Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 15 V GS = 15 V, T C = 100 C.

Similar documents
Package. Symbol Parameter Value Unit Test Conditions Note V GS = 15 V, T C = 25 C Fig. 19 A 7.5 V GS = 15 V, T C = 100 C.

Package. Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Part Number Package Marking

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 20 V, T C = 25 C Fig. 19 A 24 V GS = 20 V, T C = 100 C.

Package. TAB Drain S S G. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 13.5 V GS = 15 V, T C = 100 C

Package TO Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 6 V GS = 20 V, T C = 100 C.

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 19.7 V GS = 15 V, T C = 100 C.

Package. Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 40 V GS = 15 V, T C = 100 C.

Package. TAB Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 22.5 V GS = 15 V, T C = 100 C.

Package TO Symbol Parameter Value Unit Test Conditions Note. V GS =20 V, T C = 25 C Fig. 19 A 60 V GS =20 V, T C = 100 C.

Package TO Symbol Parameter Value Unit Test Conditions Note. V GS = 20 V, T C = 25 C Fig. 19 A 40 V GS = 20 V, T C = 100 C.

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 12.5 V GS = 20 V, T C = 100 C.

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS =20 V, T C = 25 C A 71 V GS =20 V, T C = 100 C. -40 to +175

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 46 V GS = 20 V, T C = 100 C. -40 to +175

Chip Outline. Symbol Parameter Value Unit Test Conditions Note 36 A 27 V GS = 20 V, T C = 100 C. -55 to +175

CAS120M12BM2 1.2kV, 13 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec Diode

CAS300M17BM2 1.7kV, 8.0 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec TM Diode

CAS300M12BM2 1.2kV, 5.0 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec TM Diode

C2D10120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

C2D05120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

C2D20120D Silicon Carbide Schottky Diode Zero Recovery Rectifier

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

C5D05170H Silicon Carbide Schottky Diode Z-Rec Rectifier

GCMS020A120B1H1 1200V 20 mohm SiC MOSFET Module

1.2 kv 16 mω 1.8 mj. Package. Symbol Parameter Value Unit Test Conditions Notes 117 V GS = 20V, T C

Z-Rec Rectifier. C4D08120A Silicon Carbide Schottky Diode. Package. Features. Benefits. Applications

E4D20120A. Silicon Carbide Schottky Diode E-Series Automotive. Features. Package. Benefits. Applications. Maximum Ratings (T C V DS 900 V I D 11.

C3D04065A Silicon Carbide Schottky Diode Z-Rec Rectifier

C4D05120E Silicon Carbide Schottky Diode Z-Rec Rectifier

TO-247-3L Inner Circuit Product Summary I C) R DS(on)

C3D08065A Silicon Carbide Schottky Diode Z-Rec Rectifier

C3D16065D Silicon Carbide Schottky Diode Z-Rec Rectifier

C3D04060F Silicon Carbide Schottky Diode Z-Rec Rectifier (Full-Pak)

LSIC1MO120E V N-channel, Enhancement-mode SiC MOSFET

C3D02060E Silicon Carbide Schottky Diode Z-Rec Rectifier

CID Insulated Gate Bipolar Transistor with Silicon Carbide Schottky Diode Zero Recovery Rectifier

GC15MPS V SiC MPS Diode

GB2X100MPS V SiC MPS Diode

SPECIFICATIONS (T J = 25 C, unless otherwise noted)

GAP3SLT33-220FP 3300 V SiC MPS Diode

GB01SLT V SiC MPS Diode

Complementary (N- and P-Channel) MOSFET

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

GSID300A120S5C1 6-Pack IGBT Module

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

C2D10120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

SCT10N120. Silicon carbide Power MOSFET 1200 V, 12 A, 520 mω (typ., T J = 150 C) in an HiP247 package. Datasheet. Features. Applications.

