CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

Similar documents
CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

1.2 kv 16 mω 1.8 mj. Package. Symbol Parameter Value Unit Test Conditions Notes 117 V GS = 20V, T C

CAS300M17BM2 1.7kV, 8.0 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec TM Diode

CAS120M12BM2 1.2kV, 13 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec Diode

CAS300M12BM2 1.2kV, 5.0 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec TM Diode

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 12.5 V GS = 20 V, T C = 100 C.

Chip Outline. Symbol Parameter Value Unit Test Conditions Note 36 A 27 V GS = 20 V, T C = 100 C. -55 to +175

Package TO Symbol Parameter Value Unit Test Conditions Note. V GS = 20 V, T C = 25 C Fig. 19 A 40 V GS = 20 V, T C = 100 C.

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS =20 V, T C = 25 C A 71 V GS =20 V, T C = 100 C. -40 to +175

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 15 V GS = 15 V, T C = 100 C.

Package. Symbol Parameter Value Unit Test Conditions Note V GS = 15 V, T C = 25 C Fig. 19 A 7.5 V GS = 15 V, T C = 100 C.

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 20 V, T C = 25 C Fig. 19 A 24 V GS = 20 V, T C = 100 C.

Package. Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 40 V GS = 15 V, T C = 100 C.

Package TO Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 6 V GS = 20 V, T C = 100 C.

Package TO Symbol Parameter Value Unit Test Conditions Note. V GS =20 V, T C = 25 C Fig. 19 A 60 V GS =20 V, T C = 100 C.

Package. TAB Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 22.5 V GS = 15 V, T C = 100 C.

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 46 V GS = 20 V, T C = 100 C. -40 to +175

Package. Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Part Number Package Marking

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 19.7 V GS = 15 V, T C = 100 C.

Package. TAB Drain S S G. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 13.5 V GS = 15 V, T C = 100 C

C2D10120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

C2D05120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

GCMS020A120B1H1 1200V 20 mohm SiC MOSFET Module

C2D20120D Silicon Carbide Schottky Diode Zero Recovery Rectifier

C5D05170H Silicon Carbide Schottky Diode Z-Rec Rectifier

C4D05120E Silicon Carbide Schottky Diode Z-Rec Rectifier

Z-Rec Rectifier. C4D08120A Silicon Carbide Schottky Diode. Package. Features. Benefits. Applications

C3D04065A Silicon Carbide Schottky Diode Z-Rec Rectifier

CID Insulated Gate Bipolar Transistor with Silicon Carbide Schottky Diode Zero Recovery Rectifier

E4D20120A. Silicon Carbide Schottky Diode E-Series Automotive. Features. Package. Benefits. Applications. Maximum Ratings (T C V DS 900 V I D 11.

TO-247-3L Inner Circuit Product Summary I C) R DS(on)

SCT10N120. Silicon carbide Power MOSFET 1200 V, 12 A, 520 mω (typ., T J = 150 C) in an HiP247 package. Datasheet. Features. Applications.

C3D08065A Silicon Carbide Schottky Diode Z-Rec Rectifier

C3D04060F Silicon Carbide Schottky Diode Z-Rec Rectifier (Full-Pak)

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C

C3D02060E Silicon Carbide Schottky Diode Z-Rec Rectifier

C2D10120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

SPECIFICATIONS (T J = 25 C, unless otherwise noted)

C3D16065D Silicon Carbide Schottky Diode Z-Rec Rectifier

N- & P-Channel Enhancement Mode Field Effect Transistor

PSMN006-20K. N-channel TrenchMOS SiliconMAX ultra low level FET

Silicon carbide Power MOSFET 650 V, 90 A, 18 mω (typ., T J = 25 C) in an H²PAK-7 package. Order code V DS R DS(on) max. I D

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

BUK9Y53-100B. N-channel TrenchMOS logic level FET. Table 1. Pinning Pin Description Simplified outline Symbol 1, 2, 3 source (S) 4 gate (G)

PSMN4R5-40PS. N-channel 40 V 4.6 mω standard level MOSFET. High efficiency due to low switching and conduction losses

OptiMOS 3 M-Series Power-MOSFET

OptiMOS (TM) 3 Power-Transistor

OptiMOS TM Power-Transistor

500V N-Channel MOSFET

GA08JT Normally OFF Silicon Carbide Super Junction Transistor. V DS = 1700 V I D = 8 A R DS(ON) = 250 mω

OptiMOS 3 Power-Transistor

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

OptiMOS 3 Power-Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS TM P3 Power-Transistor

