Robust Tracking Control of Uncertain MIMO Nonlinear Systems with Application to UAVs

Similar documents
TRACKING CONTROL VIA ROBUST DYNAMIC SURFACE CONTROL FOR HYPERSONIC VEHICLES WITH INPUT SATURATION AND MISMATCHED UNCERTAINTIES

CHATTERING-FREE SMC WITH UNIDIRECTIONAL AUXILIARY SURFACES FOR NONLINEAR SYSTEM WITH STATE CONSTRAINTS. Jian Fu, Qing-Xian Wu and Ze-Hui Mao

Research Article Robust Adaptive Attitude Control for Airbreathing Hypersonic Vehicle with Attitude Constraints and Propulsive Disturbance

UDE-based Dynamic Surface Control for Strict-feedback Systems with Mismatched Disturbances

ACCEPTED VERSION IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

A Discrete Robust Adaptive Iterative Learning Control for a Class of Nonlinear Systems with Unknown Control Direction

A New Robust Decentralized Control Method for Interconnected Nonlinear Systems Based on State Extension and Adaptive Tracking

SLIDING MODE FAULT TOLERANT CONTROL WITH PRESCRIBED PERFORMANCE. Jicheng Gao, Qikun Shen, Pengfei Yang and Jianye Gong

Hover Control for Helicopter Using Neural Network-Based Model Reference Adaptive Controller

Terminal Sliding Mode Control for Cyber Physical System Based on Filtering Backstepping

Tracking Control of a Class of Differential Inclusion Systems via Sliding Mode Technique

DISTURBANCE OBSERVER BASED CONTROL: CONCEPTS, METHODS AND CHALLENGES

Dynamic backstepping control for pure-feedback nonlinear systems

Nonlinear Controller Design of the Inverted Pendulum System based on Extended State Observer Limin Du, Fucheng Cao

A Novel Fault-Tolerant Control Strategy for Near Space Hypersonic Vehicles via Least Squares Support Vector Machine and Backstepping Method

Output-feedback Dynamic Surface Control for a Class of Nonlinear Non-minimum Phase Systems

UDE-based Robust Control for Nonlinear Systems with Mismatched Uncertainties and Input Saturation

OVER THE past 20 years, the control of mobile robots has

Dynamic Integral Sliding Mode Control of Nonlinear SISO Systems with States Dependent Matched and Mismatched Uncertainties

Neural adaptive control for uncertain nonlinear system with input saturation Gao, Shigen; Dong, Hairong; Ning, Bin; Chen, Lei

ADAPTIVE NEURAL NETWORK CONTROLLER DESIGN FOR BLENDED-WING UAV WITH COMPLEX DAMAGE

A Sliding Mode Control based on Nonlinear Disturbance Observer for the Mobile Manipulator

Chaos suppression of uncertain gyros in a given finite time

FUZZY CONTROL OF NONLINEAR SYSTEMS WITH INPUT SATURATION USING MULTIPLE MODEL STRUCTURE. Min Zhang and Shousong Hu

Multi-layer Flight Control Synthesis and Analysis of a Small-scale UAV Helicopter

Adaptive sliding mode backstepping control for near space vehicles considering engine faults

Research on robust control of nonlinear singular systems. XuYuting,HuZhen

Robust Output Feedback Control for a Class of Nonlinear Systems with Input Unmodeled Dynamics

THE nonholonomic systems, that is Lagrange systems

Inverse optimal control for unmanned aerial helicopters with disturbances

TWO KINDS OF HARMONIC PROBLEMS IN CONTROL SYSTEMS

Open Access Permanent Magnet Synchronous Motor Vector Control Based on Weighted Integral Gain of Sliding Mode Variable Structure

Two-stage Pedestrian Detection Based on Multiple Features and Machine Learning

Simulation of Backstepping-based Nonlinear Control for Quadrotor Helicopter

Design of Observer-based Adaptive Controller for Nonlinear Systems with Unmodeled Dynamics and Actuator Dead-zone

Neural Control for Constrained Human-Robot Interaction with Human Motion Intention Estimation and Impedance Learning

Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer

Results on stability of linear systems with time varying delay

TERMINAL ATTITUDE-CONSTRAINED GUIDANCE AND CONTROL FOR LUNAR SOFT LANDING

Decentralized Formation Control of Multiple Autonomous Underwater Vehicles with Input Saturation Using RISE Feedback Method

PERIODIC signals are commonly experienced in industrial

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

RBF Neural Network Adaptive Control for Space Robots without Speed Feedback Signal

Output Feedback Dynamic Surface Controller Design for Airbreathing Hypersonic Flight Vehicle

Research on Balance of Unmanned Aerial Vehicle with Intelligent Algorithms for Optimizing Four-Rotor Differential Control

Unifying Behavior-Based Control Design and Hybrid Stability Theory

Sensor Fault Diagnosis for a Class of Time Delay Uncertain Nonlinear Systems Using Neural Network

Event-sampled direct adaptive neural network control of uncertain strict-feedback system with application to quadrotor unmanned aerial vehicle

Chapter 2 Review of Linear and Nonlinear Controller Designs

Research Article Modeling and Extended State Observer Based Dynamic Surface Control for Cold Rolling Mill System

Decentralized Disturbance Attenuation for Large-Scale Nonlinear Systems with Delayed State Interconnections

Adaptive Robust Control (ARC) for an Altitude Control of a Quadrotor Type UAV Carrying an Unknown Payloads

Research Article Stabilization Analysis and Synthesis of Discrete-Time Descriptor Markov Jump Systems with Partially Unknown Transition Probabilities

Adaptive Robust Control for Servo Mechanisms With Partially Unknown States via Dynamic Surface Control Approach

A GLOBAL SLIDING MODE CONTROL WITH PRE-DETERMINED CONVERGENCE TIME DESIGN FOR REUSABLE LAUNCH VEHICLES IN REENTRY PHASE

Delay-dependent Stability Analysis for Markovian Jump Systems with Interval Time-varying-delays

Agile Missile Controller Based on Adaptive Nonlinear Backstepping Control

Time-delay feedback control in a delayed dynamical chaos system and its applications

Trajectory tracking & Path-following control

Adaptive synchronization of chaotic neural networks with time delays via delayed feedback control

