Rule-Based Support Vector Machine Classifiers Applied to Tornado Prediction

Size: px
Start display at page:

Download "Rule-Based Support Vector Machine Classifiers Applied to Tornado Prediction"

Transcription

1 Rule-Based Support Vector Machne Classfers Appled to Tornado Predcton Theodore B. Trafals 1, Bud Santosa 1 and Mchael B. Rchman 2 1 School of Industral Engneerng, The Unversty of Oklahoma 202 W. Boyd, CEC 124, rman, OK {ttrafals, bsant}@ou.edu 2 School of Meteorology, The Unversty of Oklahoma 100 E. Boyd, SEC 1310, rman, OK mrchman@ou.edu Abstract. A rule-based Support Vector Machne (SVM) classfer s appled to tornado predcton. Twenty rules based on the Natonal Severe Storms Laboratory s mesoscale detecton algorthm are used along wth SVM to develop a hybrd forecast system for the dscrmnaton of tornadc from non-tornadc events. The use of the Weather Survellance Radar 1998 Doppler data, wth contnuous data streamng n every sx mnutes, presents a source for a dynamc data drven applcaton system. Scentfc nqures based on these data are useful for dynamc data drven applcaton systems (DDDAS). Senstvty analyss s performed by changng the threshold values of the rules. Numercal results show that the optmal hybrd model outperforms the drect applcaton of SVM by 12.7 percent. 1 Introducton Rule-based classfcaton methods have shown promse n physcal systems applcatons [1]. One bulds a rule-based model by ncorporatng pror nformaton. In the case of Support Vector Machnes (SVMs), pror knowledge s ncorporated nto the model as addtonal constrants n the form of polyhedral rule sets n the nput space of the gven data. These rule sets are supposed to belong to one of two categores nto whch all the data are dvded [2, 3]. Tornado forecastng s an actve area of research n the meteorologcal communty [4, 5]. State-of-the-scence weather radar scans volumes of the atmosphere, producng a large amount of nformaton that s updated every 5 to 6 mnutes. Scentfc nqures based on these data are useful for Dynamc Data Drven Applcatons Systems (DDDAS). Once the data are collected, they are quckly processed by algorthms that look for sgnatures of tornadoes n near-real tme, snce an extra mnute of lead-tme can save lves. The dynamc nature of DDDAS problems requres us to address the tme dependency or real

2 tme nature of the applcatons. Certan applcatons (e.g., tornado formaton) requre real tme response to observatons from data. Typcally, n the predcton of severe weather potental, data from observatons taken hours prevous to the formaton are used and these are not updated wth real data as they become avalable. Incorporatng new dynamcally njected data s a fundamental change n the desgn. The use of the Weather Survellance Radar 1998 Doppler (WSR-88D) data, wth contnuous data streamng n every sx mnutes, presents a source for data drven smulatons. One of the severe weather detecton algorthms, created by the Natonal Severe Storms Laboratory (NSSL) and n use at the WSR-88D, s the Mesocyclone Detecton Algorthm (MDA) [4]. Ths dynamc algorthm uses the data stream outputs of the WSR-88D and s desgned to detect storm crculatons assocated wth regons of rotaton n thunderstorms. The MDA s used by meteorologsts as one nput n ther decson to ssue tornado warnngs. Recent work by Trafals et al. [4, 5] has shown that SVMs appled to the MDA offer a promsng role n mproved tornado classfcaton. We present a novel approach by ncorporatng rules nto SVMs of the MDA attrbutes as they stream n just pror to tornado formaton. These rule based sets classfy the data nto one of three categores, tornado, non-tornado and unclassfed. Thus, the rules partton the nput space nto regons for whch we know, wth a hgh degree of certanty, the label of ponts located n those regons. Our approach s dfferent from [3] n the sense that the rules are combned wth SVM n a sequental approach. Ths paper s organzed as follows. In secton 2, the data descrpton s gven. In secton 3, we provde a descrpton of rule-based SVM classfers. Secton 4 descrbes the expermentaton procedure. Secton 5 provdes computatonal results and, n secton 6, analyss and conclusons are provded. 2. Data The MDA data set used for ths research s based on the outputs from the WSR-88D radar that s collected just pror to the formaton of a pre-tornadc crculaton. Any crculaton detected on a partcular volume scan of the radar can be assocated wth a report of a tornado. In the severe weather database, suppled by NSSL, there s a label for tornado ground truth that s based on temporal and spatal proxmty. If there s a tornado reported between the begnnng and endng of the volume scan, and the report s wthn a reasonable dstance of a crculaton detecton, then the ground truth value s flagged. If a crculaton detecton falls wthn the predcton "tme wndow" of -20 to +6 mnutes of the ground truth report duraton, then the ground truth value s also flagged. The key dea behnd these tmngs s to determne whether a crculaton wll produce a tornado wthn the next 20 mnutes, a sutable lead tme for advanced severe weather warnngs by the Natonal Weather Servce. Owng to the autocorrelaton n the MDA attrbutes, a samplng strategy s used to mnmze seral correlaton. These sampled data are dvded nto ndependent tranng and testng sets, wth 749 and 618 observatons, respectvely.

