What is a Sudden Stratospheric Warming?

Size: px
Start display at page:

Download "What is a Sudden Stratospheric Warming?"

Transcription

1 What is a Sudden Stratospheric Warming? rapid increase of T at h~32 km from Evelyn De Wachter (PhD thesis, IAP-Bern):!"#$%&'()*+,-*../0** DA /%:,'$,&?/.%0.$ 34$ N3&%8$ 9.%&$ 1.9:./%1/.$ 34$ 93/.$ 17%&$ HK$ <.8-,&$ P,17,&$ %$ 4.P$ '%20$ ;%1$ :QDE$ 7#%R$:38.P%/'$34$MEE$8%S1'.A$$ HA$ $,1$ $,0$ $%$9%1,-*../*,4$DA$,0$48T88.'$ %&'$,4$ 17.$ N3&%8$ 9.%&$ N3&%8$ P,&'$ /.-./0.0$ 4/39$.%01P%/'$ 13$ P.01P%/'$ ',/.?S3&$ 43/$ 0.-./%8$ '%20$ %1$ DE$ 7#%R$ :38.P%/'$ 34$ MEE$ 8%S1'.=$$ reversal to westward wind -> major SSW on 19 Feb DIE$ Qualitative Explanation of Sudden Stratospheric Warming: ① planetary wave (from troposphere at mid-latitudes) propagates into stratosphere at high latitudes and collapses at about km ② sudden deposition of westward wave momentum reverses the zonal mean eastward wind (wave mean flow interaction) ③ rapid increases of poleward wind, pressure, and temperature are forcing the polar vortex (-> shifting or splitting of polar vortex) upwelling of isentrope -> adiabatic cooling in the mesosphere Flury et al., JGR, 2009: SSW at Bern downwelling of isentrope -> adiabatic heating 67.$* $"1930:7./.$;<=$>3?@.A$B$C%-.$ upwelling and cooling DID$

2 How is the response of ozone to the SSW? Stratospheric ozone profiles are measured at University of Bern since 1994 ( Reasons: -detection of long-term trends of the ozone layer -cross-validation of satellite experiments -ozone as tracer of middle atmosphere dynamics -atmospheric research N + 3 "N2 + 2 N2 + "N + 2 ############ 3 + " 22 strong ozone depletion caused by the major stratospheric warming (19 Feb. 2008): Chemical box model provides explanation for observations at!bern. Catalytic ozone destruction (due to the N cycle) is accelerated if the temperature increases during the SSW (Flury et al., 2009) => it was a combined effect of dynamics and chemistry DIH$ pen questions in research on sudden stratospheric warmings! Meridional and vertical exchange and mixing of air masses by SSWs. Is the Brewer-Dobson circulation decelerated or accelerated by SSWs?! Why is there upwelling in the upper troposphere and lower stratosphere?! Role of gravity waves during SSW! Large ionospheric disturbances occur in the equatorial ionosphere during SSWs. Is it due to interaction between tides and planetary waves?! Why have there been no SSWs in the 90s?! Are there resonance periods of polar vortex oscillations? Average winter and summer spectrum ( ) of ozone fluctuations above Bern derived by bandpass filter-periodogram using ozone profiles of GRMS radiometer: ozone fluctuations at Bern possibly reflect perturbations of the vortex 20 days could be a resonance period winter spectrum has stronger peaks than the summer spectrum DII$

3 reservoirs of Cl chemical reaction takes place on the surface of the ice particle HCl ClN 2 n (HN. 3 H 2 ) 3 H 2 n=1,2,3,... ice particle: NAT (nitric acid trihydrate) T < -77 o C (is reached in the dark, cold winter stratosphere + cooling in updrafts) Activation of Cl (n+1) (HN. 3 H 2 ) + Cl 2 PSC: polar stratospheric cloud (usually induced by mountain waves) ice particle is now a bit larger and Cl 2 is now in the dangerous gas phase! and Cl 2 + h! " 2 Cl sunlight produces atomic Cl Catalytic cycles: Upper/middle stratosphere: Cl + ==> Cl + 2 Cl + ==> Cl net result: + ===> 2 2 Polar lower stratosphere: Cl + Cl + M -> Cl M (ozone hole) Cl hv -> Cl + Cl 2 Cl 2 + M -> Cl M then: 2 x (Cl + ) -> 2 x (Cl + 2 ) net: 2 -> 3 2 Cl + Harmful UV flux at surface increases with depletion of ozone: Cl + 2 Cl + Cl + 2 Cl Catalytic destruction of and by only one chlorine atom Cl is now ready for the next cycle

4 PV (white lines) make sense! DIM$ Atmospheric waves from troposphere Change of the polar vortex in the stratosphere Variability of time series of and H 2 observed by radiometers at Bern Change of composition and circulation of mesosphere and stratosphere Solar activity and geomagnetic storms Tides + Seasons PSC CFCs Climate Change Volcano +... QB (2.4 years) SA (0.5 years) (11 years, 27 days)