Generalized projective synchronization between two chaotic gyros with nonlinear damping

RESEARCH ON AEROCRAFT ATTITUDE TESTING TECHNOLOGY BASED ON THE BP ANN

Using Neural Networks for Identification and Control of Systems

Output-based disturbance rejection control for nonlinear uncertain systems with unknown frequency disturbances using an observer backstepping approach

Research Article Neural Network L 1 Adaptive Control of MIMO Systems with Nonlinear Uncertainty

Research Article Sliding Mode Control for the Synchronous Generator

Variable Learning Rate LMS Based Linear Adaptive Inverse Control *

Adaptive control of time-varying systems with gain-scheduling

Stability and hybrid synchronization of a time-delay financial hyperchaotic system

Global Practical Output Regulation of a Class of Nonlinear Systems by Output Feedback

Research Article Model Free Command Filtered Backstepping Control for Marine Power Systems

A Model-Free Control System Based on the Sliding Mode Control Method with Applications to Multi-Input-Multi-Output Systems

Study on form distribution of soil iron in western Jilin and its correlation with soil properties

Lyapunov Stability of Linear Predictor Feedback for Distributed Input Delays

Robustness Study for Longitudinal and Lateral Dynamics of RLV with Adaptive Backstepping Controller

RESEARCH ON TRACKING AND SYNCHRONIZATION OF UNCERTAIN CHAOTIC SYSTEMS

Finite-time hybrid synchronization of time-delay hyperchaotic Lorenz system

Design and Development of a Novel Controller for Robust Stabilisation and Attitude Control of an Unmanned Air Vehicle for Nuclear Environments*

An Approach of Robust Iterative Learning Control for Uncertain Systems

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT

DESIRED COMPENSATION ADAPTIVE ROBUST CONTROL OF MOBILE SATELLITE COMMUNICATION SYSTEM WITH DISTURBANCE AND MODEL UNCERTAINTIES

Approximation-Free Prescribed Performance Control

Aerospace Science and Technology

RECENTLY, the study of cooperative control of multiagent

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS

Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3)

Input Constraints Sliding Mode Control Based on RBF Network Compensation Mengya Hou 1,a, Huanqiang Chen 2,b

Formation Control for Underactuated Autonomous Underwater Vehicles Using the Approach Angle

Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer

A Novel Integral-Based Event Triggering Control for Linear Time-Invariant Systems

H inf. Loop Shaping Robust Control vs. Classical PI(D) Control: A case study on the Longitudinal Dynamics of Hezarfen UAV

AROTORCRAFT-BASED unmanned aerial vehicle

Nonlinear Landing Control for Quadrotor UAVs

The Role of Zero Dynamics in Aerospace Systems

Robust Gain Scheduling Synchronization Method for Quadratic Chaotic Systems With Channel Time Delay Yu Liang and Horacio J.

Attitude Control of Unmanned Aerial Vehicle Based on Sliding Mode Technique with Parameter Estimation

Pitch Control of Flight System using Dynamic Inversion and PID Controller

Research Article Robust Tracking Control for Switched Fuzzy Systems with Fast Switching Controller

Adaptive Backstepping Control for Optimal Descent with Embedded Autonomy

Transcription:

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 2, NO. 1, JANUARY 2015 25 Robust Tracking Control of Uncertain MIMO Nonlinear Systems with Application to UAVs Yanlong Zhou, Mou Chen, and Changsheng Jiang Abstract In this paper, we consider the robust adaptive tracking control of uncertain multi-input and multi-output (MIMO) nonlinear systems with input saturation and unknown external disturbance. The nonlinear disturbance observer (NDO) is employed to tackle the system uncertainty as well as the external disturbance. To handle the input saturation, an auxiliary system is constructed as a saturation compensator. By using the backstepping technique and the dynamic surface method, a robust adaptive tracking control scheme is developed. The closed-loop system is proved to be uniformly ultimately bounded thorough Lyapunov stability analysis. Simulation results with application to an unmanned aerial vehicle (UAV) demonstrate the effectiveness of the proposed robust control scheme. Index Terms Nonlinear system, unmanned aerial vehicle (UAV), input saturation, disturbance observer, backstepping control, dynamic surface control (DSC). I. INTRODUCTION NOWADAYS, unmanned aerial vehicles (UAVs) have been widely used in both military and civilian areas due to their low cost, high maneuverability, no casualty, etc [1 4]. In a sense, UAVs show a valuable prospect for some applications where human interventions are restricted. To achieve a successful mission, the robust adaptive tracking control design for UAVs needs to be excellent because of the absence of a human pilot. Thus, it has attracted an increasing interest around the world in recent years. In [5], a high-level controller for a fixed-wing UAV was developed based on the nonlinear model predictive control method through an error dynamics. In [6], the output-feedback control scheme was proposed for an underactuated quadrotor UAV using neural networks. In [7], an optimal controller was designed for helicopter UAVs, and the optimal trajectory tracking was accomplished by a single neural network. To increase the robustness, a sliding mode controller and an adaptive controller were presented in [8] and [9], respectively. However, as a kind of multi-input and multi-output (MIMO) nonlinear systems, the design of robust flight control is complex for UAVs with parameter uncertainty, strong nonlinearity, high coupling and unknown external disturbance. Fortunately, the nonlinear disturbance observer (NDO) is proven to be an effective method to handle Manuscript received September 26, 2013; accepted March 24, 2014. This work was supported by National Natural Science Foundation of China (61174102), Jiangsu Natural Science Foundation of China (SBK20130033), Aeronautical Science Foundation of China 20145152029) and Specialized Research Fund for the Doctoral Program of Higher Education (20133218110013). Recommended by Associate Editor Jie Chen Citation: Yanlong Zhou, Mou Chen, Changsheng Jiang. Robust tracking control of uncertain MIMO nonlinear systems with application to UAVs. IEEE/CAA Journal of Automatica Sinica, 2015, 2(1): 25 32 Yanlong Zhou, Mou Chen, and Changsheng Jiang are with the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China (e-mail: zhouyanlong100@163.com; chenmou@nuaa.edu.cn; jiangcs@nuaa.edu.cn). system uncertainty and unknown external disturbance [10 14]. The robust control design based on the NDO has been successfully applied to air vehicles. In [10 13], under the condition that the derivative of the compounded disturbance was closely equal to zero, a disturbance observer technique was proposed. Actually, the compounded disturbance is changeable with time for UAVs. To relax this assumption of the above mentioned NDO, we need to further develop and apply it to the robust control design of UAVs. For some special classes of nonlinear systems, backstepping is an important control approach [15 19], which is a Lyapunovbased recursive design procedure. In [16 18], an adaptive tracking control framework for a class of uncertain nonlinear systems was studied based on radial basis function neural networks. The adaptive control scheme was developed for MIMO nonlinear systems considering time-varying delays and unknown backlash-like hysteresis in [19]. However, there exists the problem of calculation explosion in the conventional backstepping technique. The dynamic surface control (DSC) [20 24] was proposed to solve this problem by introducing a first-order filter at each step. As a result, the derivative of the virtual control law was avoided to be calculated, which simplified the design process. In [20], the dynamic surface technique was described in detail by Swaroop et al., and further developed in [21 24]. In this paper, the robust adaptive tracking control for UAVs is designed based on the DSC. On the other hand, the rudder deflections of UAVs are limited. If we ignore input saturation in the control design, the system control performance can be degraded and the system instability can be caused, even a serious accident will happen. During the past decades, various schemes for the control design of nonlinear systems with input saturation have been studied extensively. In [25 27], a robust adaptive control was proposed based on the backstepping technique, using the special property of a hyperbolic tangent function and a Nussbaum function to handle the input saturation. In [28 30], an auxiliary system was constructed as a compensator to eliminate the effect of the input saturation, which was successfully applied to the control design of ocean surface vessels. By regarding the input saturation as a kind of constraints for the optimization function, the predictive control was studied [31 32]. In [33 34], an adaptive dynamic programming approach was proposed by employing a generalized non-quadratic function to deal with control constraints. However, there are few existing works about tracking control for UAVs with input saturation and unknown external disturbance. Motivated by the above discussion and analysis, a robust adaptive tracking control scheme is proposed for a class of uncertain MIMO nonlinear systems in the presence of system uncertainty, unknown external disturbance, and input saturation. To efficiently handle the compounded disturbance,

