Physics 125 Solar System Astronomy

Size: px
Start display at page:

Download "Physics 125 Solar System Astronomy"

Transcription

1 Physics 125 Solar System Astronomy James Buckley Lecture 8 More Physics!

2 Reading Quiz??? -No Quiz! :) -Homework! :(

3 Physics (More)

4 Circular Acceleration ~a = ~v t ~v Recall: arclength is equal to radius times the angle, similarly ~v v ˆr ~v 0 ~v = ~a t t = t = r s/v /v ~a = v ˆr r /v ~a = ˆr v2 r

5 Kepler s law for circular orbits Force of Gravity: Circular Acceleration: Newton s Second Law: F = GMm r 2 a = v2 r ~F = m~a GMm r 2 = mv2 r Note: Mass of orbiting planet cancels! v 2 = GM r Period, T =circumference/speed T = 2 r v T 2 = 4 2 r 2 v 2 T 2 = 4 2 GM r3

6 Orbits This derivation was done for circular orbits. We need to modify things a bit for elliptical orbits - basically we must replace the radius of the circle r with the average distance between the two objects a. We also must take into account that it is not the Sun at one focus of the ellipse, but the center of mass of the Sun-Earth system. I won t do the math but this results in another modification where we need to replace the mass of the sun M with the sum of the mass of the Sun and the planet M+m T 2 = T 2 = 4 2 GM a3 4 2 G(M + m) a3 In fact the Sun makes very tiny orbits (within it s radius) about this center of mass.

7 Center of Mass Planets actually orbit around the center of mass of the Sun-planet system. Center of mass can be determined mathematically as above, or by placing two objects (or a scale model for planets!) on an imaginary balance (seesaw) structure (with some unspecified downward gravitational force) then finding the position of the fulcrum to achieve balance.

8 Demonstration A fun party trick to impress your friends (at parties) Analysis: Fulcrum + + Center of mass

9 Angular Momentum and Orbits ~L = ~r ~p ~L = ~r (m~v) L = mvr sin

10 Tides Note that the radius of the earth r = 12, 742km is much smaller than the distance between the earth and moon r moon = 384, 000km and the distance between the Earth and the sun r sun = 149, 000, 000 km r r = F 2 = GM m r 2 (1 + ) 2 2 =(0.03) 2 = GM m 0 = r 2 ( ) GM m 1 2 r 2 (1 + 2 ) 1 2 GM m r GM m(1 2 ) r 2 (define r/r) F 1 = GMm r 2 F 2 = GMm (r + r) 2 Sum of forces F 1 + F 2 + F other stu combines to keep Earth in circular orbit. Di erence, stretches oceans and makes tide Stretching, tidal force = F 1 F 2 Tidal force = 2GM m r GMm Tidal force = r 2 [1 (1 2 )] = 2GM r 3 r 2

11 Tides M= mass of moon or sun F 1 = GMm r 2 F 2 = GMm (r + r) 2 Difference in gravitational force on near and far side results in oceans being pulled more strongly than average gravitational force on the rigid body of the earth on near side, more weakly on far side

12 Spring Tides Note that on the near side, there is a slightly larger force than needed to keep the rigid planet in orbit around the sun, but on the far side slightly less - resulting in an effective stretching (centrifugal-like) force on both sides. So even when it is full moon, and it appears that the forces of sun and moon work against each other, both provide a positive effective stretching force, adding the tides. At full and new moon, we get stronger Spring tides

13 Neap Tides At first and third quarter moon, effects of Sun and moon work against each other producing weaker neap tides

14 Tidal Locking Near Side (we always see this face from Earth) Near Side (we always see this face from Earth) Moon is tidally locked to the Earth, we always see the same side (left) never the far side (right). How did this come to be? If the moon were not tidally locked, it would be compressed one way, then the next. All of this crunching dissipates energy and the moon is only happy when it is locked in place!

15 Tidal Locking We always see the same face of the moon because of tidal locking

16 Transfer of Angular Momentum You can t get rid of angular momentum unless you transfer it to something else. If someone slams the door on you, it imparts some angular momentum to you, and you to the floor (through friction) but you don t notice since you are much more massive than the door, and the earth is much more massive than you!

17 Transfer in Eath/Moon System (1) Friction in rotating Earth pulls tidal bulge slightly ahead of moon (3) The Earth s bulge pulls the moon ahead, increasing its orbital distance (2) The moon gravity tries to pull the Earth s bulge back, slowing the rotation Time out! Foul! How do we know that the tug of the earth doesn t increase the velocity, and decrease the radius from Kepler s laws? If the radius increases does the velocity decrease?!