5 *467*82)&,,%*! bservations can sometimes reveal relationships (e.g., wave-mean flow interaction, polar ozone chemistry)! Description of the restless atmosphere rapidly increases with advances in computer technology and remote sensing. However understanding remains difficult!! IAP-Bern has a lot of instruments and data waiting for experimental investigations, analysis and simulations! Future of high-resolution Earth system models is described in a recent issue of a meteorological journal: Literature recommendation: Newman, P. A., man, L. D., Douglass, A. R., Fleming, E. L., Frith, S. M., Hurwitz, M. M., Kawa, S. R., Jackman, C. H., Krotkov, N. A., Nash, E. R., Nielsen, J. E., Pawson, S., Stolarski, R. S., and Velders, G. J. M.: What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmos. Chem. Phys., 9, , doi: /acp , 2009 (open access) 67.$* $"1930:7./.$;<=$>3?@.A$B$(1833@$ DIF$ *467*82)&,,%* $ UV3$ 17.$ W%?@X/3&'$ 9%2$ W.$ 3/',&%/2$ :720,?0Y?8%00,?%8$ 9.?7%&,?0$ %&'$ 17./93'2&%9,?0$ %::8,.'$ 13$ %$ Z,'$ 3&$ %$ /31%S&XR$ ',[./.&S%882B7.%1.'$ 0:7./.YW1$ 17.$ 01'2$ 34$ 17.$ P738.$ :/3?.00$ 7%0$,10$ 3P&$ &,\.$ Z%-3/=$ 67.$ %::/3%?7$,0$ >(]!V6!)$ /%17./$ 17%&$ /.'?S3&,01R$ W.?%0.$ 17./.$,0$ &.-./$ %$ 0,&X8.$?%0.=^$$$ $ $ ;_=$ `%/07%88R$ *=$ "=$ #89Wa$ "1930:7./.R$ (?.%&$ %&'$ )8,9%1.$ b2&%9,?0r$ "?%'.9,?$#/.00R$HEEFA$$ *9"46%*5,2*+,-*5,2-*4:#6746$#*467*5,2-** ****** ***;4<#6$#*=')"*3#>**?,;#+2&&5*5,2*()45*** **********'6)#-#()#7*'6*4)3,(;"#-'$*($'#6$#(>* *@#--5*!"-'()34(*467*4*?4;;5*A#=*B#4-*** 67.$* $"1930:7./.$;<=$>3?@.A$B$(1833@$ NASA

Sudden stratospheric warming and O3 depletion

Sudden stratospheric warming and O3 depletion Sudden Stratospheric Warming (SSW) and O3 T. Flury, K. Hocke, N. Kämpfer, A. Haefele Institute of Applied Physics, University of Bern ISSI workshop Outline 1) GROMOS measures O3 depletion during SSW 2)

More information

Atmospheric Responses to Solar Wind Dynamic Pressure

Atmospheric Responses to Solar Wind Dynamic Pressure Atmospheric Responses to Solar Wind Dynamic Pressure Hua Lu British Antarctic Survey Outline Background: Sun-Earth Climate Connection Solar wind/geomagnetic activity signals with 3 examples stratospheric

More information

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base Pole Eq Lecture 3: ATMOSPHERE (Outline) JS JP Hadley Cell Ferrel Cell Polar Cell (driven by eddies) L H L H Basic Structures and Dynamics General Circulation in the Troposphere General Circulation in the

More information

Measurements of Ozone. Why is Ozone Important?

Measurements of Ozone. Why is Ozone Important? Anthropogenic Climate Changes CO 2 CFC CH 4 Human production of freons (CFCs) Ozone Hole Depletion Human production of CO2 and CH4 Global Warming Human change of land use Deforestation (from Earth s Climate:

More information

EPP contribution to (stratospheric and) tropospheric variations. Annika Seppälä Finnish Meteorological Institute Academy of Finland

EPP contribution to (stratospheric and) tropospheric variations. Annika Seppälä Finnish Meteorological Institute Academy of Finland EPP contribution to (stratospheric and) tropospheric variations Annika Seppälä Finnish Meteorological Institute Academy of Finland A. Seppälä, HEPPA-SOLARIS Workshop, Boulder, Oct 0 So far... Energetic

More information

Influence of Sudden Stratosphere Warmings on the Ionosphere and Thermosphere

Influence of Sudden Stratosphere Warmings on the Ionosphere and Thermosphere Influence of Sudden Stratosphere Warmings on the Ionosphere and Thermosphere Nick Pedatella 1,2 1 High Altitude Observatory, National Center for Atmospheric Research 2 COSMIC Program Office, University

More information

The stratospheric response to extratropical torques and its relationship with the annular mode