26 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 2, NO. 1, JANUARY 2015 the NDO is employed. The auxiliary system is designed to eliminate the effect of input saturation. The advantage of the dynamic surface technique is taken to deal with the explosion of complexity in backstepping control. The stability of the closed-loop system based on the developed robust adaptive tracking control scheme is rigorously analyzed through Lyapunov method. Finally, the developed robust adaptive tracking control scheme is used for the flight control design of UAVs. The organization of the paper is as follows. In Section II, the problem is described. Section III presents the design of the NDO. The robust adaptive tracking control is investigated for uncertain MIMO nonlinear systems by considering system uncertainty, unknown external disturbance, and input saturation in Section IV. In Section V, simulation results of a UAV are given to illustrate its effectiveness, followed by concluding remarks in Section VI. II. PROBLEM STATEMENT Consider a class of uncertain MIMO nonlinear systems in the presence of input saturation, given as follows: ẋx i =F i ( x i )+G i ( x i )x i+1 + D i ( x i, t),, 2,, k 1, ẋx k = F k ( x k ) + G k ( x k )u(v) + D k ( x k, t), (1) y = x 1, where x i = [x i,1, x i,2,, x i,n ] R n is the state vector, y R n is the output vector, x i = [x T 1, x T 2,, x T i ]T R in, F i ( x i ) R n, G j ( x j ) R n n and G k ( x k ) R n m are known smooth nonlinear functions of the state vector, D i ( x i, t) = F i ( x i ) + d ei (t) is the unknown compounded disturbance, F i ( x i ) stands for the system uncertainty, d ei (t) represents the external disturbance, i = 1, 2,, k, j = 1, 2,,, v R m is the control input vector, u(v) R m denotes the plant input vector subject to saturation nonlinearity which is described by { sgn(vi )u u i (v i ) = sat(v i ) = im, v i u im, (2) v i, v i < u im, where u im is the bound of u i (v i ), i = 1, 2,, m, sgn( ) stands for the sign function. In this paper, the control objective is designing the adaptive control law v to make the closed-loop system stable and to rend y following the given desired trajectory y r in the presence of system uncertainty, unknown external disturbance and input saturation, for all initial conditions satisfying Π i := { i j=1 (zt j z j + ς j 2/γ j) + i+1 j=2 εt j 1 ε j 1 < 2p i }, where z 1 = x 1 y r, z j = x j α j 1, α j 1 = ε j 1 + ᾱα j 1, ᾱα j 1 is the designed virtual control law, ε j 1 is the first-order filter error, ς j = ς j ˆς j, D j ς j, D j is the approximation error of the disturbance observer, ˆς j is the estimated value of ς j, γ j > 0 and p i > 0 are designed parameters, i = 1, 2,, k. To develop the robust adaptive tracking control scheme for the uncertain MIMO nonlinear system (1), the following assumptions and lemmas are required. Assumption 1. For the uncertain MIMO nonlinear system (1), all states of the system are measurable. Assumption 2 [23]. For the uncertain MIMO nonlinear system (1), the desired trajectory y r and ẏy r (t), ÿy r (t) are bounded, that is, there exists a constant B 0 > 0, such that Π 0 := {(y r,ẏy r,ÿy r ) : y r 2 + ẏy r 2 + ÿy r 2 B 0 }, represents the Frobenius norm for a matrix or the Euclidean norm for a vector. Assumption 3 [14]. For the uncertain MIMO nonlinear system (1), the derivative of the compounded disturbance is bounded, that is, ḊD i β di, where β di > 0 is unknown, i = 1, 2,, k. Assumption 4 [35]. For the uncertain MIMO nonlinear system (1), the inverse matrix of G i R n n exists, i = 1, 2,, k 1, and the generalized inverse matrix of G k R n m exists. On the other hand, there exists positive constant λ i making λ max (G i G T i ) λ i hold, i = 1, 2,, k. Lemma 1 [36]. For any ρ > 0 and z = [ z 1, z 2,, z n ] T R n, the following inequality always holds: 0 < z z T tanh( z/ρ) κρ, (3) where tanh( z/ρ) = [tanh( z 1 /ρ), tanh( z 2 /ρ),, tanh( z n / ρ)] T, κ = nζ 0, n is the dimension of vector z, ζ 0 is a constant satisfying ζ 0 = e (ζ0+1), that is, ζ 0 = 0.2785. Lemma 2 [37]. For bounded initial conditions, if there exists a C 1 continuous and positive-definite Lyapunov function V (x) satisfying π 1 ( x ) V (x) π 2 ( x ), such that V (x) κv (x) + c, where π 1, π 2 : R n R are class K functions and κ, c are positive constants, then the solution x(t) is uniformly bounded. Remark 1. For a practical system, the derivative of the compounded disturbance should be bounded. Otherwise, the compounded disturbance will be infinite and is quickly changeable with time. This compounded disturbance does not exist in UAV. Thus, Assumption 3 is reasonable. III. DESIGN OF NDO Since the compounded disturbance of the uncertain MIMO nonlinear system (1) is unknown, it cannot be directly used to design the robust adaptive tracking controller. To efficiently deal with this, the NDO is employed. For the convenience of robust adaptive tracking control development, the NDO is described as follows [14]. In a general way, each subsystem of (1) can be written as the following uncertain MIMO nonlinear system given by ẋx = F (x) + G(x)u + D(x, t), (4) where x R n is the state vector, u R m is the control input vector, F (x) R n and G(x) R n m are known smooth functions of x, D(x, t) = F (x) + d e (t) is the unknown compounded disturbance, F (x) stands for the system uncertainty, and d e (t) represents the external disturbance. D(x, t) satisfies the assumption of the compounded disturbance, that is, ḊD β d, where β d > 0 is unknown. To approximate the compounded disturbance of system (4), we design the following NDO: ˆD = η + P (x), (5) η = Lη L(P (x) + F (x) + G(x)u), (6) where η R n is the internal state of the disturbance observer, P (x) = [P 1 (x), P 2 (x),, P n (x)] T R n is the designed function vector which should make the constant matrix L = P (x) x R n n satisfy 2λ min (L) 1 > 0. The error of the disturbance observer is defined as D = D ˆD. (7)

