# Astr 1050 Mon. Jan. 31, 2017

Size: px
Start display at page:

Transcription

1 Astr 1050 Mon. Jan. 31, 2017 Finish Ch. 2: Eclipses & Planetary Motion Seasons Angular Size formula Eclipses Planetary Motion Reading: For Today: Finish Chapter 2 For Monday: Start Chapter 3 Homework on Mastering Astronomy (Due Monday)

2 Start Chapter 3: Cycles in the Sky Motion of the Sun through the year Plot position of Sun relative to stars, over one full year. Complicated by fact you can t see Sun and stars at same time. Once you have full map of sky, you can work this out by seeing what stars are opposite sun 12 hours later. (From our Text: Horizons, by Seeds) Path of sun around the celestial sphere is called the ECLIPTIC Set of constellations through which it passes is called the ZODIAC

3 Plotting the Ecliptic on the Celestial Sphere The ecliptic is tilted relative to the celestial equator by 23.5 o (From our Text: Horizons, by Seeds) The sun is at the northernmost point on the ecliptic on June 22 a time and location called the SUMMER SOLSTICE The Sun is at the southernmost point on the ecliptic on Dec. 22 a time and location called the WINTER SOLSTICE The Sun just crossing the equator going N on March 21 a time and location called the VERNAL EQUINOX The Sun is just crossing the equator going S on Sept. 22 a time and location called the AUTUMNAL EQUINOX

4 Consider the Sun s daily motion thru the year Key point: Consider sun fixed at a given spot on ecliptic over the period of one day. (From our Text: Horizons, by Seeds) At the Vernal Equinox Sun is on the celestial equator. At the Autumnal Equinox the Sun is also on the celestial equator. It rises due E, sets due W It is up exactly 12 hours At the Summer solstice Sun is a northern star. It rises N of E, sets N of W It is up more than 12 hours At the Winter Solstice it is a southern star It rises S of E, sets S of W It is up less than 12 hours

5 How the Sun s location affects the seasons: The angle of the sun s rays: In the summer it passes closer to overhead and therefore shines more directly on the summer hemisphere The time the Sun is up In the summer it spends more than 12 hours above the horizon. The seasons are NOT due to the slightly elliptical shape of the Earth s orbit and the fact that it is slightly closer to the Sun during part of the year. Test of that hypothesis: If the distance were the cause, then when it was summer in the northern hemisphere, what season would it be in the southern hemisphere? SUN (From our Text: Horizons, by Seeds)

6 Special Locations on the Earth How close to the North Pole do we need to go before the Summer Solstice sun becomes a circumpolar star and is above the horizon all day? Within 23.5 o of the pole: THE ARCTIC CIRCLE How close to the equator do we need to get before the Summer Solstice sun passes directly rather than somewhat to the south: Within 23.5 o of the equator: The TROPICS (From our Text: Horizons, by Seeds)

7 Effect of Elliptical Orbit on Climate Seasons almost entirely due to TILT of Earth Seasons opposite (not the same) in N & S Hemispheres Earth s orbit slightly elliptical Slightly closer to the sun in N. Hemisphere Winter But this changes as tilt precesses in 26,000 yr cycle Expect N. Hemisphere winter to be slightly milder Positions of continents and oceans actually more important Effect is important for Mars -- more elliptical orbit Cyclic variations in climate as tilt precesses (and tilt and ellipticity also gets slightly larger and smaller VERY IMPORTANT TOPIC (Re: Global Warming)

8 Why are the planets found near the ecliptic? The ecliptic is defined by the plane of the Earth s orbit If the other planets are always found near the ecliptic, they must always be located near the plane of the Earth s orbit at most slightly above or below it. The planes of their orbits around the sun must almost match the Earth s Their slight motions above and below the ecliptic means the match isn t exact. (Their orbits are slightly tilted relative to ours.) From our text: Horizons, by Seeds

9 Superior vs. Inferior Planets Superior planets (Mars, Jupiter, Saturn, Uranus, Neptune, Pluto) have orbits larger than the earth and can appear opposite the sun in the sky. They can be up at midnight. Never show phases. Inferior planets (Mercury, Venus) have orbits smaller than earth and can never appear far from the Sun. They form morning stars or evening stars visible a little before sunrise or after sunset. Show phases. From our text: Horizons, by Seeds