The stratospheric response to extratropical torques and its relationship with the annular mode The stratospheric response to extratropical torques and its relationship with the annular mode Peter Watson 1, Lesley Gray 1,2 1. Atmospheric, Oceanic and Planetary Physics, Oxford University 2. National

More information

The Earth s thermosphere and coupling to the Sun:

The Earth s thermosphere and coupling to the Sun: The Earth s thermosphere and coupling to the Sun: Does the stratosphere and troposphere care? Alan D Aylward, George Millward, Ingo Muller-Wodarg and Matthew Harris Atmospheric Physics Laboratory, Dept

More information

Global Warming and Climate Change Part I: Ozone Depletion

Global Warming and Climate Change Part I: Ozone Depletion GCOE-ARS : November 18, 2010 Global Warming and Climate Change Part I: Ozone Depletion YODEN Shigeo Department of Geophysics, Kyoto University 1. Stratospheric Ozone and History of the Earth 2. Observations

More information

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion Chemistry 471/671 Atmospheric Chemistry III: Stratospheric Ozone Depletion 2 The Chapman Mechanism O 2 + hn 2 O( 1 D) O( 1 D) + O 2 + M O 3 + M Exothermic O( 1 D) + O 3 2 O 2 O 3 + hn O( 1 D) + O 2 ( 1

More information

Environmental Science Chapter 13 Atmosphere and Climate Change Review

Environmental Science Chapter 13 Atmosphere and Climate Change Review Environmental Science Chapter 13 Atmosphere and Climate Change Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Climate in a region is a. the long-term,

More information

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column.

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column. 190 PROBLEMS 10. 1 Shape of the ozone layer Consider a beam of solar radiation of wavelength λ propagating downward in the vertical direction with an actinic flux I at the top of the atmosphere. Assume

More information

Stratospheric O 3 : Overview

Stratospheric O 3 : Overview Stratospheric Chemistry READING: Chapter 10 of text Mid-latitude Ozone Chemistry (and depletion) Polar Ozone Destruction (the Ozone Hole) Stratospheric O 3 : Overview Most O 3 (90%) in stratosphere. Remaining

More information

Elevated stratopause and mesospheric intrusion following a stratospheric sudden warming in WACCM

Elevated stratopause and mesospheric intrusion following a stratospheric sudden warming in WACCM Elevated stratopause and mesospheric intrusion following a stratospheric sudden warming in WACCM Yvan J. Orsolini 1,V. Limpasuvan 2, J. Richter 3, O. K. Kvissel 4, F. Stordal 4,D. Marsh 3 1 Norwegian Institute

More information

Extremely cold and persistent stratospheric Arctic vortex in the winter of

Extremely cold and persistent stratospheric Arctic vortex in the winter of Article Atmospheric Science September 2013 Vol.58 No.25: 3155 3160 doi: 10.1007/s11434-013-5945-5 Extremely cold and persistent stratospheric Arctic vortex in the winter of 2010 2011 HU YongYun 1* & XIA

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

WACCM: The High-Top Model

WACCM: The High-Top Model WACCM: The High-Top Model WACCM top Michael Mills CAM top WACCM Liaison mmills@ucar.edu (303) 497-1425 http://bb.cgd.ucar.edu/ 40 km Ozone Layer Jarvis, Bridging the Atmospheric Divide, Science, 293, 2218,

More information

3D Brewer Dobson circulation derived from satellite measurements

3D Brewer Dobson circulation derived from satellite measurements SPARC BDC Workshop Grindelwald, Tuesday, June 26, 202 3D Brewer Dobson circulation derived from satellite measurements Axel Gabriel, Deniz Demirhan Bari,2, Heiner Körnich 3, Dieter H.W. Peters Leibniz-Institute

More information

The Scientific Value of Stratospheric Wind Measurements

The Scientific Value of Stratospheric Wind Measurements Working Group on Space-based Lidar Winds, Monterey, 2008 The Scientific Value of Stratospheric Wind Measurements Ted Shepherd Department of Physics University of Toronto The distribution of ozone (important

More information

Coupling of the polar stratosphere and mesosphere during stratospheric sudden warmings - Relevance for solar-terrestrial coupling -

Coupling of the polar stratosphere and mesosphere during stratospheric sudden warmings - Relevance for solar-terrestrial coupling - Coupling of the polar stratosphere and mesosphere during stratospheric sudden warmings - Relevance for solar-terrestrial coupling - Yvan J. Orsolini NILU - Norwegian Institute for Air Research and Birkeland

More information

Atmospheric Chemistry III

Atmospheric Chemistry III Atmospheric Chemistry III Chapman chemistry, catalytic cycles: reminder Source of catalysts, transport to stratosphere: reminder Effect of major (O 2 ) and minor (N 2 O, CH 4 ) biogenic gases on [O 3 ]:

More information

ATM 507 Lecture 9 Text reading Section 5.7 Problem Set # 2 due Sept. 30 Next Class Tuesday, Sept. 30 Today s topics Polar Stratospheric Chemistry and the Ozone Hole, Required reading: 20 Questions and