ZHOU et al.: ROBUST TRACKING CONTROL OF UNCERTAIN MIMO NONLINEAR SYSTEMS WITH APPLICATION TO UAVS 27 The following lemma about the disturbance observer design is given, which includes the convergence of the disturbance approximation error. Lemma 3. Consider the uncertain MIMO nonlinear system (4) satisfying the assumption of the compounded disturbance. If the NDO is designed as (5) and (6), then the disturbance approximation error D is bounded. Proof. Choose the Lyapunov function as V 0 = 1 2 D T D. (8) Differentiating (7) and considering (4) (6), we have D = ḊD η Lẋx = ḊD + Lη + LP LD = ḊD L D. (9) Considering (9), the time derivative of V 0 is given by V 0 = D T L D + D T ḊD D T L D + 0.5 D T D + 0.5β 2 d κ 0 V 0 + M 0, (10) where κ 0 = 2λ min (L) 1 > 0, and M 0 = 0.5β 2 d > 0. Integration of (10) yields 0 V 0 M 0 κ 0 + (V 0 (0) M 0 κ 0 )e κ0t. (11) According to (11) and Lemma 2, we can obtain that the disturbance approximation error is bounded and satisfies the following inequality: D ( M0 2V 0 2 + V 0 (0) M ) 0. (12) κ 0 κ 0 This concludes the proof. IV. ROBUST ADAPTIVE TRACKING CONTROL DESIGN BASED ON NDO In this section, the robust adaptive tracking scheme will be proposed for the uncertain MIMO nonlinear system (1) by combining the dynamic surface approach with backstepping technique based on the NDO, and an auxiliary system is constructed to solve the problem of input saturation. The detailed design procedure is described as follows. Step 1. Employ the NDO to approximate the compounded disturbance D 1 which can be described as ˆD 1 = η 1 + P 1, (13) η 1 = L 1 η 1 L 1 (P 1 + F 1 + G 1 x 2 ), (14) where η 1 R n is the internal state of the disturbance observer, P 1 R n is the designed function vector, and L 1 = P 1 x 1 R n n. The approximation error of the first disturbance observer is defined as D 1 = D 1 ˆD 1. (15) We know that D 1 is bounded according to Lemma 3, and assume that D 1 ς 1. z 1 = x 1 y r. (16) The virtual control law is designed as ᾱα 1 = G 1 1 ( C 1z 1 F 1 + ẏy r ˆD 1 ˆς 1 tanh(z 1 /ρ 1 )), (17) where C 1 = C1 T > 0 and ρ 1 > 0 are designed parameters, ˆς 1 is the estimated value of ς 1, tanh(z 1 /ρ 1 ) = [tanh(z 1,1 /ρ 1 ), tanh(z 1,2 /ρ 1 ),, tanh(z 1,n /ρ 1 )] T, and z 1 = [z 1,1, z 1,2,, z 1,n ] T. To solve the explosion of complexity in the traditional backstepping control, the dynamic surface method is employed. Namely, we make the virtual control law ᾱα 1 pass through a first-order filter, i.e., Γ 1 α 1 + α 1 = ᾱα 1, α 1 (0) = ᾱα 1 (0), (18) where Γ 1 = diag{τ 1,1, τ 1,2,, τ 1,n }, τ 1,j > 0 is the time constant of the first-order filter, j = 1, 2,, n. z 2 = x 2 α 1, (19) ε 1 = α 1 ᾱα 1. (20) Considering (1), (15), (17), (19) and (20), the time derivative of z 1 can be expressed as żz 1 = ẋx 1 ẏy r = F 1 + G 1 z 2 + G 1 ε 1 + G 1 ᾱα 1 + D 1 ẏy r = C 1 z 1 + G 1 z 2 + G 1 ε 1 + D 1 ˆς 1 tanh(z 1 /ρ 1 ). (21) Differentiating (20), we have ε 1 = Γ 1 1 ε 1 + ( ᾱα 1 x 1 ẋx 1 ᾱα 1 z 1 żz 1 ᾱα 1 η 1 η 1 + ÿy r ) = Γ 1 1 ε 1 + B 1 (z 1, z 2, ε 1, η 1, y r,ẏy r,ÿy r ), (22) where B 1 ( ) is a continuous function with respect to variables (z 1, z 2, ε 1, η 1, y r,ẏy r,ÿy r ). Since sets Π 0 R 3m and Π 1 R 2n+1 are compact, Π 0 Π 1 is also compact. The maximum value B 1 of function B 1 ( ) exists on Π 0 Π 1 because of the continuous function property [23]. Therefore, we have ε 1 Γ 1 1 ε 1 + B 1. (23) Consider the Lyapunov function as V 1 = 1 2 zt 1 z 1 + 1 2 εt 1 ε 1 + 1 ς 1 2, 2γ 1 (24) where γ 1 > 0 is a designed parameter, ς 1 = ς 1 ˆς 1, and ς 1 = ˆς 1. Differentiating (24) and considering (21) and (23), we obtain V 1 z T 1 C 1 z 1 + z T 1 G 1 z 2 + z T 1 G 1 ε 1 + z T D 1 1 ˆς 1 z T 1 tanh(z 1 /ρ 1 ) ε T 1 Γ 1 1 ε 1 + ε T 1 B 1 1 γ 1 ς 1 ˆς1 z T 1 C 1 z 1 + z T 1 G 1 z 2 + 0.5z T 1 G 1 G T 1 z 1 + z 1 D 1 ˆς 1 z T 1 tanh(z 1 /ρ 1 ) ε T 1 Γ 1 1 ε 1 + ε T 1 ε 1 + 0.5 B T 1 B 1 1 γ 1 ς 1 ˆς1 (λ min (C 1 ) 0.5 λ 1 )z T 1 z 1 (λ min (Γ 1 1 ) 1)εT 1 ε 1 + z T 1 G 1 z 2 + z 1 ς 1 ˆς 1 z T 1 tanh(z 1 /ρ 1 )+ 0.5 B T 1 B 1 1 γ 1 ς 1 ˆς1. (25)