CoolMOS TM Power Transistor

CoolMOS TM Power Transistor

OptiMOS (TM) 3 Power-Transistor

GSID040A120B1A3 IGBT Dual Boost Module

GC2X8MPS V SiC MPS Diode

OptiMOS 2 Power-Transistor

GP1M003A080H/ GP1M003A080F GP1M003A080HH/ GP1M003A080FH

PSMN006-20K. N-channel TrenchMOS SiliconMAX ultra low level FET

Silicon carbide Power MOSFET 650 V, 90 A, 18 mω (typ., T J = 25 C) in an H²PAK-7 package. Order code V DS R DS(on) max. I D

OptiMOS TM P3 Power-Transistor

OptiMOS 2 Power-Transistor

GSID075A060B1A4. Preliminary Data Sheet GSID075A060B1A4. IGBT Module. Features: Application:

A I DM. W/ C V GS Gate-to-Source Voltage ± 20. Thermal Resistance Symbol Parameter Typ. Max. Units

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C

N- & P-Channel Enhancement Mode Field Effect Transistor

500V N-Channel MOSFET

CoolMOS TM Power Transistor

P-Channel Enhancement Mode Mosfet


GHIS075A120T2P2 Si IGBT/ SiC SBD PIM Module

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-MOSFET

OptiMOS 2 Power-Transistor

OptiMOS Small-Signal-Transistor

OptiMOS 3 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS TM Power-MOSFET

CoolMOS Power Transistor

OptiMOS TM Power-MOSFET

SSF7NS65UF 650V N-Channel MOSFET

OptiMOS 3 Power-Transistor

P-Channel Enhancement Mode Mosfet

CoolMOS Power Transistor

OptiMOS -P Small-Signal-Transistor

OptiMOS 3 Power-Transistor

CoolMOS TM Power Transistor

OptiMOS 2 Power-Transistor

OptiMOS 2 Power-Transistor

Features. T A =25 o C unless otherwise noted

OptiMOS 2 Small-Signal-Transistor

OptiMOS 3 Power-Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS 3 M-Series Power-MOSFET

OptiMOS 2 Small-Signal-Transistor

CoolMOS TM Power Transistor

OptiMOS TM Power-MOSFET

OptiMOS 3 M-Series Power-MOSFET

OptiMOS TM 3 Power-Transistor

Transcription:

C3M129D Silicon Carbide Power MOSFET C3M TM MOSFET Technology N-Channel Enhancement Mode Features Package V DS I D @ C R DS(on) 9 V 23 A 12 mω C3M SiC MOSFET technology High blocking voltage with low On-resistance High speed switching with low capacitances Fast intrinsic diode with low reverse recovery (Qrr) Halogen free, RoHS compliant Benefits Higher system efficiency Reduced cooling requirements Increased power density Increased system switching frequency Applications Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Lighting Part Number Package Marking C3M129D TO-247-3 C3M129 Maximum Ratings (T C = C unless otherwise specified) Symbol Parameter Value Unit Test Conditions Note V DSmax Drain - Source Voltage 9 V V GS = V, I D = 1 μa V GSmax Gate - Source Voltage (dynamic) -8/+19 V AC (f >1 Hz) Note: 1 V GSop Gate - Source Voltage (static) -4/+1 V Static Note: 2 I D Continuous Drain Current 23, T C = C Fig. 19 A 1, T C = 1 C I D(pulse) Pulsed Drain Current A Pulse width t P limited by T jmax Fig. 22 P D Power Dissipation 97 W T C = C, T J = 1 C Fig. 2 T J, T stg Operating Junction and Storage Temperature - to +1 C T L Solder Temperature 26 C 1.6mm (.63 ) from case for 1s M d Mounting Torque 1 8.8 Nm lbf-in M3 or 6-32 screw Note (1): When using MOSFET Body Diode V GSmax = -4V/+19V Note (2): MOSFET can also safely operate at /+1 V 1 C3M129D Rev. A, 3-217