3 3 Rule-Based Support Vector Machne Classfers 3.1 Rule Generaton In ths work, we consder a rule-based approach of a decson tree type as shown n Fg. 1. des n the decson tree nvolve testng a partcular attrbute. The test at a node compares an attrbute value wth a constant threshold. Leaf nodes gve a classfcaton that apples to all nstances that reach the leaf. When a leaf s reached, the nstance s classfed accordng to the class assgned to the leaf. te that the output of the last node referrng to the unclassfed category becomes an nput to the SVM that provdes the fnal label to the unclassfed cases. There were 23 MDA attrbutes avalable for dscrmnatng tornadoes from nontornadoes [4]. For each attrbute, we consdered the correspondng probablty dstrbuton functon for tornado and non-tornado cases arsng from the tranng data. The selecton of the threshold for each rule was based on elmnatng msclassfcaton by nvestgatng f the mnmum for a non-tornado case had a value less than the mnmum for a tornado case for a specfc attrbute. If such a condton holds, then a regon unque to non-tornadoes s found. X1<90? X3<0? X2<617? X2>12219? T NT NT X3>13? :. T X23>28? unclassfed T SVM Fg. 1. Tree dagram of rule generaton and decsons. Ovals represent nodes, squares represents leaves

4 Smlarly, f the maxmum for a non-tornado case had a value less than the maxmum for a tornado case, for a specfc attrbute, a regon unque to tornado cases s found. Of the 23 attrbutes, only 20 were found to be useful for rule generaton. The thresholds used for tornado and non-tornado dscrmnaton are shown n Table 1. Table 1. Threshold values for each MDA attrbute. See [4] for descrpton of attrbutes n-tornado thresholds f x1 < 90, then non-tornado f x2 < 617, then non-tornado f x3 < 0, then non-tornado f x4 < 813, then non-tornado f x5 < 1091, then non-tornado f x6 < 124, then non-tornado f x7 < 6, then non-tornado f x8 < 10, then non-tornado f x9 < 122, then non-tornado f x10 <2, then non-tornado f x12 < 106, the non-tornado f x13 < 3, then non-tornado f x14 < 11, then non-tornado f x15 < 122, then non-tornado f x16 < 106, then non-tornado f x17 < 617, then non-tornado Tornado thresholds f x2 > 12219, then tornado f x3 > 13, then tornado f x10 >77, then tornado f x11 >83, then tornado f x18 >113, then tornado f x22 > 26, then tornado f x23 > 28, then tornado 3.2 Support Vector Machnes (SVMs) n Gven a set of data ponts { }, the SVM fnds a ( x, y ), 1,..., l wth x R and y = ± 1 = classfer that separates the two classes of ponts wth maxmum margn separaton (Fg. 2). The SVM formulaton can be wrtten as follows [6], mn w, b, η C l = 1 η w 2 (1) st y (wx + b) + η 1 0 = 1,... l η

5 where C s a parameter to be chosen by the user that controls msclassfcatons, w s referrng to the vector perpendcular to the separatng hyperplane, η refers to the msclassfcaton error varables and b s the bas of the separatng hyperplane. A larger C corresponds to assgnng a larger penalty to errors. Introducng postve Lagrange multplers α, to the nequalty constrants n model (1) we obtan the followng dual formulaton: mn α 1 2 l l y y j α α j x x = 1j = 1 l j l α = 1 st α = 0, (2) = 1 y 0 α C = 1,...l The soluton of the prmal problem s then gven by w = Σ α I y x where w s the vector that s perpendcular to the separatng hyperplane. The free coeffcent b can be found from the relaton α (y (w x + b) - 1) = 0, for any such that α s not zero. The use of a kernel functon allows the SVM to operate effcently n nonlnear hgh-dmensonal feature space [7]. x 2 wx + b = 1 wx + b = 0 wx + b = 1 Data pont Margn = 2 w x 1 Fg 2. The geometrc llustraton of SVM