28 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 2, NO. 1, JANUARY 2015 The parameter adaptive law is chosen as ˆς 1 = γ 1 (z T 1 tanh(z 1 /ρ 1 ) k 1ˆς 1 ), (26) where k 1 > 0 is a designed parameter. Substituting (26) into (25) yields V 1 (λ min (C 1 ) 0.5 λ 1 )z T 1 z 1 (λ min (Γ 1 1 ) 1)εT 1 ε 1 + z T 1 G 1 z 2 + z 1 ς 1 ˆς 1 z T 1 tanh(z 1 /ρ 1 )+ 0.5 B T 1 B 1 ς 1 (z T 1 tanh(z 1 /ρ 1 ) k 1ˆς 1 ). (27) By Lemma 1, the following inequality holds: z 1 ς 1 ˆς 1 z T 1 tanh(z 1 /ρ 1 ) ς 1 (z T 1 tanh(z 1 /ρ 1 ) k 1ˆς 1 ) = ς 1 ( z 1 z T 1 tanh(z 1 /ρ 1 )) + k 1 ς 1 ς 1 k 1 ς 2 1 0.5k 1 ς 2 1 + nζ 0 ρ 1 ς 1 + 0.5k 1 ς 2 1. (28) Substituting (28) into (27), we have V 1 (λ min (C 1 ) 0.5 λ 1 )z T 1 z 1 (λ min (Γ 1 1 ) 1)εT 1 ε 1 + z T 1 G 1 z 2 0.5k 1 ς 2 1 + nζ 0 ρ 1 ς 1 + 0.5k 1 ς 2 1 + 0.5 B T 1 B 1. (29) Step i (2 i k 1). Employ the NDO to approximate the compounded disturbance D i which can be described as ˆD i = η i + P i, (30) η i = L i η i L i (P i + F i + G i x i+1 ), (31) where η i R n is the internal state of the disturbance observer, P i R n is the designed function vector, and L i = P i x i R n n. The approximation error of the i-th disturbance observer is defined as D i = D i ˆD i. (32) We know that D i is bounded according to Lemma 3, and assume that D i ς i. z i = x i α i 1 (33) The virtual control law is designed as ᾱα i = G 1 i ( C i z i G T i 1z i 1 F i + α i 1 ˆD i ˆς i tanh(z i /ρ i )), (34) where C i = C T i > 0 and ρ i > 0 are designed parameters, ˆς i is the estimated value of ς i, tanh(z i /ρ i ) = [tanh(z i,1 /ρ i ), tanh(z i,2 /ρ i ),, tanh(z i,n /ρ i )] T, and z i = [z i,1, z i,2,, z i,n ] T. We make the virtual control law ᾱα i pass through a first-order filter, i.e., Γ i α i + α i = ᾱα i, α i (0) = ᾱα i (0), (35) where Γ i = diag{τ i,1, τ i,2,, τ i,n }, τ i,j > 0 is the time constant of the first-order filter, j = 1, 2,, n. z i+1 = x i+1 α i, (36) ε i = α i ᾱα i. (37) Considering (1), (32), (34), (36) and (37), the time derivative of z i can be expressed as żz i = ẋx i α i 1 = F i + G i z i+1 + G i ε i + G i ᾱα i + D i α i 1 = C i z i + G i z i+1 + G i ε i G T i 1z i 1 + D i ˆς i tanh(z i /ρ i ). (38) Differentiating (37), we have ε i = α i ᾱα i = Γ 1 i (ᾱα i α i ) ᾱα i = Γ 1 i ε i ᾱα i Γ 1 i ε i + B i. (39) Consider the Lyapunov function as V i = 1 2 zt i z i + 1 2 εt i ε i + 1 2γ i ς 2 i, (40) where γ i > 0 is a designed parameter, ς i = ς i ˆς i, and ς i = ˆς i. Differentiating (40) and considering (38) and (39), we obtain V i z T i C i z i + z T i G i z i+1 + z T i G i ε i z T i G T i 1z i 1 + z T i D i ˆς i z T i tanh(z i /ρ i ) ε T i Γ 1 i ε i + ε T B i i 1 ς i ˆςi γ i (λ min (C i ) 0.5 λ i )z T i z i (λ min (Γ 1 i ) 1)ε T i ε i + z T i G i z i+1 z T i G T i 1z i 1 + z i ς i ˆς i z T i tanh(z i /ρ i ) + 0.5 B T i B i 1 γ i ς i ˆςi. (41) The parameter adaptive law is chosen as ˆς i = γ i (z T i tanh(z i /ρ i ) k iˆς i ), (42) where k i > 0 is a designed parameter. Substituting (42) into (41) and invoking Lemma 1, we obtain V i (λ min (C i ) 0.5 λ i )z T i z i (λ min (Γ 1 i ) 1)ε T i ε i + z T i G i z i+1 z T i G T i 1z i 1 0.5k i ς 2 i + nζ 0 ρ i ς i + 0.5k i ς 2 i + 0.5 B T i B i. (43) Step k. Employ the NDO to approximate the compounded disturbance D k which can be described as ˆD k = η k + P k, (44) η k = L k η k L k (P k + F k + G k u(v)), (45) where η k R n is the internal state of the disturbance observer, P k R n is the designed function vector, and L k = P k x k R n n. The approximation error of the k-th disturbance observer is defined as D k = D k ˆD k. (46) We know that D k is bounded according to Lemma 3, and assume that D k ς k. z k = x k α. (47)