Electrical Characteristics (T C = C unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Test Conditions Note V (BR)DSS Drain-Source Breakdown Voltage 9 V V GS = V, I D = 1 μa V GS(th) Gate Threshold Voltage 1.8 2.1 3. V V DS = V GS, I D = 3 ma 1.6 V V DS = V GS, I D = 3 ma, T J = 1ºC I DSS Zero Gate Voltage Drain Current 1 1 μa V DS = 9 V, V GS = V I GSS Gate-Source Leakage Current 1 na, V DS = V R DS(on) g fs Drain-Source On-State Resistance Transconductance C iss Input Capacitance 3 Fig. 11 12 1, I D = 1 A Fig. 4, mω 17, I D = 1 A, T J = 1ºC, 6 7.7 V DS= 2 V, I DS= 1 A S 6.7 V DS= 2 V, I DS= 1 A, T J = 1ºC pf V GS = V, V DS = 6 V Fig. 17, C oss Output Capacitance 4 18 f = 1 MHz C rss Reverse Transfer Capacitance 3 VAC = mv E oss C oss Stored Energy 9 μj Fig. 16 Fig. 7 E ON Turn-On Switching Energy (Body Diode FWD) 17 E OFF Turn Off Switching Energy (Body Diode FWD) μj V DS = 4 V, V GS = -4 V/1 V, I D = 1 A, R G(ext) = 2.Ω, L= 142 μh, T J = 1ºC Fig. 26, 29 t d(on) Turn-On Delay Time 27 t r Rise Time 1 t d(off) Turn-Off Delay Time t f Fall Time 8 ns V DD = 4 V, V GS = -4 V/1 V I D = 1 A, R G(ext) = 2. Ω, Timing relative to V DS Inductive load R G(int) Internal Gate Resistance 16 Ω f = 1 MHz, V AC = mv Q gs Gate to Source Charge 4.8 Q gd Gate to Drain Charge. Q g Total Gate Charge 17.3 nc V DS = 4 V, V GS = -4 V/1 V I D = 1 A Per IEC6747-8-4 pg 21 Fig. 27, 29 Fig. 12 Reverse Diode Characteristics (T C = C unless otherwise specified) Symbol Parameter Typ. Max. Unit Test Conditions Note V SD Diode Forward Voltage 4.8 V V GS = -4 V, I SD = 7. A 4.4 V V GS = -4 V, I SD = 7. A, T J = 1 C Fig. 8, 9, 1 I S Continuous Diode Forward Current 21 A V GS = -4 V Note 1 I S, pulse Diode pulse Current A V GS = -4 V, pulse width t P limited by T jmax Note 1 t rr Reverse Recover time 24 ns Q rr Reverse Recovery Charge 11 nc I rrm Peak Reverse Recovery Current 6.2 A V GS = -4 V, I SD = 7. A, V R = 4 V dif/dt = 9 A/µs, T J = 1 C Note 1 Thermal Characteristics Symbol Parameter Max. Unit Test Conditions Note R θjc Thermal Resistance from Junction to Case 1.3 R θja Thermal Resistance From Junction to Ambient 4 C/W Fig. 21 Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode 2 C3M129D Rev. A, 3-217

Typical Performance 4 4 T J = - C tp = < 2 µs 4 4 tp = < 2 µs V GS = 13 V 3 3 2 1 1 V GS = 13 V V GS = 11 V V GS = 9 V V GS = 7 V 3 3 2 1 1 V GS = 11 V V GS = 9 V V GS = 7 V 2 4 6 8 1 11 2 4 6 8 1 11 Figure 1. Output Characteristics T J = - ºC Figure 2. Output Characteristics T J = ºC 4 4 3 3 2 1 1 T J = 1 C tp = < 2 µs V GS = 13 V V GS = 11 V V GS = 9 V V GS = 7 V On Resistance, R DS On (P.U.) 2. 2. 1. 1.. I DS = 1 A t p < 2 µs 2 4 6 8 1 11. - - 7 1 1 1 Junction Temperature, T J ( C) Figure 3. Output Characteristics T J = 1 ºC Figure 4. Normalized On-Resistance vs. Temperature On Resistance, R DS On (mohms) 2 2 17 1 1 1 7 t p < 2 µs T J = 1 C T J = - C On Resistance, R DS On (mohms) 3 27 2 2 17 1 1 1 7 I DS = 1 A t p < 2 µs V GS = 13 V V GS = 11 V 1 1 2 3 3 4 4 - - 7 1 1 1 Junction Temperature, T J ( C) Figure. On-Resistance vs. Drain Current For Various Temperatures Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 3 C3M129D Rev. A, 3-217