18 Angular Momentum ~L = ~r ~p ~v ~L = ~r (m~v) ~L = ~r (m~v) =mvr! ~r v 2 = GM r r GM v = r p pr L = GM m As r increases, the angular momentum increases (for a given mass m) So if angular momentum is conserved, and the Earth s angular momentum decreases, the angular momentum of the Moon s orbit must increase, so r increases and v decreases!

19 Summarizing The moon is slowing down the Earth s rotation and gradually moving away from the Earth. Early in the history of the Earth moon system, a day may have only been 5-6 hours long, and the Moon one tenth of its current distance. Eventually we may loose our moon, the Earth will become tidally locked to the moon, each month will only have one day and there will be fewer months per year. Is that weird or what?!

20 Discussion Question 7 lb 3 lb 5 lb 5 lb 5 lb 5 lb You have asked for a very specific 10 lb free-weight (bar bell) for your birthday, but worried your friend got the wrong one (there are actually 3 10 lb free weights at the sporting good store. What experiments can you do on the package to see which one you are getting (without opening the box, and ruining the surprise) - (Note: assumed the weights are well packed, with the point midway between the two extreme ends in the center of the box)

21 Phasesacceleration of the moon Circular (not to be confused with waning and waxing gibbons) v a = t Physics Lecture 1 p. 25/27

22 Eclipses

23 Eclipses

24 Summary Read Sections 4.4 and 4.5 (if you did not already)

25 Units of distance 1 a.u. = 93 million miles = km A light year is defined as the distance that light travels in one years time or 1ly sec m/sec = km = 63, 000 a.u. A parsec is defined as the distance at which 1 a.u. would subtend one second of arc. A star at distance d (measured in parsecs) will be observed to have a parallax angle of θ (in arcsecs) given by the formula: ( ) θ 1 arcsec = d 1 1 parsec 1 p.c. = 3.26 ly Physics Lecture 3 p. 12/12

26 Kepler s laws Kepler s First Law: A planet orbits the Sun in an ellipse with the sun at one focus of the ellipse. r + r =2a Kepler s Second Law: A line connecting a planet to the Sun sweeps out equal areas in equal time intervals. Kepler s Third Law: P 2 = a 3 Physics Lecture 3 p. 7/12

27 Parallax distance S un Earth! Mercury

28 Distance to Planets Parallax distance S un Earth! Mercury Venus transit, APOD July 20, 2004 Relative scales of the solar system Planet Period (years) Approx. Radius (a.u.) Earth Mercury Venus Mars Jupiter Venus transit, Crow Observatory, June 5, 2012

29 List # 1 2 Map of nearby stars 3 Future and past 4 See also 5 References 6 External links Nearest Stars System Designation Star Star # Stellar class Apparent magnitude (m V ) Absolute magnitude (M V ) Epoch J Right ascension [2] Declination [2] Solar System Sun G2V [2]!26.74 [2] 4.85 [2] variable: the Sun travels along the ecliptic Alpha Centauri (Rigil Kentaurus; Toliman) Proxima Centauri (V645 Centauri) # Centauri A (HD ) # Centauri B (HD ) EZ Aquarii B 16 M? List of nearest stars and parallax [2] [2] EZ Aquarii C 16 M? (from Wikipedia) [2] [2] Parallax [2][3] Arcseconds(±err) Distance [4] Light-years (±err) Additional references 1 M5.5Ve [2] [2] 14 h 29 m 43.0 s!62 40! 46" (0 29)" [5][6] (16) [7] 2 G2V [2] 0.01 [2] 4.38 [2] 14 h 39 m 36.5 s!60 50! 02" 2 K1V [2] 1.34 [2] 5.71 [2] 14 h 39 m 35.1 s!60 50! 14" (1 17)" [5][8] (68) 2 Barnard's Star (BD a) 4 M4.0Ve 9.53 [2] [2] 17 h 57 m 48.5 s ! 36" (1 00)" [5][6] (109) 3 Wolf 359 (CN Leonis) 5 M6.0V [2] [2] [2] 10 h 56 m 29.2 s ! 53" (2 10)" [5] (390) 4 Lalande (BD ) 6 M2.0V [2] 7.47 [2] [2] 11 h 03 m 20.2 s ! 12" (0 70)" [5][6] (148) 5 Sirius (# Canis Majoris) 6 Luyten Sirius A 7 A1V [2]!1.46 [2] 1.42 [2] 06 h 45 m 08.9 s!16 42! 58" (1 28)" [5][6] (289) Sirius B 7 DA2 [2] 8.44 [2] [2] Luyten A (BL Ceti) Luyten B (UV Ceti) 9 M5.5Ve [2] [2] 01 h 39 m 01.3 s!17 57! 01" (2 70)" [5] (631) 10 M6.0Ve [2] [2] 7 Ross 154 (V1216 Sagittarii) 11 M3.5Ve [2] [2] 18 h 49 m 49.4 s!23 50! 10" (1 78)" [5][6] (512) 8 Ross 248 (HH Andromedae) 12 M5.5Ve [2] [2] 23 h 41 m 54.7 s ! 30" (1 10)" [5] (36) 9 Epsilon Eridani (BD!09 697) 13 K2V [2] 3.73 [2] 6.19 [2] 03 h 32 m 55.8 s!09 27! 30" (0 79)" [5][6] (27) 10 Lacaille 9352 (CD! ) 14 M1.5Ve 7.34 [2] 9.75 [2] 23 h 05 m 52.0 s!35 51! 11" (0 87)" [5][6] (31) 11 Ross 128 (FI Virginis) 15 M4.0Vn [2] [2] 11 h 47 m 44.4 s ! 16" (1 35)" [5][6] (49) EZ Aquarii (GJ 866, Luyten 789-6) Procyon (# Canis Minoris) EZ Aquarii A 16 M5.0Ve [2] [2] 22 h 38 m 33.4 s!15 18! 07" (4 40)" [5] (171) Procyon A 19 List of nearest stars - Wikipedia, the free encyclopedia has 8 planets has two proposed planets F5V- IV [2] 0.38 [2] 2.66 [2] 07 h 39 m 18.1 s ! 30" (0 81)" [5][6] (32) [2] [2] [2]