More information

The Study of the Atmosphere

The Study of the Atmosphere 1 The Study of the Atmosphere Learning Goals After studying this chapter, students should be able to distinguish between weather and climate (pp. 2 5); describe how the various components of the climate

More information

Ionosphere Variability at Mid Latitudes during Sudden Stratosphere Warmings

Ionosphere Variability at Mid Latitudes during Sudden Stratosphere Warmings Ionosphere Variability at Mid Latitudes during Sudden Stratosphere Warmings Nick Pedatella 1 and Astrid Maute 2 1 COSMIC Program Office, University Corporation for Atmospheric Research 2 High Altitude

More information

Thermospheric Winds. Astrid Maute. High Altitude Observatory (HAO) National Center for Atmospheric Science (NCAR) Boulder CO, USA

Thermospheric Winds. Astrid Maute. High Altitude Observatory (HAO) National Center for Atmospheric Science (NCAR) Boulder CO, USA Thermospheric Winds Astrid Maute High Altitude Observatory (HAO) National Center for Atmospheric Science (NCAR) Boulder CO, USA High Altitude Observatory (HAO) National Center for Atmospheric Research

More information

Influence of Doubled CO 2 on Ozone via Changes in the Brewer Dobson Circulation

Influence of Doubled CO 2 on Ozone via Changes in the Brewer Dobson Circulation JULY 2007 N O T E S A N D C O R R E S P O N D E N C E 2751 Influence of Doubled CO 2 on Ozone via Changes in the Brewer Dobson Circulation XUN JIANG Division of Geological and Planetary Sciences, and Department

More information

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems The Atmosphere 1 How big is the atmosphere? Why is it cold in Geneva? Why do mountaineers need oxygen on Everest? 2 A relatively thin layer of gas over the Earths surface Earth s radius ~ 6400km Atmospheric

More information

STRATOSPHERIC OZONE DEPLETION. Adapted from K. Sturges at MBHS

STRATOSPHERIC OZONE DEPLETION. Adapted from K. Sturges at MBHS STRATOSPHERIC OZONE DEPLETION Adapted from K. Sturges at MBHS Ozone Layer Ozone is Good up high Stratosphere Bad nearby Troposphere Solar Radiation - range of electromagnetic waves UV shortest we see if

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

The Mesosphere. Prof Nicholas Mitchell

The Mesosphere. Prof Nicholas Mitchell The Mesosphere Prof Nicholas Mitchell Centre for Space, Atmospheric & Oceanic Science Department of Electronic & Electrical Engineering The University of Bath Introductory Solar System Plasma Physics Summer

More information

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 1 Ozone Hole Theories 1. Solar activity: During periods of high solar activity, energetic particles are deposited high in the atmosphere, creating NOx. Perhaps

More information

Answer Key for Practice Test #2

Answer Key for Practice Test #2 Answer Key for Practice Test #2 Section 1. Multiple-choice questions. Choose the one alternative that best completes the statement or answers the question. Mark your choice on the optical scan sheet. 1.

More information

AGU Chapman Conference on The Role of the Stratosphere in Climate and Climate Change in Santorini, Greece, on 28th September, 2007

AGU Chapman Conference on The Role of the Stratosphere in Climate and Climate Change in Santorini, Greece, on 28th September, 2007 AGU Chapman Conference on The Role of the Stratosphere in Climate and Climate Change in Santorini, Greece, on 28th September, 2007 Parameter Sweep Experiments on the Remote Influences of the Equatorial

More information

WACCM Studies at CU-Boulder

WACCM Studies at CU-Boulder WACCM Studies at CU-Boulder V.L. Harvey, C.E. Randall, O.B. Toon, E. Peck, S. Benze, M. Brakebusch, L. Holt, D. Wheeler, J. France, E. Wolf, Y. Zhu, X. Fang, C. Jackman, M. Mills, D. Marsh Most Topics

More information

2014 Utah NASA Space Grant Consortium Symposium 1

2014 Utah NASA Space Grant Consortium Symposium 1 2014 Utah NASA Space Grant Consortium Symposium 1 Rayleigh Scatter Lidar Observations of the Midlatitude Mesosphere's Response to Sudden Stratospheric Warmings Leda Sox 1, Vincent B. Wickwar 1, Chad Fish

More information

Lecture 10: Climate Sensitivity and Feedback

Lecture 10: Climate Sensitivity and Feedback Lecture 10: Climate Sensitivity and Feedback Human Activities Climate Sensitivity Climate Feedback 1 Climate Sensitivity and Feedback (from Earth s Climate: Past and Future) 2 Definition and Mathematic