OptiMOS 3 Power-Transistor

GB2X100MPS V SiC MPS Diode

OptiMOS 3 Power-MOSFET

OptiMOS 3 M-Series Power-MOSFET

OptiMOS 3 Power-MOSFET

Complementary (N- and P-Channel) MOSFET

OptiMOS TM Power-Transistor


BUK B. N-channel TrenchMOS standard level FET

PSMN4R3-30PL. N-channel 30 V 4.3 mω logic level MOSFET. High efficiency due to low switching and conduction losses

GC15MPS V SiC MPS Diode

OptiMOS TM Power-MOSFET

OptiMOS 2 Power-Transistor

OptiMOS Power-Transistor

SIPMOS Small-Signal Transistor BSP 149

BUK A. N-channel TrenchMOS standard level FET

OptiMOS 2 Power-Transistor

P-Channel Enhancement Mode Field Effect Transistor PARAMETERS/TEST CONDITIONS SYMBOL LIMITS UNITS

OptiMOS 3 Power-MOSFET

OptiMOS 3 Power-Transistor

N-channel TrenchMOS standard level FET. Higher operating power due to low thermal resistance Low conduction losses due to low on-state resistance

OptiMOS TM 3 Power-MOSFET

OptiMOS 3 Power-Transistor

OptiMOS 2 Power-Transistor

N-channel TrenchMOS standard level FET

N-channel TrenchMOS transistor

SPN01N60C3. Cool MOS Power Transistor V T jmax 650 V

OptiMOS TM Power-Transistor

OptiMOS TM Power-MOSFET

Dual N-Channel OptiMOS MOSFET

IXFN140N30P. Polar TM Power MOSFET HiPerFET TM = 300V = 110A V DSS I D ns. t rr. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

OptiMOS 3 M-Series Power-MOSFET

OptiMOS 2 Power-Transistor

N-channel TrenchMOS logic level FET

N-channel TrenchMOS standard level FET. Higher operating power due to low thermal resistance Low conduction losses due to low on-state resistance

OptiMOS TM 3 Power-Transistor

TrenchT2 TM Power MOSFET

OptiMOS TM Power-MOSFET

GP1M003A080H/ GP1M003A080F GP1M003A080HH/ GP1M003A080FH

SIPMOS Power-Transistor

OptiMOS TM Power-MOSFET

Transcription:

CCS5M12CM2 1.2kV, 5A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode Features Ultra Low Loss Zero Reverse Recovery Current Zero Turn-off Tail Current High-Frequency Operation Positive Temperature Coefficient on V F and V DS(on) Cu Baseplate, AlN DBC System Benefits Enables Compact and Lightweight Systems High Efficiency Operation Ease of Transistor Gate Control Reduced Cooling Requirements Reduced System Cost V DS R DS(on) (T J = 25 C) E OFF (T J = 15 C) Package 1.2 kv 25 mω.6 mj Applications Solar Inverters UPS and SMPS Induction Heating Regen Drives 3-Phase PFC Motor Drives Part Number Package Marking CCS5M12CM2 Six-Pack CCS5M12CM2 Maximum Ratings (T C = 25 C unless otherwise specified) Symbol Parameter Value Unit Test Conditions Notes V DS Drain - Source Voltage 1.2 kv V GS Gate - Source Voltage +25/-1 V I D Continuous Drain Current 87 V GS = 2V, T C =25 C A 61 V GS = 2V, T C =9 C Fig. 21 Datasheet: CCS5M12CM2,Rev. A I D(pulse) Pulsed Drain Current 25 A Pulse width t P = 5 μs Rate limited by T jmax,t C = 25 C T J Junction Temperature 15 C T C,T STG Case and Storage Temperature Range -4 to +15 C V isol Case Isolation Voltage 2.5 kv DC, t=1min L Stray Stray Inductance 3 nh Measured from pins 25-26 to 27-28 M Mounting Torque 5. Nm G Weight 18 g P D Power Dissipation 337 W T C = 25ºC, T J 15ºC Subject to change without notice. www.cree.com 1