6 4 Experments In our expermentaton, the data are splt nto tranng and testng sets. The testng set s sampled ndependently fve tmes. The frst set of experments s performed by usng SVM only on the fve testng samples. The total msclassfcaton error s computed as the average of the msclassfcaton error of each sample. The second set of experments s performed by extractng the rules from the tranng data and applyng those rules n the testng phase. Based on the rules, each testng sample s dvded nto three dfferent sets: non-tornado, unclassfed, and tornado. In the testng phase, those observatons not classfed by the rules are used as nputs to SVM. The SVM s traned on the tranng set then tested on fve dfferent unclassfed samples. For each testng set, the msclassfcaton error for the non-tornado rules set, SVM and tornado rules set are computed. The OSU SVM Classfer Matlab Toolbox [8] was used to run experments of SVM. 5 Computatonal Results The results of the experments are presented n Fg. 3 and Table 2. The values n the table are msclassfcaton error rates for non-tornado and tornado and SVM components of the total hybrd system. After ntal expermentaton, t was noted that the rules components of the system had a lower error rate than the SVM component of the system. Accordngly, alterng the rules to admt addtonal cases was consdered by creatng a multpler for the threshold values n Table 1. Ths multpler controls the level of threshold values (e.g., n Table 1, for attrbute 1, the orgnal threshold, 90, corresponds to multpler 1 and 1.05 tmes 90 equals 94.5 and ths value admts addtonal observatons nto the non-tornado category). Table 2 and Fg. 3 llustrate the senstvty of msclassfcaton error wth respect to the threshold. Table 3 shows the msclassfcaton error for SVM for each testng sample and the average of the fve samples. 6 Analyss and Conclusons Tables 2 and 3, show that the best msclassfcaton error for the hybrd model (0.1449) s 12.7% lower than the one for the model based solely on SVM (0.1706). The reason for the total system mprovement can be seen n Fgure 3a,c and Table 2, where the nontornado rules, based on the threshold gven n Table 1, have a mean error rate of Smlarly, the tornado rules have a mean error rate of at the same multpler. In contrast, the SVM component has an error rate of The behavor of the rules, as seen n Fg. 3 a, c s nterestng as the msclassfcaton rate s remarkably low (approxmately 5 percent) for threshold multplers of 0.90 to The trade-off s that

7 fewer observatons are classfed as tornadoes or non-tornadoes. As the threshold multplers ncrease to 1.05 and beyond, the msclassfcaton error ncreases consderably to approxmately 15 percent ndcatng a poorer dscrmnaton between tornadoes, and non-tornadoes. In contrast, the SVM, based on unclassfed data (Fg. 3c), s nsenstve to the threshold multpler. Msclassfcaton rate Msclassfcaton rate Threshold multpler (a) Threshold multpler (c) Msclassfcaton rate Msclassfcaton rate svm Threshold multpler (c) Threshold multpler (d) Fg. 3. Boxplots of msclassfcaton error due to (a) non-tornado rules set, (b) SVM, (c) tornado rules set and (d) total hybrd system. Threshold multplers are shown on X-axs and the numbers of cases classfed are shown above the boxplots n (a), (b) and (c)