More information

Meridional structure of the downwelling branch of the BDC Susann Tegtmeier

Meridional structure of the downwelling branch of the BDC Susann Tegtmeier Meridional structure of the downwelling branch of the BDC Susann Tegtmeier Helmholtz Centre for Ocean Research Kiel (GEOMAR), Germany SPARC Brewer-Dobson Circulation Workshop, Grindelwald, June 2012 no

More information

Impacts of historical ozone changes on climate in GFDL-CM3

Impacts of historical ozone changes on climate in GFDL-CM3 Impacts of historical ozone changes on climate in GFDL-CM3 Larry Horowitz (GFDL) with: Vaishali Naik (GFDL), Pu Lin (CICS), and M. Daniel Schwarzkopf (GFDL) WMO (2014) Figure ADM 5-1 1 Response of tropospheric

More information

Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II

Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II Topic # 13 (cont.) OZONE DEPLETION IN THE STRATOSPHERE Part II A Story of Anthropogenic Disruption of a Natural Steady State p 77-79 in Class Notes THE DESTRUCTION OF STRATOSPHERIC OZONE The ozone hole

More information

WACCM: The High-Top Model

WACCM: The High-Top Model WACCM: The High-Top Model WACCM top Michael Mills CAM top WACCM Liaison mmills@ucar.edu (303) 497-1425 http://bb.cgd.ucar.edu/ 40 km Ozone Layer Jarvis, Bridging the Atmospheric Divide, Science, 293, 2218,

More information

ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer. Some perspective The British Antarctic Survey The Ozone Hole International Regulations

ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer. Some perspective The British Antarctic Survey The Ozone Hole International Regulations ATOC 3500/CHEM 3151 Week 9, 2016 The Game Changer Some perspective The British Antarctic Survey The Ozone Hole International Regulations Rowland (1974): The work is going very well, but it may mean the

More information

Uncertainties in atmospheric dynamics and infrasound monitoring

Uncertainties in atmospheric dynamics and infrasound monitoring Uncertainties in atmospheric dynamics and infrasound monitoring Elisabeth Blanc1, Alexis Le Pichon11, Doriane Tailpied11 Alain Hauchecorne2, Andrew Charlton Perez3, Pieter Smets4 1- CEA DAM DIF F-91297

More information

Lecture #1 Tidal Models. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #1 Tidal Models. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #1 Tidal Models Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Introduction 2. Brief description of tides 3. Observations of tides 4. Simulating tides using a general

More information

Interannual Variations of the General Circulation and Polar Stratospheric Ozone Losses in a General Circulation Model

Interannual Variations of the General Circulation and Polar Stratospheric Ozone Losses in a General Circulation Model Journal of the Meteorological Society of Japan, Vol. 80, No. 4B, pp. 877--895, 2002 877 Interannual Variations of the General Circulation and Polar Stratospheric Ozone Losses in a General Circulation Model

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds What is an atmosphere? Sources of Gas Losses of Gas Thermal Escape Earth s Atmosphere About 10 km thick Consists mostly of molecular

More information

State of polar boreal winter stratosphere ( ) The middle and upper regions of the atmosphere are now recognized as important and

State of polar boreal winter stratosphere ( ) The middle and upper regions of the atmosphere are now recognized as important and CHAPTER 3 State of polar boreal winter stratosphere (1993-2009) 3.1 Introduction The middle and upper regions of the atmosphere are now recognized as important and sensitive indicators of the polar middle

More information

SCIAMACHY book. Ozone variability and long-term changes Michel Van Roozendael, BIRA-IASB

SCIAMACHY book. Ozone variability and long-term changes Michel Van Roozendael, BIRA-IASB SCIAMACHY book Ozone variability and long-term changes Michel Van Roozendael, BIRA-IASB 1928: start of CFC production 1971: 1 st observation of CFC in the atmosphere (J. Lovelock) 1974: identification

More information

The Layered Atmosphere:

The Layered Atmosphere: The Layered Atmosphere: The Earth s Atmosphere Like all the planets, the Earth s atmosphere is highly distinct. What makes it different from the other terrestrial planets? Comparative Planetology The basic

More information

The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations

The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 1563 1576, doi:10.2/jgrd.181, 2013 The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura observations

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Predictability of Sudden Stratospheric Warmings in sub-seasonal forecast models

Predictability of Sudden Stratospheric Warmings in sub-seasonal forecast models Predictability of Sudden Stratospheric Warmings in sub-seasonal forecast models Alexey Karpechko Finnish Meteorological Institute with contributions from A. Charlton-Perez, N. Tyrrell, M. Balmaseda, F.