Typical Performance 3 3 2 1 1 V DS = 2 V tp < 2 µs T J = 1 C T J = - C -8-7 -6 - -4-3 -2-1 V GS = -4 V V GS = V V GS = -2 V - -1-1 -2 - -3-3 2 4 6 8 1 12 14 Gate-Source Voltage, V GS (V) T J = - C t p < 2 µs -4-4 Figure 7. Transfer Characteristic for Various Junction Temperatures Figure 8. Body Diode Characteristic at - ºC -8-7 -6 - -4-3 -2-1 -8-7 -6 - -4-3 -2-1 - - V GS = -4 V V GS = -2 V V GS = V -1-1 -2 - -3 V GS = -4 V V GS = -2 V V GS = V -1-1 -2 - -3-3 -3 T J = C t p < 2 µs -4-4 T J = 1 C t p < 2 µs -4-4 Figure 9. Body Diode Characteristic at ºC Figure 1. Body Diode Characteristic at 1 ºC Threshold Voltage, V th (V) 3. 2. 2. 1. 1.. Conditons V GS = V DS I DS = 3 ma Gate-Source Voltage, V GS (V) 16 12 8 4 I DS = 1 A I GS = 1 ma V DS = 4 V. - - 7 1 1 1 Junction Temperature T J ( C) -4 4 8 12 16 2 Gate Charge, Q G (nc) Figure 11. Threshold Voltage vs. Temperature Figure 12. Gate Charge Characteristics 4 C3M129D Rev. A, 3-217

Typical Performance -6 - -4-3 -2-1 -6 - -4-3 -2-1 V GS = V V GS = V V GS = 1 V -1-2 V GS = V V GS = V V GS = 1 V -1-2 -3-3 T J = - C t p < 2 µs -4 t p < 2 µs -4 Figure 13. 3rd Quadrant Characteristic at - ºC Figure 14. 3rd Quadrant Characteristic at ºC -6 - -4-3 -2-1 2 V GS = V V GS = V V GS = 1 V -1-2 Stored Energy, E OSS (µj) 1 1-3 T J = 1 C t p < 2 µs -4 1 2 3 4 6 7 8 9 1 Drain to Source Voltage, V DS (V) Figure 1. 3rd Quadrant Characteristic at 1 ºC Figure 16. Output Capacitor Stored Energy 1 C iss V AC = mv f = 1 MHz 1 C iss V AC = mv f = 1 MHz Capacitance (pf) 1 1 C oss Capacitance (pf) 1 1 C oss C rss C rss 1 1 1 2 1 1 2 3 4 6 7 8 9 Figure 17. Capacitances vs. Drain-Source Voltage ( - 2V) Figure 18. Capacitances vs. Drain-Source Voltage ( - 9V) C3M129D Rev. A, 3-217