ZHOU et al.: ROBUST TRACKING CONTROL OF UNCERTAIN MIMO NONLINEAR SYSTEMS WITH APPLICATION TO UAVS 29 Considering (1), the time derivative of z k can be expressed as żz k = ẋx k α = F k + G k u(v) + D k α. (48) Consider the Lyapunov function as V k = 1 2 zt k z k + 1 2γ k ς 2 k, (49) where γ k > 0 is a designed parameter, ς k = ς k ˆς k, ˆς k is the estimated value of ς k, and ς k = ˆς k. Differentiating (49) and considering (48), we obtain V k = z T k F k + z T k G k u(v) + z T k D k z T k α 1 γ k ς k ˆςk. The parameter adaptive law is chosen as (50) ˆς k = γ k (z T k tanh(z k /ρ k ) k kˆς k ), (51) where ρ k > 0 and k k > 0 are the designed parameters, tanh (z k /ρ k ) = [tanh(z k,1 /ρ k ), tanh(z k,2 /ρ k ),,tanh(z k,n / ρ k )] T, and z k = [z k,1, z k,2,, z k,n ] T. Substituting (51) into (50), we obtain V k = z T k F k + z T k G k u(v) + z T k D k z T k α ς k (z T k tanh(z k /ρ k ) k kˆς k ). (52) To eliminate the effect of the input saturation, we have the following auxiliary design system [28 30] : { C0 χ 1 χ = χ ( z T 2 k G kξ + 0.5ξ T ξ)χ + G k ξ, χ ε 0 0, χ < ε 0 (53) where C 0 = C0 T > 0 and ε 0 > 0 are designed parameters, and ξ = u(v) v is the input-output difference of the actuator. Considering the input saturation, we design the following control law: v = G T k (G k G T k ) 1 ( C k (z k χ) G T z F k + α ˆD k ˆς k tanh(z k /ρ k )), (54) where C k = Ck T > 0 is a designed matrix. According to above analysis, the following theorem is proposed. Theorem 1. Consider the uncertain MIMO nonlinear system (1) satisfying Assumptions 1 4. The nonlinear disturbance is given as (13), (14), (30), (31), (44) and (45), and parameter adaptive laws are chosen as (26), (42) and (51), and the auxiliary system is designed as (53). Under the control laws (17), (34) and (54), all signals of the closed-loop system are uniformly ultimately bounded. Proof. If χ ε 0, choose the Lyapunov function as V = k V i = k ( 1 2 zt i z i + 1 2γ i ς 2 i ) + 1 2 εt i ε i + 1 2 χt χ. (55) Considering (29), (43), (52), (53) and invoking Lemma 1, we obtain the time derivative of V as follows: V (λ min (C i ) 0.5 λ i )z T i z i (λ min (Γ 1 i ) 1)ε T i ε i 0.5k i ς 2 i + z T G z k + (nζ 0 ρ i ς i + 0.5k i ς i 2 + 0.5B T i B i ) χ T C 0 χ + z T k F k + z T k G k v + z T k D k z T k α ς k (z T k tanh(z k /ρ k ) k kˆς k ) 0.5ξ T ξ + χ T G k ξ (λ min (C i ) 0.5 λ i )z T i z i (λ min (C k ) 0.5)z T k z k (λ min (Γ 1 i ) 1)ε T i ε i k 0.5k i ς i 2 (λ min (C 0 ) 0.5 λ k 0.5λ max (Ck T C k ))χ T χ+ k (nζ 0 ρ i ς i + 0.5k i ς i 2 ) + 0.5B T i B i κv + M, (56) where κ = min(2λ min (C i ) λ i, 2λ min (C k ) 1, 2λ min (Γ 1 i ) 2, k j γ j, 2λ min (C 0 ) λ k λ max (Ck TC k)) > 0, i = 1, 2,, k 1, j = 1, 2,, k, and M = ( k (nζ 0ρ i ς i + 0.5k i ς i 2) + 0.5 B T B i i ) > 0. Integration of (56) yields 0 V M ( κ + V (0) M ) e κt. (57) κ According to (57) and Lemma 2, we can obtain that all signals of the closed-loop system are uniformly ultimately bounded. On the other hand, there does not exist input saturation in the control system if χ < ε 0, that is, u(v) = v. Under this circumstance, Theorem 1 can be easily proved with similar processes. This concludes the proof. Remark 2. For the auxiliary system (53), we calculate the first equation when the saturation phenomenon appears in the simulation. If χ < ε 0 and ξ 0, the initial value of χ is reset to eliminate the effect of input saturation. V. SIMULATION STUDY FOR UAV In this section, we apply the proposed robust control scheme to the attitude tracking control of a UAV to illustrate the effectiveness. The considered attitude dynamic model of the UAV can be written as the following two MIMO nonlinear systems in accordance with singularly perturbed theory and time-scale separation principle [38] : { Ω = f s + g s ω + D s, (58) y s = Ω, { ω = f f + g f δ(v) + D f, (59) y f = ω,