8 Table 2. Msclassfcaton error of the hybrd system components and total system Multpler n-tornado rules Tornado rules SVM Total system Table 3. Msclassfcaton error for SVM Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average SVM Therefore, gven the lower rates n the non-tornado and tornado rules, t s logcal to create a hybrd system to captalze on the dsparty n error rate. By admttng addtonal observatons nto the leaves of the decson tree pror to sendng the remanng observatons to the SVM, the optmal system s found. Ths occurs at a multpler of 1.05 tmes the threshold values n Table 1. Experments are planned for njecton of nformaton from successve volume scans to assess addtonal predctve capablty n a constantly updatng form of DDDAS. Acknowledgements. Ths work has been supported by NSF grant EIA References 1. Mtchell, T.M., Machne Learnng, McGraw-Hll, New York, Fung, G.M., Mangasaran, O.L., Shavlk, J.W.: Knowledge-based Support Vector Machnes Classfers, Data Mnng Insttute. Techncal Report Computer Scences Department, Unversty of Wsconsn (2001) 3. Fung, G.M., Mangasaran, O.L., Shavlk, J.W.: Knowledge-based nlnear Kernel Classfers. Data Mnng Insttute Techncal Report Computer Scences Department, Unversty of Wsconsn (2003) 4. Trafals, T.B., Santosa B., Rchman, M.B.: Tornado Detecton wth Kernel-based Methods. In: Dagl, C.H., Buczak, A.L., Ghosh, J., Embrechts, M., Ersoy, O. (eds.): Intellgent Engneerng Systems Through Artfcal Neural Networks. ASME Press, Vol. 13 (2003) Trafals, T.B., Santosa B., Rchman, M.B.: Tornado Detecton wth Kernel-Based Classfers From WSR-D88 Radar. Submtted to: Darema, F. (ed.) Dynamc Data Drven Applcaton Systems, Kluwer (2004) 6. Haykn, S.: Neural Networks: A Comprehensve foundaton, 2 nd edton, Prentce-Hall, Upper Saddle Rver New Jersey (1999) 7. Schölkopf, B., Smola, A.: Learnng wth Kernels. MIT Press, Cambrdge Massachusetts (2002) 8. Junshu, M., Zhao, Y. Ahalt, S.: OSU SVM Classfer Matlab Toolbox. Avalable at

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Regularized Discriminant Analysis for Face Recognition

Regularized Discriminant Analysis for Face Recognition 1 Regularzed Dscrmnant Analyss for Face Recognton Itz Pma, Mayer Aladem Department of Electrcal and Computer Engneerng, Ben-Guron Unversty of the Negev P.O.Box 653, Beer-Sheva, 845, Israel. Abstract Ths

More information

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH Turbulence classfcaton of load data by the frequency and severty of wnd gusts Introducton Oscar Moñux, DEWI GmbH Kevn Blebler, DEWI GmbH Durng the wnd turbne developng process, one of the most mportant

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them?

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them? Image classfcaton Gven te bag-of-features representatons of mages from dfferent classes ow do we learn a model for dstngusng tem? Classfers Learn a decson rule assgnng bag-offeatures representatons of

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

Kristin P. Bennett. Rensselaer Polytechnic Institute

Kristin P. Bennett. Rensselaer Polytechnic Institute Support Vector Machnes and Other Kernel Methods Krstn P. Bennett Mathematcal Scences Department Rensselaer Polytechnc Insttute Support Vector Machnes (SVM) A methodology for nference based on Statstcal

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach A Bayes Algorthm for the Multtask Pattern Recognton Problem Drect Approach Edward Puchala Wroclaw Unversty of Technology, Char of Systems and Computer etworks, Wybrzeze Wyspanskego 7, 50-370 Wroclaw, Poland

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

Solving Nonlinear Differential Equations by a Neural Network Method

Solving Nonlinear Differential Equations by a Neural Network Method Solvng Nonlnear Dfferental Equatons by a Neural Network Method Luce P. Aarts and Peter Van der Veer Delft Unversty of Technology, Faculty of Cvlengneerng and Geoscences, Secton of Cvlengneerng Informatcs,

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Numercal Methods for Engneerng Desgn and Optmzaton n L Department of EE arnege Mellon Unversty Pttsburgh, PA 53 Slde Overve lassfcaton Support vector machne Regularzaton Slde lassfcaton Predct categorcal

More information

Semi-supervised Classification with Active Query Selection

Semi-supervised Classification with Active Query Selection Sem-supervsed Classfcaton wth Actve Query Selecton Jao Wang and Swe Luo School of Computer and Informaton Technology, Beng Jaotong Unversty, Beng 00044, Chna Wangjao088@63.com Abstract. Labeled samples

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

Feature Selection in Multi-instance Learning

Feature Selection in Multi-instance Learning The Nnth Internatonal Symposum on Operatons Research and Its Applcatons (ISORA 10) Chengdu-Juzhagou, Chna, August 19 23, 2010 Copyrght 2010 ORSC & APORC, pp. 462 469 Feature Selecton n Mult-nstance Learnng

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business Amr s Supply Chan Model by S. Ashtab a,, R.J. Caron b E. Selvarajah c a Department of Industral Manufacturng System Engneerng b Department of Mathematcs Statstcs c Odette School of Busness Unversty of