30 Tropics of Cancer and Capricorn Sun is directly overhead on the Summer Solstice along a line of geographic latitude known as the tropic of cancer. Further north, it may never reach this altitude angle.

31 Celestial Sphere Template

32 Earth Template

Physics 125 Solar System Astronomy

Physics 125 Solar System Astronomy Physics 125 Solar System Astronomy James Buckley buckley@wuphys.wustl.edu Lecture 7 The Physics behind Astronomy Reading Quiz 4 -What conservation law explains why an ice skater spins faster when she pulls

More information

Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are

Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are concept questions, some involve working with equations,

More information

lightyears observable universe astronomical unit po- laris perihelion Milky Way

lightyears observable universe astronomical unit po- laris perihelion Milky Way 1 Chapter 1 Astronomical distances are so large we typically measure distances in lightyears: the distance light can travel in one year, or 9.46 10 12 km or 9, 600, 000, 000, 000 km. Looking into the sky

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 1 Mapping the Universe

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 1 Mapping the Universe Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 1 Mapping the Universe Physics 476/576 Course Outline Stellar Structure and Evolution (and other topics in Astrophysics),Crow 205, 11:30-1:00

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp September 21, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer Mercury What is the closest Planet to the

More information

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 1 Mapping the Universe

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 1 Mapping the Universe Physics 556 Stellar Astrophysics Prof. James Buckley Lecture 1 Mapping the Universe Physics 556 Course Outline Stellar Structure and Evolution (and other topics in Astrophysics) Crow 206, 11:30-1:00 Instructor:

More information

The Earth, Moon, and Sky. Lecture 5 1/31/2017

The Earth, Moon, and Sky. Lecture 5 1/31/2017 The Earth, Moon, and Sky Lecture 5 1/31/2017 From Last Time: Stable Orbits The type of orbit depends on the initial speed of the object Stable orbits are either circular or elliptical. Too slow and gravity

More information

Dynamics of the Earth

Dynamics of the Earth Time Dynamics of the Earth Historically, a day is a time interval between successive upper transits of a given celestial reference point. upper transit the passage of a body across the celestial meridian

More information

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central Everything in Orbit Orbital Velocity Orbital velocity is the speed at which a planetary body moves in its orbit around another body. If orbits were circular, this velocity would be constant. However, from

More information

Orbital Mechanics. CTLA Earth & Environmental Science

Orbital Mechanics. CTLA Earth & Environmental Science Orbital Mechanics CTLA Earth & Environmental Science The Earth Spherical body that is flattened near the poles due to centrifugal force (rotation of the Earth) 40,074 KM across at the Equator 40,0007 KM

More information

Astronomy 1143 Quiz 1 Review

Astronomy 1143 Quiz 1 Review Astronomy 1143 Quiz 1 Review Prof. Pradhan September 7, 2017 I What is Science? 1. Explain the difference between astronomy and astrology. Astrology: nonscience using zodiac sign to predict the future/personality

More information

SAMPLE First Midterm Exam

SAMPLE First Midterm Exam Astronomy 1000 Dr C. Barnbaum SAMPLE First Midterm Exam Note: This is a sample exam. It is NOT the exam you will take. I give out sample exams so that you will have an understanding of the depth of knowledge

More information

Test 1 Review Chapter 1 Our place in the universe

Test 1 Review Chapter 1 Our place in the universe Test 1 Review Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons Formulas will be projected on the screen You can use