10 Inferior Planets Inferior planets (Mercury, Venus) have orbits smaller than earth and can never appear far from the Sun. They form morning stars or evening stars visible a little before sunrise or after sunset. From our text: Horizons, by Seeds

11 Lunar/Solar Tides (exaggerated!) What are tides? More complex than what you see on Baywatch! Gravity from the moon and sun pull on Earth. Gravity weakens with distance, so the pull is strongest on the near side, weakest on the far side. The sun is more massive than the moon, but farther away, so its tidal effect is smaller. Actual flow of water around the world is very complex and not fully understood! From the text, Horizons by Seeds

12 More on tides 1. Tidal friction leads to energy loss. 2. Earth s rotation drags the tidal bulge forward, helping pull the moon (its orbit is increasing in radius). Tidal forces will appear later in the semester in other astrophysical contexts. Watch for them. 3. The energy comes from Earth s rotation, which is slowing. 4. The extraction of energy from the moon s rotation led to phase-locking.

13 From our text: Horizons, by Seeds Angular sizes Quite often we will need to find linear size of some object, given its distance and its angular size angular diameter arcsec = linear diameter distance Note the book leaves out the units of arcsec. Do not make that mistake yourself. An example different than the one in the book: How large is the sun? The angular diameter of the sun is about To convert that to arcseconds use: 0.5 deg 60 arcmin/deg 60 arcsec/arcmin = 1800 arcsec The sun is km away (= 1 astronomical unit). So linear diameter = distance angular diameter arcsec = km 1800 arcsec arcsec = km

14 The Angular Size of the Moon How big is the moon? Have you ever seen the moon near the horizon? Has it looked huge, much larger than when it is high in the sky? Last full moon was Aug. 29. Next one is Sept. 27. Have a look. After we do phases (next time) will know where and when to look!

15 Shadows and Eclipses Both the Earth and the Moon will cast shadows. If the Sun, Earth, and Moon are all lined up, then the shadow from one can fall on the other. Because the Earth is ~4 times bigger, it will cast a shadow 4 times bigger. From our text: Horizons, by Seeds Umbra Portion of shadow where it is completely dark. (for a person in the shadow, the light bulb would be completely blocked out) Penumbra Portion of shadow where it is only partially dark. (for a person in the shadow, the light bulb would be partially blocked out) (To remember the names, think of ultimate and penultimate )

16 Types of eclipses Lunar Eclipse Solar Eclipse We view the illuminated object and watch it go dark. Everyone on one side of the Earth can see the Moon so a given lunar eclipse is visible to many people. We view the illuminating object (the Sun) and see it blocked out. Only a few people are in the right place to be in the shadow. It is coincidence that the umbra just barely reaches earth. From our text: Horizons, by Seeds

17 Solar eclipses If you are outside the penumbra you see the whole sun. If you are in the penumbra you see only part of the sun. If you are in the umbra you cannot see any of the sun. The fact that the moon is just barely big enough to block out the sun results from a coincidence: The sun is 400 times bigger than the moon, but also almost exactly 400 times further away. The orbit of the moon is elliptical. At perigee it can block out the full sun At apogee it isn t quite big enough, giving an annular eclipse. From our text: Horizons, by Seeds

18 Eclipse Facts Longest possible total eclipse is only 7.5 minutes. Average is only 2-3 minutes. Shadow sweeps across 1000 mph! (Compare with scene in The Mummy Returns!) Birds will go to roost in a total eclipse. The temperature noticeably drops. Totally predictable (even in ancient times, e.g., the Saros Cycle, eclipse pattern repeats every days or 18 years, 11 1/3 days).