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals Smultaneous Optmzaton of Berth Allocaton, Quay Crane Assgnment and Quay Crane Schedulng Problems n Contaner Termnals Necat Aras, Yavuz Türkoğulları, Z. Caner Taşkın, Kuban Altınel Abstract In ths work,

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING 1 ADVANCED ACHINE LEARNING ADVANCED ACHINE LEARNING Non-lnear regresson technques 2 ADVANCED ACHINE LEARNING Regresson: Prncple N ap N-dm. nput x to a contnuous output y. Learn a functon of the type: N

More information

Transient Stability Assessment of Power System Based on Support Vector Machine

Transient Stability Assessment of Power System Based on Support Vector Machine ransent Stablty Assessment of Power System Based on Support Vector Machne Shengyong Ye Yongkang Zheng Qngquan Qan School of Electrcal Engneerng, Southwest Jaotong Unversty, Chengdu 610031, P. R. Chna Abstract

More information

Multigradient for Neural Networks for Equalizers 1

Multigradient for Neural Networks for Equalizers 1 Multgradent for Neural Netorks for Equalzers 1 Chulhee ee, Jnook Go and Heeyoung Km Department of Electrcal and Electronc Engneerng Yonse Unversty 134 Shnchon-Dong, Seodaemun-Ku, Seoul 1-749, Korea ABSTRACT

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

An Admission Control Algorithm in Cloud Computing Systems

An Admission Control Algorithm in Cloud Computing Systems An Admsson Control Algorthm n Cloud Computng Systems Authors: Frank Yeong-Sung Ln Department of Informaton Management Natonal Tawan Unversty Tape, Tawan, R.O.C. ysln@m.ntu.edu.tw Yngje Lan Management Scence

More information

En Route Traffic Optimization to Reduce Environmental Impact

En Route Traffic Optimization to Reduce Environmental Impact En Route Traffc Optmzaton to Reduce Envronmental Impact John-Paul Clarke Assocate Professor of Aerospace Engneerng Drector of the Ar Transportaton Laboratory Georga Insttute of Technology Outlne 1. Introducton

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

SDMML HT MSc Problem Sheet 4

SDMML HT MSc Problem Sheet 4 SDMML HT 06 - MSc Problem Sheet 4. The recever operatng characterstc ROC curve plots the senstvty aganst the specfcty of a bnary classfer as the threshold for dscrmnaton s vared. Let the data space be

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Chapter 6 Support vector machine. Séparateurs à vaste marge

Chapter 6 Support vector machine. Séparateurs à vaste marge Chapter 6 Support vector machne Séparateurs à vaste marge Méthode de classfcaton bnare par apprentssage Introdute par Vladmr Vapnk en 1995 Repose sur l exstence d un classfcateur lnéare Apprentssage supervsé

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

Bayesian predictive Configural Frequency Analysis

Bayesian predictive Configural Frequency Analysis Psychologcal Test and Assessment Modelng, Volume 54, 2012 (3), 285-292 Bayesan predctve Confgural Frequency Analyss Eduardo Gutérrez-Peña 1 Abstract Confgural Frequency Analyss s a method for cell-wse

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Maximal Margin Classifier

Maximal Margin Classifier CS81B/Stat41B: Advanced Topcs n Learnng & Decson Makng Mamal Margn Classfer Lecturer: Mchael Jordan Scrbes: Jana van Greunen Corrected verson - /1/004 1 References/Recommended Readng 1.1 Webstes www.kernel-machnes.org

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far Supervsed machne learnng Lnear models Least squares regresson Fsher s dscrmnant, Perceptron, Logstc model Non-lnear

More information

Discretization of Continuous Attributes in Rough Set Theory and Its Application*

Discretization of Continuous Attributes in Rough Set Theory and Its Application* Dscretzaton of Contnuous Attrbutes n Rough Set Theory and Its Applcaton* Gexang Zhang 1,2, Lazhao Hu 1, and Wedong Jn 2 1 Natonal EW Laboratory, Chengdu 610036 Schuan, Chna dylan7237@sna.com 2 School of

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

Lecture 10 Support Vector Machines. Oct

Lecture 10 Support Vector Machines. Oct Lecture 10 Support Vector Machnes Oct - 20-2008 Lnear Separators Whch of the lnear separators s optmal? Concept of Margn Recall that n Perceptron, we learned that the convergence rate of the Perceptron