Electrical Characteristics (T C = 25 C unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Test Conditions Note V (BR)DSS Drain - Source Breakdown Voltage 1.2 kv V GS, = V, I D = 1 ua V GS(th) Gate Threshold Voltage 2.3 V DS = 1 V, ID = 2.5 ma 1.6 V V DS = 1 V, ID = 2.5 ma, T J = 15ºC I DSS Zero Gate Voltage Drain Current 2 1 μa V DS = 1.2 kv, V GS = V I GSS Gate-Source Leakage Current.5 μa V GS, = 2 V, V DS = V R DS(on) g fs On State Resistance Transconductance C iss Input Capacitance 2.81 C oss Output Capacitance.393 C rss Reverse Transfer Capacitance.14 25 34 mω VGS = 2 V, ID = 5 A Fig. 4 43 63 V GS = 2 V, I D = 5 A, T J = 15ºC 5,6,7 22 V DS = 2 V, ID = 5 A 21 S V DS = 2 V, ID = 5 A, T J = 15ºC nf V DS = 8V, V GS = V f = 1MHz, V AC = 25mV Fig. 8 Fig. 16,17 E on Turn-On Switching Energy 1.1 mj E Off Turn-Off Switching Energy.6 mj V DD = 6V, V GS = +2V/-5V I D = 5A, R G = 2Ω Inductive Load = 2 μh T J = 15ºC Note: IEC 6747-8-4 Definitions Fig. 18 R G Internal Gate Resistance 1.5 Ω f = 1MHz, V AC = 25mV Q G Gate Charge 18 nc V DD= 8V, I D= 5A Fig. 15 Resistive Switching t d(on) Turn-on delay time 21 ns t r(on) V SD fall time 9% to 1% 3 ns t d(off) Turn-off delay time 5 ns V DD = 8V, R LOAD = 8 Ω V GS = +2/-2V, R G = 3.8 Ω T J = 25ºC Note: IEC 6747-8-4 Definitions t f(off) V SD rise time 1% to 9% 19 ns Module Application Note: The SiC MOSFET module switches at speeds beyond what is customarily associated with IGBT based modules. Therefore, special precautions are required to realize the best performance. The interconnection between the gate driver and module housing needs to be as short as possible. This will afford the best switching time and avoid the potential for device oscillation. Also, great care is required to insure minimum inductance between the module and link capacitors to avoid excessive V DS overshoots. 2 CCS5M12CM2,Rev. A

Free-Wheeling SiC Schottky Diode Characteristics Symbol Parameter Min. Typ. Max. Unit Test Conditions Note V SD Diode Forward Voltage Q C Total Capacitive Charge.28 μc 1.6 1.85 V I F = 5A, V GS = 2.2 I F = 5A, T J = 15ºC 3.42 I F = 25A, V R = 1V di F/dt = 5 A/μs, T J = 25ºC V R=V, f = 1MHz, T J = 25ºC C Total Capacitance.23 nf V R=4V, f = 1MHz, T J = 25ºC.18 V R=8V, f = 1MHz, T J = 25ºC I F Continuous Forward Current 5 A V GS = -5V, T case = 1ºC Thermal Characteristics Symbol Parameter Min. Typ. Max. Unit Test Conditions Note R thjcm Thermal Resistance Juction-to-Case for MOSFET.37.49 R thjcd Thermal Resistance Juction-to-Case for Diode.42.48 C/W 3 CCS5M12CM2,Rev. A

Typical Performance 2 16 T J = -4 C t p < 5 µs V GS = 2 V 2 16 t p < 5 µs V GS = 2 V Drain Current, I DS (A) 12 8 Drain Current, I DS (A) 12 8 V GS = 1 V 4 V GS = 1 V 4 3 6 9 12 15 3 6 9 12 15 Figure 1. Typical Output Characteristics T J = -4ºC Figure 2. Typical Output Characteristics T J = 25ºC Drain Current, I DS (A) 2 16 12 8 4 T J = 15 C t p < 5 µs V GS = 2 V V GS = 1 V On Resistance, R DS On (p.u.) 2. 1.8 1.6 1.4 1.2 1..8.6.4 I DS = 5 A V GS = 2 V t p < 5 µs.2 3 6 9 12 15. -5 25 5 75 1 125 15 Junction Temperature, T J ( C) Figure 3. Typical Output Characteristics T J = 15ºC Figure 4. Normalized On-Resistance vs. Temperature 6 5 V GS = 2 V t p < 5 µs T J = 15 C 1 9 8 I DS = 5 A t p < 5 µs On Resistance, R DS On (mω) 4 3 2 1 T J = -4 C T J = 125 C On Resistance, R DS On (mω) 7 6 5 4 3 2 1 T J = -4 C T J = 15 C 25 5 75 1 Drain Source Current, I DS (A) 12 13 14 15 16 17 18 19 2 Gate Source Voltage, V GS (V) Figure 5. Normalized On-Resistance vs. Drain Current For Various Temperatures Figure 6. Normalized On-Resistance vs. Gate-Source Voltage for Various Temperatures 4 CCS5M12CM2,Rev. A