More information

Physics 312 Introduction to Astrophysics Lecture 3

Physics 312 Introduction to Astrophysics Lecture 3 Physics 312 Introduction to Astrophysics Lecture 3 James Buckley buckley@wuphys.wustl.edu Lecture 3 Celestial Coordinates the Planets and more History Reason for the Seasons Summer Solstice: Northern Hemisphere

More information

5. Universal Laws of Motion

5. Universal Laws of Motion 5. Universal Laws of Motion If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (164 177) Physicist Image courtesy of NASA/JPL Sir Isaac Newton (164-177)

More information

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,

More information

Basics of Kepler and Newton. Orbits of the planets, moons,

Basics of Kepler and Newton. Orbits of the planets, moons, Basics of Kepler and Newton Orbits of the planets, moons, Kepler s Laws, as derived by Newton. Kepler s Laws Universal Law of Gravity Three Laws of Motion Deriving Kepler s Laws Recall: The Copernican

More information

Name and Student ID Section Day/Time:

Name and Student ID Section Day/Time: AY2 - Overview of the Universe - Midterm #1 - Instructor: Maria F. Duran Name and Student ID Section Day/Time: 1) Imagine we ve discovered a planet orbiting another star at 1 AU every 6 months. The planet

More information

Ay 1 Lecture 2. Starting the Exploration

Ay 1 Lecture 2. Starting the Exploration Ay 1 Lecture 2 Starting the Exploration 2.1 Distances and Scales Some Commonly Used Units Distance: Astronomical unit: the distance from the Earth to the Sun, 1 au = 1.496 10 13 cm ~ 1.5 10 13 cm Light

More information

The beginnings of physics

The beginnings of physics The beginnings of physics Astronomy 101 Syracuse University, Fall 2018 Walter Freeman October 9, 2018 Astronomy 101 The beginnings of physics October 9, 2018 1 / 28 Announcements No office hours this week

More information

Lecture: October 1, 2010

Lecture: October 1, 2010 Lecture: October 1, 2010 How long would it take to walk to Alpha Centauri? Announcements: Next Observatory Opportunity: Wednesday October 6 Phases of Matter the phases solid liquid gas plasma depend on

More information

THE UNIVERSE AND THE EARTH

THE UNIVERSE AND THE EARTH ESO1 THE UNIVERSE AND THE EARTH Unit 1 What is the Universe like? Universe theories Ideas about the Universe: Geocentric theory Aristotle (B.C) and Ptolomy (A.D) Heliocentric theory Copernicus in 1542

More information

Finding Extrasolar Planets. I

Finding Extrasolar Planets. I ExtraSolar Planets Finding Extrasolar Planets. I Direct Searches Direct searches are difficult because stars are so bright. How Bright are Planets? Planets shine by reflected light. The amount reflected

More information

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury Lecture 19: The Moon & Mercury The Moon & Mercury The Moon and Mercury are similar in some ways They both have: Heavily cratered Dark colored surfaces No atmosphere No water They also have some interesting

More information

Astronomy Section 2 Solar System Test

Astronomy Section 2 Solar System Test is really cool! 1. The diagram below shows one model of a portion of the universe. Astronomy Section 2 Solar System Test 4. Which arrangement of the Sun, the Moon, and Earth results in the highest high

More information

Classical mechanics: conservation laws and gravity

Classical mechanics: conservation laws and gravity Classical mechanics: conservation laws and gravity The homework that would ordinarily have been due today is now due Thursday at midnight. There will be a normal assignment due next Tuesday You should

More information

2) The number one million can be expressed in scientific notation as: (c) a) b) 10 3 c) 10 6 d)

2) The number one million can be expressed in scientific notation as: (c) a) b) 10 3 c) 10 6 d) Astronomy Phys 181 Midterm Examination Choose the best answer from the choices provided. 1) What is the range of values that the coordinate Declination can have? (a) a) -90 to +90 degrees b) 0 to 360 degrees

More information

PHY2083 ASTRONOMY. Dr. Rubina Kotak Office F016. Dr. Chris Watson Office S036

PHY2083 ASTRONOMY. Dr. Rubina Kotak Office F016. Dr. Chris Watson Office S036 PHY2083 ASTRONOMY Dr. Rubina Kotak r.kotak@qub.ac.uk Office F016 Dr. Chris Watson c.a.watson@qub.ac.uk Office S036 PHY2083 ASTRONOMY Weeks 1-6: Monday 10:00 DBB 0G.005 Wednesday 9:00 PFC 02/018 Friday

More information

2.1 Patterns in the Night Sky

2.1 Patterns in the Night Sky 2.1 Patterns in the Night Sky Our goals for learning: What are constellations? How do we locate objects in the sky? Why do stars rise and set? Why don t we see the same constellations throughout the year?