19 Eclipses and Nodes From our textbook, Horizons by Seeds.

20 Variations in Solar Eclipses Elliptical orbits mean angular size variation. Total Solar Eclipse Diamond-Ring Effect Annular Eclipse

21 Phases of the Moon and its orbit around the Earth (1). 1. Everything (almost) in the solar system rotates or orbits counterclockwise, as seen from the North. 2. The illumination of the Earth and the moon will be almost the same, since the sun is so far away that both receive light from (almost) the same direction. 3. It takes 4 weeks for the moon to complete an orbit of the earth. 4. The moon is phase-locked. In other words, we always see the same face, although the illumination pattern we see changes. How long is a lunar day? From our text: Horizons, by Seeds

22 Phases of the Moon and its orbit around the Earth (2). From our text: Horizons, by Seeds Suppose you are asked when the first quarter moon will rise, when it will be overhead, and when it will set. Which side will be illuminated? If it is first quarter, it has moved ¼ revolution around from the new moon position, so it is at the top of the diagram. For a person standing on the earth, the moon would rise at noon, be overhead at 6 pm, and would set at midnight. It has to be the side towards the sun which is illuminated. Imagine yourself lying on the ground at 6 pm, head north, right arm towards the west. That west (right) arm points towards the sun. That must be the side which is illuminated.

23 Reading for Next Time Finish Ch. 2: Eclipses & Planetary Motion Seasons Angular Size formula Eclipses Phases of the moon Reading: For Today: Finish Chapter 2 For Monday: Start Chapter 3 Homework on Mastering Astronomy (Due Monday)

### Chapter 3: Cycles of the Sky

Chapter 3: Cycles of the Sky Motions of the Planets Mercury Venus Earth All planets in almost circular (elliptical) orbits around the sun, in approx. the same plane, the ecliptic plane. The Moon is orbiting

### Observing the Universe for Yourself

Observing the Universe for Yourself Figure 6-20 Solar-System Formation What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as well as the Milky Way. A constellation

### The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses Chapters 2 and S1 The celestial sphere and the coordinates system Chapter S1 How to find our way in the sky? Let s

### Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

### Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

### A User s Guide to the Sky

A User s Guide to the Sky Constellations Betelgeuse Rigel Stars are named by a Greek letter ( ) according to their relative brightness within a given constellation plus the possessive form of the name

### Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Chapter 2 Discovering the Universe for Yourself 1 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations

### Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself

Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

### Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Chapter 1: Discovering the Night Sky Constellations: Recognizable patterns of the brighter stars that have been derived from ancient legends. Different cultures have associated the patterns with their

### Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

### Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

### Brock University. Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016

Brock University Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016 Number of hours: 50 min Time of Examination: 17:00 17:50 Instructor:

### STANDARD. S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position.

STANDARD S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position. S6E2 b. Explain the alignment of the earth, moon, and sun during solar and lunar eclipses. c. Relate the

### Eclipses September 12th, 2013

Eclipses September 12th, 2013 Who was the favorite Star Wars character of the class? A) Obi-Wan B) Jar Jar C) Luke Skywalker D) Yoda News! Dark matter http://mcdonaldobservatory.org/news/releases/2013/09/10

### Introduction to Astronomy

Introduction to Astronomy AST0111-3 (Astronomía) Semester 2014B Prof. Thomas H. Puzia Theme Our Sky 1. Celestial Sphere 2. Diurnal Movement 3. Annual Movement 4. Lunar Movement 5. The Seasons 6. Eclipses

### Seasons. What causes the seasons?

Questions: Seasons What causes the seasons? How do we mark the progression of the seasons? What is the seasonal motion of the sun in the sky? What could cause the seasonal motion of the sun to change over

### PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

### Astr 2310 Tues. Feb. 2, 2016

Astr 2310 Tues. Feb. 2, 2016 Today s Topics Celestial Sphere Continued Effects due to Earth s Orbital Motion Apparent path of Sun across the sky Seasons Apparent Motions of Planets Complications Ancient

### Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017

Lecture 2: Motions of the Earth and Moon Astronomy 111 Wednesday August 30, 2017 Reminders Online homework #1 due Monday at 3pm Labs start next week Motions of the Earth ASTR111 Lecture 2 Observation:

### Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

### Brock University. Test 1, October 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of Students: 470 Date of Examination: October 3, 2017

Brock University Test 1, October 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of Students: 470 Date of Examination: October 3, 2017 Number of hours: 50 min Time of Examination: 17:00 17:50

### Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014

Brock University Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

### TAKEN FROM HORIZONS 7TH EDITION CHAPTER 3 TUTORIAL QUIZ

TAKEN FROM HORIZONS 7TH EDITION CHAPTER 3 TUTORIAL QUIZ 1. When Neap tides are occurring, a. a person experiences the lowest tides close to sunset and sunrise. b. the Sun and the Moon are separated by

### BROCK UNIVERSITY. Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950

BROCK UNIVERSITY Page 1 of 9 Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950 Examination date: 3 October 2013 Time limit: 50 min Time of Examination: 20:00

### Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

### a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU

1 AST104 Sp04: WELCOME TO EXAM 1 Multiple Choice Questions: Mark the best answer choice. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1. A galaxy

### a. 0.1 AU b. 10 AU c light years d light years

1 AST104 Sp2006: EXAM 1 Multiple Choice Questions: Mark the best answer choice on the bubble form. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1.

### Discovering the Night Sky

Discovering the Night Sky Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

### Discovering the Night Sky

Guiding Questions Discovering the Night Sky 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

### Dr. Tariq Al-Abdullah

1 Chapter 1 Charting the Heavens The Foundations of Astronomy 2 Learning Goals: 1. Our Place in Space 2. The Obvious view 3. Earth s Orbital Motion 4. The Motion of the Moon 5. The Measurement of Distance

### Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Knowing the Heavens Chapter Two Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same

### Astronomy 291. Professor Bradley M. Peterson

Astronomy 291 Professor Bradley M. Peterson The Sky As a first step, we need to understand the appearance of the sky. Important points (to be explained): The relative positions of stars remain the same

### Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than

Lesson Outline Earth s Motion LESSON 1 A. Earth and the Sun 1. The diameter is more than 100 times greater than Earth s diameter. a. In the Sun, atoms combine during, producing huge amounts of energy.

### Name and Student ID Section Day/Time:

AY2 - Overview of the Universe - Midterm #1 - Instructor: Maria F. Duran Name and Student ID Section Day/Time: 1) Imagine we ve discovered a planet orbiting another star at 1 AU every 6 months. The planet

### Today in Space News: Earth s oldest rock found on the Moon.

Today in Space News: Earth s oldest rock found on the Moon https://www.lpi.usra.edu/features/012419/oldest-rock/ Study Points Predict the approximate time of day/night you should look for first quarter

### Motions of the Earth

Motions of the Earth Our goals for learning: What are the main motions of the Earth in space? How do we see these motions on the ground? How does it affect our lives? How does the orientation of Earth's

### The Sun-Earth-Moon System

Name The Sun-Earth-Moon System Section 28.3 The Sun-Earth-Moon System Date Main Idea Details Read the title of Section 3. List three things that might be discussed in this section. 1. 2. 3. Review Vocabulary

### Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium

Before you Sit Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Evening Observing Observing at the Brooks Observatory: Three different weeks

### ASTR 1P01 Test 1, May 2018 Page 1 BROCK UNIVERSITY. Test 1: Spring 2018 Number of pages: 10 Course: ASTR 1P01, Section 1 Number of students: 598

ASTR 1P01 Test 1, May 2018 Page 1 BROCK UNIVERSITY Test 1: Spring 2018 Number of pages: 10 Course: ASTR 1P01, Section 1 Number of students: 598 Examination date: 12 May 2018 Time limit: 50 min Time of

### lightyears observable universe astronomical unit po- laris perihelion Milky Way

1 Chapter 1 Astronomical distances are so large we typically measure distances in lightyears: the distance light can travel in one year, or 9.46 10 12 km or 9, 600, 000, 000, 000 km. Looking into the sky

### Astronomy 103: First Exam

Name: Astronomy 103: First Exam Stephen Lepp September 21, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer Mercury What is the closest Planet to the

### 2.1 Patterns in the Night Sky

2.1 Patterns in the Night Sky Our goals for learning: What are constellations? How do we locate objects in the sky? Why do stars rise and set? Why don t we see the same constellations throughout the year?

### Astronomy 115 Section 4 Week 2. Adam Fries SF State

Astronomy 115 Section 4 Week 2 Adam Fries SF State afries@sfsu.edu Important Notes: Homework #1 is Due at the beginning of class next time. Attendance Sheet is going around one last time! Homework Questions?