Typical Performance On Resistance, R DS On (mω) 1 9 8 7 6 5 4 3 2 V GS = 12 V V GS = 14 V V GS = 16 V V GS = 18 V V GS = 2 V I DS = 5 A t p < 5 µs 5 45 4 35 3 25 2 15 1 t p < 5 µs V DS = 2 V T J = 15 C T J = 1 C 1 5-5 25 5 75 1 125 15 Junction Temperature, T J ( C) Figure 7. On-Resistance vs. Temperature for Various Gate-Source Voltages 1 2 3 4 5 6 7 8 9 1 Gate-Source Voltage, V GS (V) Figure 8. Transfer Characteristic for Various Junction Temperatures -3-2.5-2 -1.5-1 -.5-3 -2.5-2 -1.5-1 -.5 V GS = -5 V V GS = -2 V V GS = V -5 Drain-Source Currnmt, I DS (A) -5 T J = -4 C tp < 5 µs -1 V GS = -2 V V GS = -5 V V GS = V tp < 5 µs -1 Figure 9. Diode Characteristic at -4ºC Figure 1. Diode Characteristic at 25ºC -3-2.5-2 -1.5-1 -.5-3 -2.5-2 -1.5-1 -.5 V GS = V V GS = 1 V V GS = -5 V V GS = V -5 V GS = 2 V -5 V GS = -2 V T J = 15 C tp < 5 µs -1 T J = -4 C tp < 5 µs -1 Figure 11. Diode Characteristic at 15ºC Figure 12. 3rd Quadrant Characteristic at -4ºC 5 CCS5M12CM2,Rev. A

Typical Performance -3-2.5-2 -1.5-1 -.5-3 -2.5-2 -1.5-1 -.5 V GS = V V GS = V V GS = 1 V V GS = 2 V -5 V GS = 1 V -5 tp < 5 µs -1 V GS = 2 V T J = 15 C tp < 5 µs -1 Figure 13. 3rd Quadrant Characteristic at 25ºC Figure 14. 3rd Quadrant Characteristic at 15ºC 2 1 Gate-Source Voltage, V GS (V) 15 1 5 V DS = 8 V I DS = 5 A I GS = 1 ma Capacitance (pf) 1 1 1 f = 1 MHz V AC = 25 mv C ISS C OSS C RSS -5 3 6 9 12 15 18 Gate Charge (nc) 1 5 1 15 2 25 Figure 15. Typical Gate Charge Characteristics Figure 16. Typical Capacitances vs. Drain-Source Voltage ( - 25V) 1 1 C ISS 3. 2.5 V DD = 6 V T J = 15 C L = 2 µh R G = 2 Ohms V GS = +2V/-5V E on Capacitance (pf) 1 1 C OSS C RSS Switching Loss (mj) 2. 1.5 1. E off f = 1 MHz V AC = 25 mv.5 1 25 5 75 1 Figure 17. Typical Capacitances vs. Drain-Source Voltage ( - 1V). 25 5 75 1 125 Drain to Source Current, I DS (A) Figure 18. Inductive Switching Energy vs. Drain Current For V DS = 6V, R G = 2 Ω 6 CCS5M12CM2,Rev. A

Typical Performance Switching Loss (mj) 4.5 4. 3.5 3. 2.5 2. 1.5 1..5 V DD = 8 V T J = 15 C L = 2 µh R G = 2 Ohms V GS = +2V/-5V E on E off Maximum Dissipated Power, P tot (W) 4 35 3 25 2 15 1 5 T J 15 C. 25 5 75 1 125 Drain to Source Current, I DS (A) Figure 19. Inductive Switching Energy vs. Drain Current For V DS = 8V, R G = 2 Ω -4-2 2 4 6 8 1 12 14 Case Temperature, T C ( C) Figure 2. Power Dissipation Derating Curve Drain-Source Continuous Current, I DS (DC) (A) 1 9 8 7 6 5 4 3 2 1 T J 15 C -4-2 2 4 6 8 1 12 14 Case Temperature, T C ( C) Figure 21. Continuous Current Derating Curve 7 CCS5M12CM2,Rev. A

Package Dimensions (mm) This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems, or weapons systems. Copyright 213 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks and Z-Rec is a trademark of Cree, Inc. 8 CCS5M12CM2,Rev. A Cree, Inc. 46 Silicon Drive Durham, NC 2773 USA Tel: +1.919.313.53 Fax: +1.919.313.5451 www.cree.com/power