More information

Lecture 16. Gravitation

Lecture 16. Gravitation Lecture 16 Gravitation Today s Topics: The Gravitational Force Satellites in Circular Orbits Apparent Weightlessness lliptical Orbits and angular momentum Kepler s Laws of Orbital Motion Gravitational

More information

Astronomy 11. No, this course isn t all about Star Wars

Astronomy 11. No, this course isn t all about Star Wars Astronomy 11 No, this course isn t all about Star Wars Earth s Rotation How fast are people on the equator moving? s=d/t =circumference/24 hours =(40,000 km)/24 hours =1670 km/h That s Mach 1.4! What

More information

In all cases assume the observer is located at the latitude of Charlottesville (38 degrees north).

In all cases assume the observer is located at the latitude of Charlottesville (38 degrees north). 1. Recalling that azimuth is measured around the sky from North (North is 0 degrees, East is 90 degrees, South is 180 degrees, and West is 270 degrees) estimate (do not calculate precisely) the azimuth

More information

Exam 1 Astronomy 114. Part 1

Exam 1 Astronomy 114. Part 1 Exam 1 Astronomy 114 Part 1 [1-40] Select the most appropriate answer among the choices given. 1. If the Moon is setting at 6AM, the phase of the Moon must be (A) first quarter. (B) third quarter. (C)

More information

How big is the Universe and where are we in it?

How big is the Universe and where are we in it? Announcements Results of clicker questions from Monday are on ICON. First homework is graded on ICON. Next homework due one minute before midnight on Tuesday, September 6. Labs start this week. All lab

More information

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Based on part of Chapter 4 This material will be useful for understanding Chapters 8 and 11

More information

Astronomy 291. Professor Bradley M. Peterson

Astronomy 291. Professor Bradley M. Peterson Astronomy 291 Professor Bradley M. Peterson The Sky As a first step, we need to understand the appearance of the sky. Important points (to be explained): The relative positions of stars remain the same

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information

N t ew on L s aws Monday, February 2

N t ew on L s aws Monday, February 2 Newton s Laws Monday, February Isaac Newton (1643-177): English Discovered: three laws of motion, one law of universal gravitation. Newton s great book: Newton s laws are universal in scope, and mathematical

More information

There are 4 x stars in the Galaxy

There are 4 x stars in the Galaxy ExtraSolar Planets Our solar system consists of 1 Star 4 Jovian planets (+ icy moons) 4 Terrestrial planets The asteroid belt (minor planets) The Kuiper belt (dwarf planets, plutinos and TNOs) The Oort

More information

Gravity & The Distances to Stars. Lecture 8. Homework 2 open Exam on Tuesday in class bring ID and #2 pencil

Gravity & The Distances to Stars. Lecture 8. Homework 2 open Exam on Tuesday in class bring ID and #2 pencil 1 Gravity & The Distances to Stars Lecture 8 Homework 2 open Exam on Tuesday in class bring ID and #2 pencil 2 Preparing for the Exam 1 Exams in this class are multiple choice, but the questions can be

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

ASTRONOMY 1010 Exam 1 September 21, 2007

ASTRONOMY 1010 Exam 1 September 21, 2007 ASTRONOMY 1010 Exam 1 September 21, 2007 Name Please write and mark your name and student number in the Scantron answer sheet. FILL THE BUBBLE IN THE "TEST FORM" BOX CORRESPONDING TO YOUR TEST VERSION

More information

ASTRO 6570 Lecture 1

ASTRO 6570 Lecture 1 ASTRO 6570 Lecture 1 Historical Survey EARLY GREEK ASTRONOMY: Earth-centered universe - Some radical suggestions for a sun-centered model Shape of the Earth - Aristotle (4 th century BCE) made the first

More information

Stars, Galaxies & Universe Announcements. Stars, Galaxies & Universe Lecture #3. Reading Quiz questions. Phases of the Moon & Eclipses

Stars, Galaxies & Universe Announcements. Stars, Galaxies & Universe Lecture #3. Reading Quiz questions. Phases of the Moon & Eclipses Stars, Galaxies & Universe Announcements - Science library (120 Iowa Ave (across from Joe s Place) has copies of the textbook on reserve -Labs start this week print out lab document before class (see link

More information

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU 1 AST104 Sp04: WELCOME TO EXAM 1 Multiple Choice Questions: Mark the best answer choice. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1. A galaxy

More information

Most of the time during full and new phases, the Moon lies above or below the Sun in the sky.

Most of the time during full and new phases, the Moon lies above or below the Sun in the sky. 6/16 Eclipses: We don t have eclipses every month because the plane of the Moon s orbit about the Earth is different from the plane the ecliptic, the Earth s orbital plane about the Sun. The planes of

More information

Lecture 3. Basic Physics of Astrophysics - Force and Energy.

