vs. Drain-Source Voltage ( - 2V) Figure 18. Capacitances vs. Drain-Source Voltage ( - 9V) 5 C3M39K Rev. -, 1-218

Typical Performance Drain-Source Continous Current, I DS (DC) (A) 7 6 5 4 3 2 1 T J 15 C Maximum Dissipated Power, P tot (W) 16 14 12 1 8 6 4 2 T J 15 C -55-3 -5 2 45 7 95 12 145 Case Temperature, T C ( C) Figure 19. Continuous Drain Current Derating vs. Case Temperature -55-3 -5 2 45 7 95 12 145 Case Temperature, T C ( C) Figure 2. Maximum Power Dissipation Derating vs. Case Temperature Junction To Case Impedance, Z thjc ( o C/W) 1 1E-3 1E-3.5.3.1.5.2.1 SinglePulse 1E-3 1E-6 1E-6 1E-6 1E-3 1E-3 1E-3 1 Time, t p (s) Figure 21. Transient Thermal Impedance (Junction - Case) 1. 1. 1. Limited by R DS On 1 ms 1 µs.1 T C = 25 C D =, Parameter: t p.1.1 1 1 1 1 1 ms Figure 22. Safe Operating Area 1 µs Switching Loss (mj).6.5.4.3.2 V DD = 4 V R G(ext) = 2.5 Ω V GS = -4V/+15 V FWD = C3M39K L = 57.6 μh E Total E On E Off Switching Loss (mj) 1.2 1..8.6.4 V DD = 6 V R G(ext) = 2.5 Ω V GS = -4V/+15 V FWD = C3M39K L = 57.6 μh E Total E On.1.2 E Off. 1 2 3 4 5 6 7 8 Drain to Source Current, I DS (A). 1 2 3 4 5 6 7 8 Drain to Source Current, I DS (A) Figure 23. Clamped Inductive Switching Energy vs. Drain Current (V DD = 4V) Figure 24. Clamped Inductive Switching Energy vs. Drain Current (V DD = 6V) 6 C3M39K Rev. -, 1-218

Typical Performance Switching Loss (mj) 1.6 1.4 1.2 1..8.6.4.2 V DD = 6 V I DS = 35 A V GS = -4V/+15 V FWD = C3M39K L = 57.6 μh E Total E On E Off Switching Loss (mj) 1..9.8.7.6.5.4.3.2.1 I DS = 35 A V DD = 6 V R G(ext) = 2.5 Ω V GS = -4V/+15 V FWD = C3M39K (- - -)FWD =C4D212 L = 57.6 μh E Total E On E Total E On E Off. 5 1 15 2 25 External Gate Resistor RG(ext) (Ohms). E Off 25 5 75 1 125 15 175 Junction Temperature, T J ( C) Figure 25. Clamped Inductive Switching Energy vs. R G(ext) Figure 26. Clamped Inductive Switching Energy vs. Temperature Switching Times (ns) 1 9 8 7 6 5 4 3 2 1 V DD = 6 V I DS = 35 A V GS = -4V/+15 V FWD = C3M39K L = 57.6 μh t d(off) t d(on) t r t f 5 1 15 2 25 External Gate Resistor RG(ext) (Ohms) Figure 27. Switching Times vs. R G(ext) Figure 28. Switching Times Definition 7 C3M39K Rev. -, 1-218

Test Circuit Schematic L R G Q 1 V DC C DC VGS= - 4 V KS R G Q 2 D.U.T KS Figure 29a. Clamped Inductive Switching Test Circuit Using MOSFET Intrinsic Body Diode D 1 SiC Schottky V DC Q 2 R G D.U.T Figure 29b. Clamped Inductive Switching Test Circuit Using SiC Schottky Diode 8 C3M39K Rev. -, 1-218

Package Dimensions Package TO-247-4L E E3 E1 E4 E2 BASE METAL SECTION "F-F", "G-G" AND "H-H" SCALE: NONE 9 C3M39K Rev. -, 1-218

Package Dimensions Package TO-247-4L NOTE ; 1. ALL METAL SURFACES: TIN PLATED,EXCEPT AREA OF CUT 2. DIMENSIONING & TOLERANCEING CONFIRM TO ASME Y14.5M-1994. 3. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. SYM A A1 A2 b' b b1 b2 b3 b4 b5 b6 c' c D D1 D2 E MILLIMETERS MIN MAX 4.83 5.21 2.29 2.54 1.91 2.16 1.7 1.28 1.7 1.33 2.39 2.94 2.39 2.84 1.7 1.6 1.7 1.5 2.39 2.69 2.39 2.64.55.65.55.68 23.3 23.6 16.25 17.65.95 1.25 15.75 16.13 MILLIMETERS SYM MIN MAX E1 13.1 14.15 E2 3.68 5.1 E3 1. 1.9 E4 12.38 13.43 e e1 2.54 BSC 5.8 BSC N 4 L 17.31 17.82 L1 3.97 4.37 L2 2.35 2.65 øp 3.51 3.65 Q 5.49 6. S 6.4 6.3 T W 17.5 REF. 3.5 REF. X 4 REF. Recommended Solder Pad Layout 1 C3M39K Rev. -, 1-218

Notes RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 211/65/ EC (RoHS2), as implemented January 2, 213. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links SPICE Models: http://wolfspeed.com/power/tools-and-support SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support Copyright 218 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. Cree, Inc. 46 Silicon Drive Durham, NC 2773 USA Tel: +1.919.313.53 Fax: +1.919.313.5451 www.wolfspeed.com/power 11 C3M39K Rev. -, 1-218