More information

Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends

Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L18701, doi:10.1029/2009gl040419, 2009 Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends

More information

Interactions Between the Stratosphere and Troposphere

Interactions Between the Stratosphere and Troposphere Interactions Between the Stratosphere and Troposphere A personal perspective Scott Osprey Courtesy of Verena Schenzinger The Wave-Driven Circulation Global structure of Temperature and Wind Temperature

More information

Stratospheric Chemistry and Processes. Sophie Godin-Beekmann LATMOS, OVSQ, IPSL

Stratospheric Chemistry and Processes. Sophie Godin-Beekmann LATMOS, OVSQ, IPSL Stratospheric Chemistry and Processes Sophie Godin-Beekmann LATMOS, OVSQ, IPSL 1 The Stratosphere Layer just above the troposphere Altitude depends on latitude and season (higher in the tropics and summer)

More information

Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone

Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone Martin Dameris Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Physik der Atmosphäre, Oberpfaffenhofen

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Atmospheric Coupling via Energetic Particle Precipitation (EPP)

Atmospheric Coupling via Energetic Particle Precipitation (EPP) Atmospheric Coupling via Energetic Particle Precipitation (EPP) Cora E. Randall University of Colorado Laboratory for Atmospheric and Space Physics Department of Atmospheric and Oceanic Sciences Acknowledgments

More information

Stratospheric Chemistry: Polar Ozone Depletion AOSC 433/633 & CHEM 433. Ross Salawitch

Stratospheric Chemistry: Polar Ozone Depletion AOSC 433/633 & CHEM 433. Ross Salawitch Stratospheric Chemistry: Polar Ozone Depletion AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2017 Today: Processes that govern the formation of the Antarctic

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? 10.1 Atmospheric Basics Our goals for learning:! What is an atmosphere?! How does the greenhouse effect warm

More information

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement Table of Contents Chapter: Atmosphere Section 1: Earth's Atmosphere Section 2: Energy Transfer in the Atmosphere Section 3: Air Movement Table of Contents Chapter 4: Atmosphere Section 1: Earth's Atmosphere

More information

Unit 2 Meteorology Test **Please do not write on this test** 5. El Nino & La Nina 6. Photosynthesis 7. Coriolis Effect 8.

Unit 2 Meteorology Test **Please do not write on this test** 5. El Nino & La Nina 6. Photosynthesis 7. Coriolis Effect 8. Matching (2 points each) 1. weather 2. climate 3. Greenhouse Effect 4. Convection Unit 2 Meteorology Test **Please do not write on this test** 5. El Nino & La Nina 6. Photosynthesis 7. Coriolis Effect

More information

The Impact of Polar Stratospheric Ozone Loss on Southern Hemisphere Stratospheric Circulation and Surface Climate

The Impact of Polar Stratospheric Ozone Loss on Southern Hemisphere Stratospheric Circulation and Surface Climate The Impact of Polar Stratospheric Ozone Loss on Southern Hemisphere Stratospheric Circulation and Surface Climate James Keeble, Peter Braesicke, Howard Roscoe and John Pyle James.keeble@atm.ch.cam.ac.uk

More information

Global Atmospheric Circulation

Global Atmospheric Circulation Global Atmospheric Circulation Polar Climatology & Climate Variability Lecture 11 Nov. 22, 2010 Global Atmospheric Circulation Global Atmospheric Circulation Global Atmospheric Circulation The Polar Vortex

More information

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 10. Stratospheric chemistry Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 The ozone layer Dobson unit: physical thickness (0.01 mm) of ozone layer if compressed to 1 atm, 0 o

More information

Zonal-mean global teleconnection from 15 to 110 km derived from SABER and WACCM

Zonal-mean global teleconnection from 15 to 110 km derived from SABER and WACCM JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jd016750, 2012 Zonal-mean global teleconnection from 15 to 110 km derived from SABER and WACCM Bo Tan, 1 Xinzhao Chu, 1 Han-Li Liu, 2 Chihoko

More information

Lecture #3: Gravity Waves in GCMs. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #3: Gravity Waves in GCMs. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #3: Gravity Waves in GCMs Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Role of GWs in the middle atmosphere 2. Background theory 3. Resolved GWs in GCMs 4. Parameterized

More information

The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute

The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute Facts about the atmosphere The atmosphere is kept in place on Earth by gravity The Earth-Atmosphere system

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Mars, Venus, Earth What is an atmosphere? An atmosphere is a (usually very thin) layer of gas that surrounds a world. How does the greenhouse effect warm a planet? No

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1153966/dc1 Supporting Online Material for The Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes Simone Tilmes,* Rolf Müller, Ross Salawitch *To

More information

On the Control of the Residual Circulation and Stratospheric Temperatures in the Arctic by Planetary Wave Coupling

On the Control of the Residual Circulation and Stratospheric Temperatures in the Arctic by Planetary Wave Coupling JANUARY 2014 S H A W A N D P E R L W I T Z 195 On the Control of the Residual Circulation and Stratospheric Temperatures in the Arctic by Planetary Wave Coupling TIFFANY A. SHAW Department of Earth and

More information

1 Climatological balances of heat, mass, and angular momentum (and the role of eddies)

1 Climatological balances of heat, mass, and angular momentum (and the role of eddies) 1 Climatological balances of heat, mass, and angular momentum (and the role of eddies) We saw that the middle atmospheric temperature structure (which, through thermal wind balance, determines the mean

More information

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2 Lecture 36. Stratospheric ozone chemistry. Part2: Threats against ozone. Objectives: 1. Chlorine chemistry. 2. Volcanic stratospheric aerosols. 3. Polar stratospheric clouds (PSCs). Readings: Turco: p.