30 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 2, NO. 1, JANUARY 2015 where Ω = [α, β, µ] T is the vector of attitude angles, including angle of attack, sideslip angle and roll angle, ω = [p, q, r] T is the vector of attitude angular rates, including angular rate, pitch angular rate and yaw angular rate. In the slowloop equation, f s is the state functional vector, g s is the system matrix, D s = f s + d s is the unknown compounded disturbance, f s represents the system uncertainty, d s stands for the external disturbance. In the fast-loop equation, f f is the state functional vector, g f = g f1 g fδ, where g f1 is the system matrix, g fδ is the allocation matrix of rudders, D f = f f + d f is the unknown compounded disturbance, f f represents the system uncertainty, d f stands for the external disturbance, v = [v 1, v 2, v 3, v 4, v 5 ] T is the control input vector, δ(v) = [δ a, δ e, δ r, δ y, δ z ] T denotes the plant input vector subject to saturation nonlinearity, involving ailerons, elevator, rudder, lateral deflection and longitudinal deflection of the thrust vectoring control surface. The detailed expressions of corresponding terms in (58) and (59) can be found in [38]. The initial conditions for the UAV are chosen as α 0 = 2, β 0 = 1, µ 0 = 0, p 0 = q 0 = r 0 = 0 rad/s, δ am = δ em = δ rm = 30, and δ ym = δ zm = 15. The desired attitudes are chosen as α c = (3 + 2 sin(0.2πt) + cos(0.1πt)), { 0 β c =, 4k t < 4(k + 1) 16, k = 0, 2, 4,,, 4(k + 1) t < 4(k + 2) µ c = 10. (60) Suppose that there are +30% and 30% uncertainties on aerodynamic coefficients and aerodynamic moment coefficients, respectively. On the other hand, the unknown timevarying disturbance moments in the fast-loop system of the UAV are given by d Mf (t) = 5 106 (sin(5t) + 0.5) 6 10 6 (cos(5t)) 6 10 6 (sin(5t) + 0.3) N m. (61) The designed parameters of the proposed robust adaptive tracking control scheme are chosen as P 1 = [2α + 0.5, 2β + 0.5, 2µ + 0.5] T, C 1 = diag{4, 4, 4}, ρ 1 = 0.4, γ 1 = 0.5, k 1 = 0.2, Γ 1 = diag{0.02, 0.02, 0.02}, P 2 = [2p + 0.5, 2q + 0.5, 2r + 0.5] T, C 2 = diag{2.5, 2.5, 2.5}, ρ 2 = 2.5, γ 2 = 1.0, k 2 = 0.5, C 0 = diag{5, 5, 5}, and ε 0 = 0.02. The simulation results are shown in Figs. 1 8, where dot lines (with subscript c ) represent the desired attitudes, and dash dot lines (with subscript 1 ) stand for the responses without NDO or saturation compensation, and dash lines (with subscript 2 ) represent the responses with NDO, and solid lines (with subscript 3 ) stand for the responses with NDO and saturation compensation. Under the proposed robust adaptive tracking control scheme based on the backstepping approach, DSC and NDO, we can see that the system outputs follow the desired values in a satisfactory way in the presence of system uncertainty, unknown external disturbance, and input saturation from Figs. 1 3. The compounded disturbance can be well tackled with NDO, and the oscillation phenomena is reduced. On the other hand, the control inputs are presented in Figs. 4 8. It should be noticed that the designed auxiliary system can make actuators drop out the saturation nonlinearity gradually, eliminating the effect of input saturation. Based on above simulation results and stated analysis, the proposed robust adaptive tracking control strategy is valid for uncertain MIMO nonlinear systems with system uncertainty, unknown external disturbance, and input saturation. Fig. 1. Fig. 2. Fig. 3. Fig. 4. Angle of attack. Sideslip angle. Roll angle. Ailerons.

ZHOU et al.: ROBUST TRACKING CONTROL OF UNCERTAIN MIMO NONLINEAR SYSTEMS WITH APPLICATION TO UAVS 31 Fig. 5. Elevator. VI. CONCLUSION An effective robust adaptive tracking control scheme is proposed for uncertain MIMO nonlinear systems in the presence of system uncertainty, unknown external disturbance, and input saturation based on the backstepping technique and the NDO. To eliminate the effect of input saturation, an auxiliary system is constructed. The dynamic surface method is employed to deal with the explosion of complexity in backstepping control. It is proved that all signals of the closed-loop system based on the proposed robust adaptive tracking control scheme are uniformly ultimately bounded through Lyapunov stability analysis. Finally, the developed control strategy is applied to the attitude tracking control of a UAV, and simulation results show that the proposed robust control scheme is effective. Longitudinal deflection of the thrust vectoring control sur- Fig. 6. Fig. 7. Fig. 8. face. Rudder. Lateral defection of the thrust vectoring control surface. REFERENCES [1] Chen M, Jiang B, Wu Q X, Jiang C S. Robust control of near-space vehicles with input backslash-like hysteresis. Proceedings of the Institutior of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2013, 227(8): 635 644 [2] Ji Chen-Xin. Key technology and application of military unmanned aerial vehicles. Modern Defence Technology, 2009, 37(6): 26 30 (in Chinese) [3] Wang Qin, Ye Yun-Qing. Application of unmanned aerial vehicle in navy. Command Information System and Technology, 2012, 3(4): 36 40 (in Chinese) [4] Wang F, Cui J Q, Chen B M, Lee T H. A comprehensive UAV indoor navigation system based on vision optical flow and laser fastslam. Acta Automatic Sinica, 2013, 39(11): 1889 1990 [5] Kang Y, Hedrick J K. Linear tracking for a fixed-wing UAV using nonlinear model predictive control. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1202 1210 [6] Dierks T, Jagannathan S. Output feedback control of a quadrotor UAV using neural networks. IEEE Transactions on Neural Networks, 2010, 21(1): 50 66 [7] Nodland D, Zargarzadeh H, Jagannathan S. Neural network-based optimal adaptive output feedback control of a helicopter UAV. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(7): 1061 1073 [8] Chen M, Mei R, Jiang B. Sliding mode control for a class of uncertain MIMO nonlinear systems with application to near-space vehicles. Mathematical Problems in Engineering, 2013, DOI: 10.1155/2013/180589 [9] Dydek Z T, Annaswamy A M, Lavretsky E. Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1400 1406 [10] Chen W H, Ballance D J, Gawthrop P J, O Reilly J. A nonlinear disturbance observer for robotic manipulators. IEEE Transactions on Industrial Electronics, 2000, 47(4): 932 938 [11] Chen W H. Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 161 166 [12] Chen M, Chen W H. Sliding mode control for a class of uncertain nonlinear systems based on disturbance observer. International Journal of Adaptive Control and Signal Processing, 2010, 24(1): 51 64 [13] Qian C S, Sun C Y, Huang Y Q, Mu C X, Zhang J M, Zhang R M. Design of flight control system for a hypersonic gliding vehicle based on nonlinear disturbance observer. In: Proceedings of the 10th IEEE International Conference on Control and Automation. Hangzhou, China: IEEE, 2013. 1573 1577 [14] Pu Ming, Wu Qing-Xian, Jiang Chang-Sheng, Cheng Lu. Application of adaptive second-order dynamic terminal sliding mode control to near space vehicle. Journal of Aerospace Power, 2010, 25(5): 1169 1176 (in Chinese)