More information

Statistical machine learning and its application to neonatal seizure detection

Statistical machine learning and its application to neonatal seizure detection 19/Oct/2009 Statstcal machne learnng and ts applcaton to neonatal sezure detecton Presented by Andry Temko Department of Electrcal and Electronc Engneerng Page 2 of 42 A. Temko, Statstcal Machne Learnng

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

A New Evolutionary Computation Based Approach for Learning Bayesian Network

A New Evolutionary Computation Based Approach for Learning Bayesian Network Avalable onlne at www.scencedrect.com Proceda Engneerng 15 (2011) 4026 4030 Advanced n Control Engneerng and Informaton Scence A New Evolutonary Computaton Based Approach for Learnng Bayesan Network Yungang

More information

Support Vector Machines

Support Vector Machines Separatng boundary, defned by w Support Vector Machnes CISC 5800 Professor Danel Leeds Separatng hyperplane splts class 0 and class 1 Plane s defned by lne w perpendcular to plan Is data pont x n class

More information

MDL-Based Unsupervised Attribute Ranking

MDL-Based Unsupervised Attribute Ranking MDL-Based Unsupervsed Attrbute Rankng Zdravko Markov Computer Scence Department Central Connectcut State Unversty New Brtan, CT 06050, USA http://www.cs.ccsu.edu/~markov/ markovz@ccsu.edu MDL-Based Unsupervsed

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Short Term Load Forecasting using an Artificial Neural Network

Short Term Load Forecasting using an Artificial Neural Network Short Term Load Forecastng usng an Artfcal Neural Network D. Kown 1, M. Km 1, C. Hong 1,, S. Cho 2 1 Department of Computer Scence, Sangmyung Unversty, Seoul, Korea 2 Department of Energy Grd, Sangmyung

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Improvement of Histogram Equalization for Minimum Mean Brightness Error

Improvement of Histogram Equalization for Minimum Mean Brightness Error Proceedngs of the 7 WSEAS Int. Conference on Crcuts, Systems, Sgnal and elecommuncatons, Gold Coast, Australa, January 7-9, 7 3 Improvement of Hstogram Equalzaton for Mnmum Mean Brghtness Error AAPOG PHAHUA*,

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far So far Supervsed machne learnng Lnear models Non-lnear models Unsupervsed machne learnng Generc scaffoldng So far

More information

Pairwise Multi-classification Support Vector Machines: Quadratic Programming (QP-P A MSVM) formulations

Pairwise Multi-classification Support Vector Machines: Quadratic Programming (QP-P A MSVM) formulations Proceedngs of the 6th WSEAS Int. Conf. on NEURAL NEWORKS, Lsbon, Portugal, June 6-8, 005 (pp05-0) Parwse Mult-classfcaton Support Vector Machnes: Quadratc Programmng (QP-P A MSVM) formulatons HEODORE B.

More information

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z )

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z ) C4B Machne Learnng Answers II.(a) Show that for the logstc sgmod functon dσ(z) dz = σ(z) ( σ(z)) A. Zsserman, Hlary Term 20 Start from the defnton of σ(z) Note that Then σ(z) = σ = dσ(z) dz = + e z e z

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

Statistical Foundations of Pattern Recognition

Statistical Foundations of Pattern Recognition Statstcal Foundatons of Pattern Recognton Learnng Objectves Bayes Theorem Decson-mang Confdence factors Dscrmnants The connecton to neural nets Statstcal Foundatons of Pattern Recognton NDE measurement

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

MAXIMUM A POSTERIORI TRANSDUCTION

MAXIMUM A POSTERIORI TRANSDUCTION MAXIMUM A POSTERIORI TRANSDUCTION LI-WEI WANG, JU-FU FENG School of Mathematcal Scences, Peng Unversty, Bejng, 0087, Chna Center for Informaton Scences, Peng Unversty, Bejng, 0087, Chna E-MIAL: {wanglw,

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

A Network Intrusion Detection Method Based on Improved K-means Algorithm

A Network Intrusion Detection Method Based on Improved K-means Algorithm Advanced Scence and Technology Letters, pp.429-433 http://dx.do.org/10.14257/astl.2014.53.89 A Network Intruson Detecton Method Based on Improved K-means Algorthm Meng Gao 1,1, Nhong Wang 1, 1 Informaton