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Lecture 3 Basic Physics of Astrophysics - Force and Energy http://apod.nasa.gov/apod/ Tue Wed Thur Thur ISB 165 Wed 5 Thur 4 Momentum (generally m F = Forces is the product of mass and velocity - a vector

More information

Astr 1050 Mon. Jan. 31, 2017

Astr 1050 Mon. Jan. 31, 2017 Astr 1050 Mon. Jan. 31, 2017 Finish Ch. 2: Eclipses & Planetary Motion Seasons Angular Size formula Eclipses Planetary Motion Reading: For Today: Finish Chapter 2 For Monday: Start Chapter 3 Homework on

More information

Events. Notable. more gravity & orbits Tides. Homework Due Next time; Exam review (Sept. 26) Exam I on Sept. 28 (one week from today)

Events. Notable. more gravity & orbits Tides. Homework Due Next time; Exam review (Sept. 26) Exam I on Sept. 28 (one week from today) Today more gravity & orbits Tides Events Homework Due Next time; Exam review (Sept. 26) Exam I on Sept. 28 (one week from today) Notable Fall equinox (Sept. 22 - tomorrow at 4:02PM) Escape Velocity M r

More information

7.4 Universal Gravitation

7.4 Universal Gravitation Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Physics 12. Unit 5 Circular Motion and Gravitation Part 2 Physics 12 Unit 5 Circular Motion and Gravitation Part 2 1. Newton s law of gravitation We have seen in Physics 11 that the force acting on an object due to gravity is given by a well known formula: F

More information

In this chapter, you will consider the force of gravity:

In this chapter, you will consider the force of gravity: Gravity Chapter 5 Guidepost In this chapter, you will consider the force of gravity: What were Galileo s insights about motion and gravity? What were Newton s insights about motion and gravity? How does

More information

Position 3. None - it is always above the horizon. Agree with student 2; star B never crosses horizon plane, so it can t rise or set.

Position 3. None - it is always above the horizon. Agree with student 2; star B never crosses horizon plane, so it can t rise or set. Position 3 None - it is always above the horizon. N E W S Agree with student 2; star B never crosses horizon plane, so it can t rise or set. Imaginary plane No; the Earth blocks the view. Star A at position

More information

Isaac Newton and the Laws of Motion and Gravitation 2

Isaac Newton and the Laws of Motion and Gravitation 2 Isaac Newton and the Laws of Motion and Gravitation 2 ASTR 101 3/21/2018 Center of Mass motion Oblate shape of planets due to rotation Tidal forces and tidal locking Discovery of Neptune 1 Center of Mass

More information

Introduction To Modern Astronomy I

Introduction To Modern Astronomy I ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

More information

Occam s Razor: William of Occam, 1340(!)

Occam s Razor: William of Occam, 1340(!) Reading: OpenStax, Chapter 2, Section 2.2 &2.4, Chapter 3, Sections 3.1-3.3 Chapter 5, Section 5.1 Last time: Scales of the Universe Astro 150 Spring 2018: Lecture 2 page 1 The size of our solar system,

More information

Earth-Moon System Fun with Gravity Sarazin. Sizes of Earth and Moon

Earth-Moon System Fun with Gravity Sarazin. Sizes of Earth and Moon Earth-Moon System Fun with Gravity Sarazin Sizes of Earth and Moon Earth-Moon System Fun with Gravity Sarazin Sizes of Earth and Moon Precession: Gravity not parallel to rotation axis rotation axis gravity

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

1. The bar graph below shows one planetary characteristic, identified as X, plotted for the planets of our solar system.

1. The bar graph below shows one planetary characteristic, identified as X, plotted for the planets of our solar system. 1. The bar graph below shows one planetary characteristic, identified as X, plotted for the planets of our solar system. Which characteristic of the planets in our solar system is represented by X? A)

More information

Understanding Motion, Energy & Gravity

Understanding Motion, Energy & Gravity Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity

More information

Chapter 4 Thrills and Chills +Math +Depth Acceleration of the Moon +Concepts The Moon is 60 times further away from the center of Earth than objects on the surface of Earth, and moves about Earth in an

More information

Understanding Motion, Energy & Gravity

Understanding Motion, Energy & Gravity Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity

More information

ASTRONOMY QUIZ NUMBER 1

ASTRONOMY QUIZ NUMBER 1 ASTRONOMY QUIZ NUMBER. You read in an astronomy atlas that an object has a negative right ascension. You immediately conclude that A) the object is located in the Southern Sky. B) the object is located

More information

SPI Use data to draw conclusions about the major components of the universe.