More information

Imperial College London

Imperial College London Solar Influence on Stratosphere-Troposphere Dynamical Coupling Isla Simpson, Joanna D. Haigh, Space and Atmospheric Physics, Imperial College London Mike Blackburn, Department of Meteorology, University

More information

EOH 468: Air Pollution and Health. Introduction. History of Air Pollution. Dr. Peter Bellin, CIH, Ph.D. Spring 2008

EOH 468: Air Pollution and Health. Introduction. History of Air Pollution. Dr. Peter Bellin, CIH, Ph.D. Spring 2008 EOH 468: Air Pollution and Health Dr. Peter Bellin, CIH, Ph.D. Spring 2008 Introduction Syllabus posted on-line. Lecture notes. Texts: recommend they be purchased. Try to do readings, draft answers to

More information

Day 1 of Global Warming. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Day 1 of Global Warming. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Day 1 of Global Warming Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings The Atmosphere Atmosphere = the thin layer (1/100 th of Earth s diameter) of gases that surrounds

More information

Biomes and Biodiversity

Biomes and Biodiversity Biomes and Biodiversity Agenda 2/4/13 Biomes review terrestrial and aquatic Biodiversity Climate Change Introduction Weather Terrestrial Biomes Review Tundra Boreal Forest (Taiga) Temperate Forest Temperate

More information

Stratospheric Chemistry Part 1 (Chapter 4, p , , , )

Stratospheric Chemistry Part 1 (Chapter 4, p , , , ) Stratospheric Chemistry Part 1 (Chapter 4, p 155-169, 174-176, 198-222, 231-238) zone Discovery and History The Stratosphere and circulation Chapman Chemistry Catalysts The Controversy The zone Hole International

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Lecture The Cosmic Perspective Seventh Edition Planetary Atmospheres: Earth and the Other Terrestrial Worlds Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics

More information

Impact of Solar and Sulfate Geoengineering on Surface Ozone

Impact of Solar and Sulfate Geoengineering on Surface Ozone Impact of Solar and Sulfate Geoengineering on Surface Ozone Lili Xia 1, Peer J. Nowack 2, Simone Tilmes 3 and Alan Robock 1 1 Department of Environmental Sciences, Rutgers University, New Brunswick, NJ

More information

Transient/Eddy Flux. Transient and Eddy. Flux Components. Lecture 7: Disturbance (Outline) Why transients/eddies matter to zonal and time means?

Transient/Eddy Flux. Transient and Eddy. Flux Components. Lecture 7: Disturbance (Outline) Why transients/eddies matter to zonal and time means? Lecture 7: Disturbance (Outline) Transients and Eddies Climate Roles Mid-Latitude Cyclones Tropical Hurricanes Mid-Ocean Eddies (From Weather & Climate) Flux Components (1) (2) (3) Three components contribute

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? Planetary Atmospheres Pressure Composition Greenhouse effect Atmospheric structure Color of the sky 1 Atmospheres

More information

The scientific basis for climate change projections: History, Status, Unsolved problems

The scientific basis for climate change projections: History, Status, Unsolved problems The scientific basis for climate change projections: History, Status, Unsolved problems Isaac Held, Princeton, Feb 2008 Katrina-like storm spontaneously generated in atmospheric model Regions projected

More information

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance Four ways of inferring the MMC 1. direct measurement of [v] 2. vorticity balance 3. total energy balance 4. eliminating time derivatives in governing equations Four ways of inferring the MMC 1. direct

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation (WAPE: General Circulation of the Atmosphere and Variability) François Lott, flott@lmd.ens.fr http://web.lmd.jussieu.fr/~flott 1) Mean climatologies and equations of motion a)thermal,

More information

Standard 3: Students will understand the atmospheric processes that support life and cause weather and climate.