More information

Nonlinear Classifiers II

Nonlinear Classifiers II Nonlnear Classfers II Nonlnear Classfers: Introducton Classfers Supervsed Classfers Lnear Classfers Perceptron Least Squares Methods Lnear Support Vector Machne Nonlnear Classfers Part I: Mult Layer Neural

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

SOLVING CAPACITATED VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS BY GOAL PROGRAMMING APPROACH

SOLVING CAPACITATED VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS BY GOAL PROGRAMMING APPROACH Proceedngs of IICMA 2013 Research Topc, pp. xx-xx. SOLVIG CAPACITATED VEHICLE ROUTIG PROBLEMS WITH TIME WIDOWS BY GOAL PROGRAMMIG APPROACH ATMII DHORURI 1, EMIUGROHO RATA SARI 2, AD DWI LESTARI 3 1Department

More information

Module 3: The Whole-Process Perspective for Thermochemical Hydrogen

Module 3: The Whole-Process Perspective for Thermochemical Hydrogen "Thermodynamc Analyss of Processes for Hydrogen Generaton by Decomposton of Water" by John P. O'Connell Department of Chemcal Engneerng Unversty of Vrgna Charlottesvlle, VA 2294-4741 A Set of Energy Educaton

More information

An Algorithm to Solve the Inverse Kinematics Problem of a Robotic Manipulator Based on Rotation Vectors

An Algorithm to Solve the Inverse Kinematics Problem of a Robotic Manipulator Based on Rotation Vectors An Algorthm to Solve the Inverse Knematcs Problem of a Robotc Manpulator Based on Rotaton Vectors Mohamad Z. Al-az*, Mazn Z. Othman**, and Baker B. Al-Bahr* *AL-Nahran Unversty, Computer Eng. Dep., Baghdad,

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm Desgn and Optmzaton of Fuzzy Controller for Inverse Pendulum System Usng Genetc Algorthm H. Mehraban A. Ashoor Unversty of Tehran Unversty of Tehran h.mehraban@ece.ut.ac.r a.ashoor@ece.ut.ac.r Abstract:

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

Online Classification: Perceptron and Winnow

Online Classification: Perceptron and Winnow E0 370 Statstcal Learnng Theory Lecture 18 Nov 8, 011 Onlne Classfcaton: Perceptron and Wnnow Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton In ths lecture we wll start to study the onlne learnng

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Application research on rough set -neural network in the fault diagnosis system of ball mill

Application research on rough set -neural network in the fault diagnosis system of ball mill Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(4):834-838 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 Applcaton research on rough set -neural network n the

More information

FORECASTING EXCHANGE RATE USING SUPPORT VECTOR MACHINES

FORECASTING EXCHANGE RATE USING SUPPORT VECTOR MACHINES Proceedngs of the Fourth Internatonal Conference on Machne Learnng and Cybernetcs, Guangzhou, 8- August 005 FORECASTING EXCHANGE RATE USING SUPPORT VECTOR MACHINES DING-ZHOU CAO, SU-LIN PANG, YUAN-HUAI

More information

Evaluation of simple performance measures for tuning SVM hyperparameters

Evaluation of simple performance measures for tuning SVM hyperparameters Evaluaton of smple performance measures for tunng SVM hyperparameters Kabo Duan, S Sathya Keerth, Aun Neow Poo Department of Mechancal Engneerng, Natonal Unversty of Sngapore, 0 Kent Rdge Crescent, 960,

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Orientation Model of Elite Education and Mass Education

Orientation Model of Elite Education and Mass Education Proceedngs of the 8th Internatonal Conference on Innovaton & Management 723 Orentaton Model of Elte Educaton and Mass Educaton Ye Peng Huanggang Normal Unversty, Huanggang, P.R.Chna, 438 (E-mal: yepeng@hgnc.edu.cn)

More information

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan Kernels n Support Vector Machnes Based on lectures of Martn Law, Unversty of Mchgan Non Lnear separable problems AND OR NOT() The XOR problem cannot be solved wth a perceptron. XOR Per Lug Martell - Systems

More information

Other NN Models. Reinforcement learning (RL) Probabilistic neural networks

Other NN Models. Reinforcement learning (RL) Probabilistic neural networks Other NN Models Renforcement learnng (RL) Probablstc neural networks Support vector machne (SVM) Renforcement learnng g( (RL) Basc deas: Supervsed dlearnng: (delta rule, BP) Samples (x, f(x)) to learn

More information