SPI Use data to draw conclusions about the major components of the universe. SPI 0607.6.1 - Use data to draw conclusions about the major components of the universe. o Stars are huge, hot, brilliant balls of gas trillions of kilometers away. A Galaxy is a collection of billions

More information

Exam# 1 Review Gator 1 Keep the first page of the exam. Scores will be published using the exam number Chapter 0 Charting the Heavens

Exam# 1 Review Gator 1 Keep the first page of the exam. Scores will be published using the exam number Chapter 0 Charting the Heavens Exam# 1 Review Exam is Wednesday October 11 h at 10:40AM, room FLG 280 Bring Gator 1 ID card Bring pencil #2 (HB) with eraser. We provide the scantrons No use of calculator or any electronic device during

More information

AST Section 2: Test 1

AST Section 2: Test 1 AST1002 - Section 2: Test 1 Date: 10/06/2009 Name: Equations: c = λ f, λ peak = Question 1: A star with a declination of +40.0 degrees will be 1. east of the vernal equinox. 2. west of the vernal equinox.

More information

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods? Chapter S1 Celestial Timekeeping and Navigation S1.1 Astronomical Time Periods Our goals for learning:! How do we define the day, month, year, and planetary time periods?! How do we tell the time of day?!

More information

Chapter 0 2/19/2014. Lecture Outline. 0.1 The Obvious View. Charting the Heavens. 0.1 The Obvious View. 0.1 The Obvious View. Units of Chapter 0

Chapter 0 2/19/2014. Lecture Outline. 0.1 The Obvious View. Charting the Heavens. 0.1 The Obvious View. 0.1 The Obvious View. Units of Chapter 0 Lecture Outline Chapter 0 Charting the Heavens Earth is average we don t occupy any special place in the universe Universe: Totality of all space, time, matter, and energy Astronomy: Study of the universe

More information

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were

More information

Where do objects get their energy?

Where do objects get their energy? Where do objects get their energy? Energy makes matter move. Energy is always 'conserved' Conservation of Energy Energy can neither be created nor destroyed The total energy content of the universe was

More information

a. 0.1 AU b. 10 AU c light years d light years

a. 0.1 AU b. 10 AU c light years d light years 1 AST104 Sp2006: EXAM 1 Multiple Choice Questions: Mark the best answer choice on the bubble form. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1.

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Why are celestial motions and forces important? They explain the world around us.

More information

Please pick up your midterms from front of class

Please pick up your midterms from front of class Please pick up your midterms from front of class Average: 70 % Test % score distribution: Top grade: 92 % Make sure you go through your test and the solutions carefully to understand where you went wrong.

More information

Chapter 17. Chapter 17

Chapter 17. Chapter 17 Chapter 17 Moons and Other Solar System Objects Sections 17.1-17.2 Chapter 17 Parallax http://www.youtube.com/watc h?v=xuqaildqpww The Moon July 20, 1969 humans first landed on moon What was the first

More information

Newton s Laws and the Nature of Matter

Newton s Laws and the Nature of Matter Newton s Laws and the Nature of Matter The Nature of Matter Democritus (c. 470-380 BCE) posited that matter was composed of atoms Atoms: particles that can not be further subdivided 4 kinds of atoms: earth,

More information

Chapter 4. Motion and gravity

Chapter 4. Motion and gravity Chapter 4. Motion and gravity Announcements Labs open this week to finish. You may go to any lab section this week (most people done). Lab exercise 2 starts Oct 2. It's the long one!! Midterm exam likely

More information

Astronomy 141 Life in the Universe Professor Gaudi Homework #4 Solutions

Astronomy 141 Life in the Universe Professor Gaudi Homework #4 Solutions Astronomy 141 Life in the Universe Autumn Quarter 008 Prof Gaudi Homework #4 Solutions These questions concern the concept of targets for searches for extrasolar planets specifically (a) the number of

More information

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential to the trajectory 1 Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential

More information

Solar vs. Lunar Tides

Solar vs. Lunar Tides 1 2 3 4 Solar vs. Lunar Tides In the force equations M is the mass of the tide-causing object, r is the separation between the two objects. dr is the size of the object on which the tides are being raised.

More information

Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets

Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets Astronomy is the oldest science! In ancient times the sky was not well understood! Eclipses Bad Omens? Comets 1 The Ancient Greeks The Scientific Method Our ideas must always be consistent with our observations!