Standard 3: Students will understand the atmospheric processes that support life and cause weather and climate. Course: 9 th Grade Earth Systems Science Standard 3: Students will understand the atmospheric processes that support life and cause weather and climate. Instructions: In the space provided, write the letter

More information

FORCING ANTHROPOGENIC

FORCING ANTHROPOGENIC NATURAL CLIMATIC FORCING Earth-Sun orbital relationships, changing landsea distribution (due to plate tectonics), solar variability & VOLCANIC ERUPTIONS vs. ANTHROPOGENIC FORCING Human-Enhanced GH Effect,

More information

Space Atmospheric Gases. the two most common gases; found throughout all the layers a form of oxygen found in the stratosphere

Space Atmospheric Gases. the two most common gases; found throughout all the layers a form of oxygen found in the stratosphere Earth s atmospheric layers Earth s atmosphere is the layer of gases that surrounds the planet and makes conditions on Earth suitable for living things. Layers Earth s atmosphere is divided into several

More information

Predictability of the Stratospheric Polar Vortex Breakdown

Predictability of the Stratospheric Polar Vortex Breakdown International Symposium on the Whole Atmosphere (ISWA) Session 4: Sudden stratospheric warming and SSW-initiated global coupling 14 September 2016 @ Ito Hall, The University of Tokyo Predictability of

More information

Ozone Depletion by Hydrofluorocarbons

Ozone Depletion by Hydrofluorocarbons Ozone Depletion by Hydrofluorocarbons Margaret M. Hurwitz 1, 2, Eric. L. Fleming 2, 3, Paul A. Newman 2, Feng Li 2, 4, Eli Mlawer 5, Karen Cady-Pereira 5, and Roshelle Bailey 1, 2 1 GESTAR, Morgan State

More information

SUSTAINABILITY MATTERS FACT SHEET 7: THE HOLE IN THE OZONE LAYER

SUSTAINABILITY MATTERS FACT SHEET 7: THE HOLE IN THE OZONE LAYER SUSTAINABILITY MATTERS FACT SHEET 7: THE HOLE IN THE OZONE LAYER What is the ozone layer? Ozone is an allotrope of oxygen, which means it is a pure element, but has a different chemical structure to that

More information

Temperature. Vertical Thermal Structure. Earth s Climate System. Lecture 1: Introduction to the Climate System

Temperature. Vertical Thermal Structure. Earth s Climate System. Lecture 1: Introduction to the Climate System Lecture 1: Introduction to the Climate System T mass (& radiation) T & mass relation in vertical mass (& energy, weather..) Energy T vertical stability vertical motion thunderstorm What are included in

More information

Future changes in Elevated Stratopause Events

Future changes in Elevated Stratopause Events Future changes in Elevated Stratopause Events Janice Scheffler 1, Ulrike Langematz 1, Yvan J. Orsolini 2, Blanca Ayarzagüena 1 1 Institut für Meteorologie, Freie Universität Berlin 2 Norwegian Institute

More information

I T A T I O N H B I T B T V A O C J K M R S A T M O S P H E R E

I T A T I O N H B I T B T V A O C J K M R S A T M O S P H E R E Word Search Directions: Below are definitions of vocabulary terms. Figure out each term and then find and circle it in the puzzle. Words may appear horizontally, vertically, or diagonally. K E M I S S

More information

What did Venus Express tell us about the winds? PPT summary of Hueso et al. 2014

What did Venus Express tell us about the winds? PPT summary of Hueso et al. 2014 What did Venus Express tell us about the winds? PPT summary of Hueso et al. 2014 Observations Data selected from first 2115 orbits (6 Earth years = 9 Venusian days) UV: 66-72 km, VIS and NIR a few km below

More information

A Simulation of the Separate Climate Effects of Middle-Atmospheric and Tropospheric CO 2 Doubling

A Simulation of the Separate Climate Effects of Middle-Atmospheric and Tropospheric CO 2 Doubling 2352 JOURNAL OF CLIMATE VOLUME 17 A Simulation of the Separate Climate Effects of Middle-Atmospheric and Tropospheric CO 2 Doubling M. SIGMOND Department of Applied Physics, Eindhoven University of Technology

More information

Waves in Planetary Atmospheres R. L. Walterscheid

Waves in Planetary Atmospheres R. L. Walterscheid Waves in Planetary Atmospheres R. L. Walterscheid 2008 The Aerospace Corporation The Wave Zoo Lighthill, Comm. Pure Appl. Math., 20, 1967 Wave-Deformed Antarctic Vortex Courtesy of VORCORE Project, Vial

More information

Stratospheric Ozone: An Online Learning Module

Stratospheric Ozone: An Online Learning Module Stratospheric Ozone: An Online Learning Module Using your favorite browser open Ozone/index.htm or go to http://cs.clark.edu/~mac/geol390/stratosphericozone/startozoneactivity.html Work through the web

More information

Website Lecture 3 The Physical Environment Part 1

Website   Lecture 3 The Physical Environment Part 1 Website http://websites.rcc.edu/halama Lecture 3 The Physical Environment Part 1 1 Lectures 3 & 4 1. Biogeochemical Cycling 2. Solar Radiation 3. The Atmosphere 4. The Global Ocean 5. Weather and Climate

More information

Summary. Introduction The solar variability Some words about the Earth's atmosphere Simulations and results

Summary. Introduction The solar variability Some words about the Earth's atmosphere Simulations and results Summary Introduction The solar variability Some words about the Earth's atmosphere Simulations and results Introduction Understanding and quantifying the natural variability of climate on decadal and centennial

More information