32 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 2, NO. 1, JANUARY 2015 [15] Guo Tao, Wang Ding-Lei, Wang Ai-Min. Adaptive backstepping control for constrained systems using nonlinear mapping. Acta Automatic Sinica, 2013, 39(9): 1558 1563 (in Chinese) [16] Cui R X, Ren B B, Ge S S. Synchronised tracking control of multi-agent system with high-order dynamics. IET Control Theory and Applications, 2012, 6(5): 603 614 [17] Wang H Q, Chen B, Lin C. Adaptive neural tracking control for a class of perturbed pure-feedback nonlinear systems. Nonlinear Dynamics, 2013, 72(1 2): 207 220 [18] Li T S, Li R H, Wang D. Adaptive neural control of nonlinear MIMO systems with unknown time delays. Neurocomputing, 2012, 78(1): 83 88 [35] Chen M, Jiang B. Robust attitude control of near space vehicles with time-varying disturbances. International Journal of Control, Automation, and Systems, 2013, 11(1): 182 187 [36] Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control, 1996, 41(3): 447 451 [37] Tee K P, Ge S S. Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Transactions on Control Systems Technology, 2006, 14(4): 750 756 [38] Pang J, Mei R, Chen M. Modeling and control for near space vehicles with oblique wing. In: Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China: IEEE, 2012. 1773 1778 [19] Li Y M, Tong S C, Li T S. Adaptive fuzzy output feedback control of MIMO nonlinear uncertain systems with time-varying delays and unknown backlash-like hysteresis. Neurocomputing, 2012, 93: 56 66 [20] Swaroop D, Hedrick J K, Yip P P, Gerdes J C. Dynamic surface control for a class of nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(10): 1893 1899 [21] Li Tie-Shan, Zou Zao-Jian, Luo Wei-Lin. DSC-backstepping based robust adaptive NN control for nonlinear systems. Acta Automatica Sinica, 2008, 34(11): 1424 1430 (in Chinese) [22] Xu Y Y, Tong S C, Li Y M. Adaptive fuzzy fault-tolerant decentralized control for uncertain nonlinear large-scale systems based on dynamic surface control technique. Journal of the Franklin Institute, 2014, 351(1): 456 472 Yanlong Zhou Master student in the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interests include flight control and nonlinear system control. [23] Li T S, Zhang H Y, Yang X Y. DSC approach to robust adaptive fuzzy tracking control for strict-feedback nonlinear systems. In: Proceedings of the 5th International Conference on Fuzzy Systems and Knowledge Discovery. Jinan, China: IEEE, 2008. 70 74 [24] Jia Tao, Liu Jun, Qian Fu-Cai. Adaptive fuzzy dynamic surface control for a class of nonlinear systems with unknown time-delays. Acta Automatica Sinica, 2011, 37(1): 83 91 (in Chinese) [25] Wen C Y, Zhou J, Liu Z T, Su H Y. Robust adaptive of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Transactions on Automatic Control, 2011, 56(7): 1672 1678 [26] Li Y M, Tong S C, Li T S. Direct adaptive fuzzy backstepping control of uncertain nonlinear systems in the presence of input saturation. Neural Computing and Applications, 2013, 23(5): 1207 1216 [27] Zhou Yan-Long, Chen Mou. Robust control of nonlinear systems with input constraint based on disturbance observer. Journal of Nanjing University of Science and Technology, 2014, 38(1): 40 47 (in Chinese) Mou Chen Professor in the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interests include nonlinear system control, intelligent control, and flight control. Corresponding author of this paper. [28] Chen M, Ge S S, Ren B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 2011, 47(3): 452 465 [29] Chen M, Ge S S, How B V E. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Transactions on Neural Networks, 2010, 21(5): 796 812 [30] Chen M, Ge S S, Choo Y S. Neural network tracking control of ocean surface vessels with input saturation. In: Proceedings of the 2009 IEEE International Conference on Automation and Logistics. Shenyang, China: IEEE, 2009. 85 89 [31] Kurtz M J, Henson M A. Input-output linearizing control of constrained nonlinear processes. Journal of Process Control, 1997, 7(1): 3 17 [32] Kong Xiao-Bin, Liu Xiang-Jie. Continuous-time nonlinear model predictive control with input/output linearization. Control Theory and Applications, 2012, 29(2): 217 224 (in Chinese) Changsheng Jiang Professor in the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interests include nonlinear system control, flight control. [33] Liu D R, Wang D, Yang X. An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs. Information Sciences, 2013, 220: 331 342 [34] Wang D, Liu D R, Zhao D B, Huang Y Z, Zhang D H. A neuralnetwork-based iterative GDHP approach for solving a class of nonlinear optimal control problems with control constraints. Neural Computing and Applications, 2013, 22(2): 219 227