### Chapter 0 2/19/2014. Lecture Outline. 0.1 The Obvious View. Charting the Heavens. 0.1 The Obvious View. 0.1 The Obvious View. Units of Chapter 0

Lecture Outline Chapter 0 Charting the Heavens Earth is average we don t occupy any special place in the universe Universe: Totality of all space, time, matter, and energy Astronomy: Study of the universe

### Name: Earth and Space Assessment Study Guide. Assessment Date : Term Rotation Revolution

Name: Earth and Space Assessment Study Guide Assessment Date : Earth s Rotation and Revolution Term Rotation Revolution Brief Definition Earth s Time to Complete One complete spin on an axis 24 hours (or

### The Cause of the Seasons

The Cause of the Seasons Summer Winter Seasons are caused by the Earth s axis tilt, not the distance from the Earth to the Sun! Axis tilt changes directness of sunlight during the year. Why Does Flux Sunlight

### Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets

Astronomy is the oldest science! In ancient times the sky was not well understood! Eclipses Bad Omens? Comets 1 The Ancient Greeks The Scientific Method Our ideas must always be consistent with our observations!

### Chapter 1 Image Slides. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 1 Image Slides Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CH. 1: CYCLES OF THE SKY CO a 1.1 The Celestial Sphere CO b The nearest star to us is about

### Chapter 3 The Cycles of the Moon

Chapter 3 The Cycles of the Moon Goals: To understand the phases of the moon To understand how the moon affects tides To understand lunar and solar eclipses To learn some of the history associated with

### Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars.

Sun: rises in the east sets in the west travels on an arc across the sky 24 hours Daily Motions Solar Day = 24 hours Stars: stars travel on arcs in the sky moving from east to west. some stars rise and

### Position 3. None - it is always above the horizon. Agree with student 2; star B never crosses horizon plane, so it can t rise or set.

Position 3 None - it is always above the horizon. N E W S Agree with student 2; star B never crosses horizon plane, so it can t rise or set. Imaginary plane No; the Earth blocks the view. Star A at position

### Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Name: Date: 1. If there are about 6000 stars in the entire sky that can be seen by the unaided human eye, about how many stars would be seen at a particular instant on a given dark night from a single

### 1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.) Ecliptic

Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

### Astronomy Regents Review

Name Astronomy Regents Review Base your answers to questions 1 and 2 on the diagram below, which shows s orbit around the un as viewed from space. is shown at eight different positions labeled A through

### Discovering the Universe for Yourself (Chapter 2) Years, Seasons, and Months: The Motions of Sun, Earth, and Moon

Discovering the Universe for Yourself (Chapter 2) Years, Seasons, and Months: The Motions of Sun, Earth, and Moon Based on Chapter 2 This material will be useful for understanding Chapters 3 and 4 on The

### Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest).

Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest). Rotation The movement of one object as it turns or spins around a central point or axis. Revolution The movement

### Planets in the Sky ASTR 101 2/16/2018

Planets in the Sky ASTR 101 2/16/2018 1 Planets in the Sky 2018 paths of Jupiter among stars (2017/2018) Unlike stars which have fixed positions in the sky (celestial sphere), planets seem to move with

### Tools of Astronomy Tools of Astronomy

Tools of Astronomy Tools of Astronomy The light that comes to Earth from distant objects is the best tool that astronomers can use to learn about the universe. In most cases, there is no other way to study

### Solar System Glossary. The point in an object s elliptical orbit farthest from the body it is orbiting

Solar System Glossary Apogee Atmosphere Asteroid Axis Autumn Barred spiral The point in an object s elliptical orbit farthest from the body it is orbiting The air that surrounds Earth and other planets

### Summary Sheet #1 for Astronomy Main Lesson

Summary Sheet #1 for Astronomy Main Lesson From our perspective on earth The earth appears flat. We can see half the celestial sphere at any time. The earth s axis is always perpendicular to the equator.