Typical Performance Drain-Source Continous Current, I DS (DC) (A) 2 1 1 T J 1 C Maximum Dissipated Power, P tot (W) 12 1 8 6 4 2 T J 1 C - -3-2 4 7 9 12 14 Case Temperature, T C ( C) - -3-2 4 7 9 12 14 Case Temperature, T C ( C) Figure 19. Continuous Drain Current Derating vs. Case Temperature Figure 2. Maximum Power Dissipation Derating vs. Case Temperature Junction To Case Impedance, Z thjc ( o C/W) 1 1E-3..3.1..2.1 SinglePulse 1E-3 1E-6 1E-6 1E-6 1E-3 1E-3 1E-3 1 Time, t p (s) 1. 1..1 Limited by R DS On 1 ms 1 µs T C = C D =, Parameter: t p.1.1 1 1 1 1 1 ms 1 µs Figure 21. Transient Thermal Impedance (Junction - Case) Figure 22. Safe Operating Area 6 4 V DD = 6 V R G(ext) = 2. Ω V GS = -4V/+1 V FWD = C3M129D L = 142 μh 3 3 V DD = 4 V R G(ext) = 2. Ω V GS = -4V/+1 V FWD = C3M129D L = 142 μh Switching Loss (uj) 3 2 E Total E On Switching Loss (uj) 2 1 1 E Total E On 1 E Off E Off 1 1 2 Drain to Source Current,I DS (A) 1 1 2 Drain to Source Current,I DS (A) Figure 23. Clamped Inductive Switching Energy vs. Drain Current (V DD = 6V) Figure 24. Clamped Inductive Switching Energy vs. Drain Current (V DD = 4V) 6 C3M129D Rev. A, 3-217

Typical Performance Switching Loss (uj) 3 2 1 1 V DD = 4 V I DS = 2 A V GS = -4V/+1 V FWD = C3M129D L = 142 μh E Total E On Switching Loss (uj) 2 1 1 I DS = 1 A V DD = 4 V R G(ext) = 2. Ω V GS = -4V/+1 V FWD = C3M129D L = 142 μh E Total E On E Off E Off 1 1 2 External Gate Resistor RG(ext) (Ohms) 7 1 1 1 17 Junction Temperature, T J ( C) Figure. Clamped Inductive Switching Energy vs. R G(ext) Figure 26. Clamped Inductive Switching Energy vs. Temperature Times (ns) 4 4 3 3 2 V DD = 4 V I DS = 1 A V GS = -4V/+1 V FWD = C3M129D L = 142 μh t d(on) t d(off) 1 t r 1 t f 1 1 2 External Gate Resistor RG(ext) (Ohms) Figure 27. Switching Times vs. R G(ext) Figure 28. Switching Times Definition 7 C3M129D Rev. A, 3-217

Test Circuit Schematic Q 1 R G V DC VGS= - 4V C3M129D Q 2 R G C3M129D D.U.T Figure 29. Clamped Inductive Switching Test Circuit Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above. 8 C3M129D Rev. A, 3-217

T V Package Dimensions Package TO-247-3 Recommended Solder Pad Layout U W Pinout Information: Pin 1 = Gate Pin 2, 4 = Drain Pin 3 = Source Inches Millimeters POS Min Max Min Max A.19. 4.83.21 A1.9.1 2.29 2.4 A2.7.8 1.91 2.16 b.42.2 1.7 1.33 b1.7.9 1.91 2.41 b2.7.8 1.91 2.16 b3.113.133 2.87 3.38 b4.113.123 2.87 3.13 c.22.27..68 D.819.831 2.8 21.1 D1.64.69 16. 17.6 D2.37.49.9 1. E.62.63 1.7 16.13 E1.16.7 13.1 14.1 E2.14.21 3.68.1 E3.39.7 1. 1.9 E4.487.29 12.38 13.43 e.214 BSC.44 BSC N 3 3 L.78.8 19.81 2.32 L1.161.173 4.1 4.4 ØP.138.144 3.1 3.6 Q.216.236.49 6. S.238.248 6.4 6.3 T 9 11 9 11 U 9 11 9 11 V 2 8 2 8 W 2 8 2 8 TO-247-3 9 C3M129D Rev. A, 3-217

Notes RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 211/6/ EC (RoHS2), as implemented January 2, 213. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support Copyright 217 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. Cree, Inc. 46 Silicon Drive Durham, NC 2773 USA Tel: +1.919.313.3 Fax: +1.919.313.41 www.cree.com/power 1 C3M129D Rev. A, 3-217