More information

4.3 Conservation Laws in Astronomy

4.3 Conservation Laws in Astronomy 4.3 Conservation Laws in Astronomy Our goals for learning: Why do objects move at constant velocity if no force acts on them? What keeps a planet rotating and orbiting the Sun? Where do objects get their

More information

TIDES. A tide just after the first or third quarters of the moon There is the least difference between high and low water Spring Tides

TIDES. A tide just after the first or third quarters of the moon There is the least difference between high and low water Spring Tides TIDES Earth and Moon Interaction The Earth is pulled to the Sun by gravity. The moon is pulled to the Earth by gravity. The moon s gravity effects the Earth s tides. Neap Tides A tide just after the first

More information

Useful Formulas and Values

Useful Formulas and Values Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes

More information

Unit 2: Celestial Mechanics

Unit 2: Celestial Mechanics Unit 2: Celestial Mechanics The position of the Earth Ptolemy (90 168 AD) Made tables that allowed a user to locate the position of a planet at any past, present, or future date. In order to maintain circular

More information

Solar System Glossary. The point in an object s elliptical orbit farthest from the body it is orbiting

Solar System Glossary. The point in an object s elliptical orbit farthest from the body it is orbiting Solar System Glossary Apogee Atmosphere Asteroid Axis Autumn Barred spiral The point in an object s elliptical orbit farthest from the body it is orbiting The air that surrounds Earth and other planets

More information

4.1 Describing Motion

4.1 Describing Motion Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

Spectroscopy, the Doppler Shift and Masses of Binary Stars

Spectroscopy, the Doppler Shift and Masses of Binary Stars Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its present location. Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html

More information

The following notes roughly correspond to Section 2.4 and Chapter 3 of the text by Bennett. This note focuses on the details of the transition for a

The following notes roughly correspond to Section 2.4 and Chapter 3 of the text by Bennett. This note focuses on the details of the transition for a The following notes roughly correspond to Section 2.4 and Chapter 3 of the text by Bennett. This note focuses on the details of the transition for a geocentric model for understanding the universe to a

More information

Test 4 Final Review. 5/2/2018 Lecture 25

Test 4 Final Review. 5/2/2018 Lecture 25 Test 4 Final Review 5/2/2018 Lecture 25 Apparent daily motion of celestial objects is due to earth s rotation Seasons are created due to the title of the Earth relative to the Sun Phases of the moon due

More information

Observing the Universe for Yourself

Observing the Universe for Yourself Observing the Universe for Yourself Figure 6-20 Solar-System Formation What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as well as the Milky Way. A constellation

More information

Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Earth Science, 13e Tarbuck & Lutgens Origins of Modern Astronomy Earth Science, 13e Chapter 21 Stanley C. Hatfield Southwestern Illinois College Early history of astronomy Ancient Greeks Used philosophical

More information

Astronomy 201 Review 1 Answers

Astronomy 201 Review 1 Answers Astronomy 201 Review 1 Answers What is temperature? What happens to the temperature of a box of gas if you compress it? What happens to the temperature of the gas if you open the box and let the gas expand?

More information

Astronomy Regents Review

Astronomy Regents Review Name Astronomy Regents Review Base your answers to questions 1 and 2 on the diagram below, which shows s orbit around the un as viewed from space. is shown at eight different positions labeled A through

More information

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly First Kepler s Law The secondary body moves in an elliptical orbit, with the primary body at the focus Valid for bound orbits with E < 0 The conservation of the total energy E yields a constant semi-major

More information

WORK & ENERGY. Work W = Fdcosα 1. A force of 25.0 Newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done?

WORK & ENERGY. Work W = Fdcosα 1. A force of 25.0 Newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done? PHYSICS HOMEWORK #41 Work W = Fdcosα 1. A force of 25.0 Newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done? 2. A force of 120 N is applied to the front of

More information

[05] Historical Perspectives (9/12/17)

[05] Historical Perspectives (9/12/17) 1 [05] Historical Perspectives (9/12/17) Upcoming Items 1. Homework #2 due now. 2. Read Ch. 4.1 4.2 and do self-study quizzes. 3. Homework #3 due in one week. Ptolemaic system http://static.newworldencyclopedia.org/thumb/3/3a/

More information

This Week. 5/27/2015 Physics 214 Summer

This Week. 5/27/2015 Physics 214 Summer This Week Circular motion Going round the bend Riding in a ferris wheel, the vomit comet Gravitation Our solar system, satellites (Direct TV) The orbit of the Earth,tides, Dark matter 5/27/2015 Physics

More information

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

More information

Astronomy I Exam I Sample Name: Read each question carefully, and choose the best answer.

Astronomy I Exam I Sample Name: Read each question carefully, and choose the best answer. Name: Read each question carefully, and choose the best answer. 1. During a night in Schuylkill Haven, most of the stars in the sky (A) are stationary through the night. (B) the actual motion depends upon

More information

Gravitation. Luis Anchordoqui

Gravitation. Luis Anchordoqui Gravitation Kepler's law and Newton's Synthesis The nighttime sky with its myriad stars and shinning planets has always fascinated people on Earth. Towards the end of the XVI century the astronomer Tycho

More information