### Motions in the Sky. Stars Planets Sun Moon. Photos - APOD. Motions in the Sky - I. Intro to Solar System

Motions in the Sky Stars Planets Sun Moon Photos - APOD 1 STARS: background for motion of other objects patterns - constellations zodiac: special set of constellations trace the apparent path of the Sun

### 3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.

Descriptive Astronomy (ASTR 108) Exam 1 B February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

### 1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.

Descriptive Astronomy (ASTR 108) Exam 1 A February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

### Homework 1 (from text) Latest Deep Impact Results: 2. Discovering the Universe for Yourself.

2. Discovering the Universe for Yourself We had the sky, up there, all speckled with stars, and we used to lay on our backs and look up at them, and discuss about whether they was made, or only just happened.

### SAMPLE First Midterm Exam

Astronomy 1000 Dr C. Barnbaum SAMPLE First Midterm Exam Note: This is a sample exam. It is NOT the exam you will take. I give out sample exams so that you will have an understanding of the depth of knowledge

### Astr 1050 Mon. Feb. 6, 2017

Astr 1050 Mon. Feb. 6, 2017 Finish Ch. 2: Discovering the Universe Eclipses Phases of the moon Start Ch. 3: Science (and History) of Astronomy Reading: For Friday: Chapter 3 Chapter #3 on MA Due Wednesday

### Welcome back. Scale. Week 2 Updates. PHYS 1302 Astronomy of the Solar System

Week 2 Updates Two in-class quizzes now completed Introductions List-serve Quick review of Chapter 1 Discuss Chapter 2 Chapter 3 next week (9/9). Welcome back Week 2 of PHYS 1302 Como se dice The h Syllabus:

### Introduction To Modern Astronomy I: Solar System

ASTR 111 003 Fall 2007 Lecture 02 Sep. 10, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap. 16: Our Sun Chap. 28: Search for

### Lunar Motion. V. Lunar Motion. A. The Lunar Calendar. B. Motion of Moon. C. Eclipses. A. The Lunar Calendar. 1) Phases of the Moon. 2) The Lunar Month

Lunar Motion Dr. Bill Pezzaglia V. Lunar Motion A. The Lunar Calendar B. Motion of Moon 2 Updated 2014Jan17 C. Eclipses A. The Lunar Calendar 3 1. Phases of Moon 4 1) Phases of the Moon 2) The Lunar Month

### The Earth, Moon, and Sky. Lecture 5 1/31/2017

The Earth, Moon, and Sky Lecture 5 1/31/2017 From Last Time: Stable Orbits The type of orbit depends on the initial speed of the object Stable orbits are either circular or elliptical. Too slow and gravity

### Lecture 2 Motions in the Sky September 10, 2018

1 Lecture 2 Motions in the Sky September 10, 2018 2 What is your year in school? A. New freshman B. Returning freshman C. Sophomore D. Junior E. Senior F. I ve been here, like, forever 3 What is your major?

### astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were

### Name: Exam 1, 9/30/05

Multiple Choice: Select the choice that best answers each question. Write your choice in the blank next to each number. (2 points each) 1. At the North Pole in mid-november, the sun rises at a. North of

### Practice Questions: Seasons #1

1. Seasonal changes on Earth are primarily caused by the A) parallelism of the Sun's axis as the Sun revolves around Earth B) changes in distance between Earth and the Sun C) elliptical shape of Earth's

### Full Moon. Phases of the Moon

Phases of the Moon The Moon takes 29.5 days to orbit Earth. This is a lunar month. The gravity of the Earth keeps the Moon in orbit. The Moon does not produce light. We see the Moon because it reflects

### Introduction To Modern Astronomy II

ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy II Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

### Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY

Motion of the Sun motion relative to the horizon rises in the east, sets in the west on a daily basis Basis for the unit of time, the DAY noon: highest point of Sun in sky relative to the horizon 1 altitude:

### 3. a. In the figure below, indicate the direction of the Sun with an arrow.

Astronomy 100, Fall 2005 Name(s): Exercise 2: Seasons in the sun The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement

### SPI Use data to draw conclusions about the major components of the universe.

SPI 0607.6.1 - Use data to draw conclusions about the major components of the universe. o Stars are huge, hot, brilliant balls of gas trillions of kilometers away. A Galaxy is a collection of billions

### Day, Night, Year, and Seasons

Welcome Astronomers to the Sun, Moon, and Earth! The relationship between the Sun, Moon, and Earth is very important to the existence of life on Earth. Our quest is to find out how their relationships

### Time, Seasons, and Tides

Time, Seasons, and Tides Celestial Sphere Imagine the sky as a great, hollow, sphere surrounding the Earth. The stars are attached to this sphere--- some bigger and brighter than others--- which rotates

### CHAPTER 2 A USER'S GUIDE TO THE SKY

CHAPTER 2 A USER'S GUIDE TO THE SKY MULTIPLE CHOICE 1. In one way of naming stars, a letter indicates its brightness relative to the other stars in the constellation. a. English b. Arabic c. Greek d. Cyrillic

### Using Angles. Looking at the Night Sky. Rising and Setting Stars. Nightly Motion of the Stars. Nightly Motion of the Stars

Looking at the Night Sky How to find your way around: Position -> where is that object? Distance -> how much space between these two things? Motion -> where will that object be later tonight? Bright/faint

Academic Year 2017-2018 Second Term Science Revision Sheet Grade 6 Name: Grade Date: Section: Part A. Science Practice. Circle the letter of your answer. 1. When the moon is waxing, its lighted part appears

### 2. Knowing the Heavens

2. Knowing the Heavens Ancient naked-eye astronomy Eighty-eight constellations The sky s ever-changing appearance The celestial sphere Celestial coordinates Seasons: Earth s axial tilt Precession of Earth

### Chapter 3 Cycles of the Moon

Chapter 3 Cycles of the Moon Guidepost In the previous chapter, you studied the cycle of day and night and the cycle of the seasons. Now you are ready to study the brightest object in the night sky. The

### Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up. Jason Reed/Photodisc/Getty Images

Chapter Introduction Lesson 1 Earth s Motion Lesson 2 Earth s Moon Lesson 3 Eclipses and Tides Chapter Wrap-Up Jason Reed/Photodisc/Getty Images What natural phenomena do the motions of Earth and the Moon

### A. the spinning of Earth on its axis B. the path of the Sun around Earth

stronomy 1 Packet Write answers on your own paper 1. The Sun appears to move across the sky each day. What causes this?. the spinning of Earth on its axis. the path of the Sun around Earth. the production

### The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not

Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building This Class (Lecture 3): Lunar Phases Check Planetarium Schedule Next Class: HW1 Due Friday! Early Cosmology Music: We only Come out at Night

### b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation.

Astronomy 100 Name(s): Exercise 2: Timekeeping and astronomy The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement

### Earth is rotating on its own axis

Earth is rotating on its own axis 1 rotation every day (24 hours) Earth is rotating counterclockwise if you are looking at its North pole from other space. Earth is rotating clockwise if you are looking

### Dive into Saturn.

Dive into Saturn http://www.pbs.org/wgbh/nova/space/death-dive-to-saturn.html Read Ch. 3 By next class time Do practice online quiz 01 Axis tilt changes directness of sunlight during the year. Why Does

### Earth rotates on a tilted axis and orbits the Sun.

Page of 7 KY CONCPT arth rotates on a tilted axis and orbits the Sun. BFOR, you learned Stars seem to rise, cross the sky, and set because arth turns The Sun is very large and far from arth arth orbits

### The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010

The Celestial Sphere Chapter 1 Cycles of the Sky Vast distances to stars prevent us from sensing their true 3-D arrangement Naked eye observations treat all stars at the same distance, on a giant celestial

### Chapter 17 Solar System

Chapter 17 Solar System Rotation Earth spinning on its axis (like a top) "TOP" imaginary rod running through the center of the Earth from North pole to South pole The Earth is tilted on its axis at an

### Final key scientist in this story: Galileo Galilei

Announcements Astronomy 101: 9/30/2008 Exam study materials are posted on the course web page, and a practice exam is available in OWL. Homework 2 is now available on the OWL Due 10/01/08 before midnight

### Discovering the Universe for Yourself

Constellations: region in the sky with well defined borders; the familiar patterns of stars merely help us locate these constellations. 88 names were chosen by the International Astronomical Union. Every

### UNIT 3: EARTH S MOTIONS

UNIT 3: EARTH S MOTIONS After Unit 3 you should be able to: o Differentiate between rotation and revolution of the Earth o Apply the rates of rotation and revolution to basic problems o Recall the evidence