LAB: Star Classification

Size: px
Start display at page:

Download "LAB: Star Classification"

Transcription

1 Name: LAB: Star Classification INTRODUCTION: Like most scientists, astronomers like to categorize the Universe around them, and stars are no exception. Here s how astronomers classify stars into different groups; let s learn a bit about star classification. Stars are classified based on the spectral characteristic of the light it s giving off. As you probably know, the light we see with our eyes is actually a mixture of colors. You can break them up into their different parts just like you can use a prism to break sunlight into all the colors of a rainbow. The rainbow that we see is actually the spectrum produced by the Sun, and it s different for different stars depending on their temperature. A cooler star will have a spectrum that has more red in it, while a hotter star will be shifted up towards the blue end of the spectrum. Astronomers classify stars by color using a series of letters: O, B, A, F, G, K and M. You can remember the sequence with the handy mnemonic, oh be a fine girl and kiss me. Under this classification, O stars are the hottest, and M stars are the coolest, with the other letters coming in between. O stars are blue, A stars are white, G stars are yellow, and M stars are red. From Star Classification by Fraser Cain on February 4, OBJECTIVE: To identify the main characteristics used to classify stars, and the four main types of stars. You will also become familiar with the use of the Hertzsprung- Russell diagram used for the classification of stars. PROCEDURE: 1. Using the data from Table 1 and the blank Hertzsprung-Russell diagram provided, plot the position of each star using its approximate temperature and luminosity. Label each star s name next to its data point on the chart. 2. Using the information provided in Table 2, and colored pencils, shade in each temperature region of your Hertzsprung-Russell diagram with the correct star color. 3. In bold letters, label the following regions of your Hertzsprung-Russell diagram: Main Sequence, Giants, Supergiants, White Dwarfs. 4. Using the information provided in Table 3, label the spectral class in the appropriate place on your Hertsprung-Russell diagram with the correct letter based on the corresponding color.

2 Table 1 - Star Temperature and Luminosity Star Temperature (ºC) Luminosity (compared to the Sun) Rigel 14,000 50,000 Betelguese 3,500 12,000 Polaris 6,500 1,000 Aldebaran 4, Barnard s Star 3, Alpha Centauri A 6,000 3 Sun 6,000 1 Procyon B 6, Sirius B 8, Sirius A 10, Vega 9, Tau Ceti 5, Alpha Centauri B 4, Regulus 12, Achernar 16,700 1,000 Spica 19, Beta Centauri 21,000 1,200 Table 2 - Star Temperature and Color Star Temperature (ºC) Star Color 2,000-3,500 Red 3,500-5,000 Orange 5,000-6,000 Yellow 6,000-7,500 White 7,500-11,000 Pale Blue-White 11,000-18,000 Blue-White 18,000-30,000 Blue Table 3 - Spectral Class and Temperature Spectral Class Temperature (ºC) O over 24,000 B 11,000-24,000 A 7,500-11,000 F 6,000-7,500 G 5,000-6,000 K 3,500-5,000 M 2,000-3,500

3

4 Discussion Questions: Answer using data from the lab and in complete thoughts. 1. As a star changes color from red to blue, describe what happens to its surface temperature? 2. What two properties are used to classify stars using the Hurtzsprung-Russell diagram? 3. A main sequence star that is 10,000 times more luminous than the Sun most likely has a temperature of: 4. A main sequence star that has a luminosity of 100 is most likely to be what color? 5. A white dwarf star with a temperature of of approximately 10,000 ºC would have a luminosity of: 6. A massive star with a temperature of 20,00ºC and a luminosity of nearly 1,000,000 would be classified as what type of star? 7. What is the temperature, luminosity, and spectral class of the Sun? 8. What physical property must a star have that is low in temperature but very high in luminosity? 9. What physical property must a star have that is high in temperature but very low in luminosity?

5 Reading Comprehension Read the portion of the article on White Dwarfs below and answer the following questions based on the reading. Use complete sentences Hottest White Dwarf In Its Class ScienceDaily (Dec. 12, 2008) Astronomy & Astrophysics is publishing observations of the white dwarf KPD The team who present these observations show that this white dwarf is among the hottest stars known so far, with a temperature of 200,000º K at its surface. Stars of intermediate mass (1-8 solar masses) terminate their life as an Earth-sized white dwarf after the exhaustion of their nuclear fuel. During the transition from a nuclear-burning star to the white dwarf stage, the star becomes very hot. Many such objects with surface temperatures around Kelvin are known. Theories of stellar evolution predict that the stars can be much hotter. However, the probability of catching them in such an extremely hot state is low, because this phase is rather short-lived. Since its discovery as a faint blue star in 1985, KPD attracted much attention because observations taken with ground-based telescopes suggested that this white dwarf is very hot. In addition, it belongs to a particular class of rare white dwarfs whose atmospheres are dominated by helium. A detailed analysis had led to the conclusion that KPD has a temperature of Kelvin, which made Although theory predicted the existence of such hot white dwarfs, the star nevertheless represents a challenge to our concepts of stellar evolution because of its composition. The measured calcium abundance (1-10 times the solar value) in combination with the helium-rich nature of its atmosphere represents a chemical surface composition that is not predicted by stellar evolution models. 1. How does an intermediate mass star become a white dwarf? 2. What makes this star (KPD ) rare (2 answers)? 3. Using the H-R Diagram, what would be a likely luminosity for this star?

Each star is born with a specific mass. This mass is the main factor in determining the star s brightness, temperature, expected lifetime, type of

Each star is born with a specific mass. This mass is the main factor in determining the star s brightness, temperature, expected lifetime, type of Each star is born with a specific mass. This mass is the main factor in determining the star s brightness, temperature, expected lifetime, type of death, and spectra. Stars are classified according to

More information

Daily Science 04/04/2017

Daily Science 04/04/2017 Daily Science 04/04/2017 Which statement best describes the difference between type A stars and type B stars as shown in the diagram? a. Type A stars burn for a shorter amount of time than type B stars.

More information

Spectral Classification of Stars

Spectral Classification of Stars Department of Physics and Geology Spectral Classification of Stars Astronomy 1402 Part 1: Background Spectral Classification of Stars 1.1 Spectral Types: O, B, A, F, G, K, M On a dark, clear night far

More information

EVOLUTION OF STARS HERTZSPRUNG-RUSSELL DIAGRAM

EVOLUTION OF STARS HERTZSPRUNG-RUSSELL DIAGRAM VISUAL PHYSICS ONLINE EVOLUTION OF STARS HERTZSPRUNG-RUSSELL DIAGRAM The total power radiated by a star is called its intrinsic luminosity L (luminosity). The apparent brightness (apparent luminosity)

More information

Properties of Stars & H-R Diagram

Properties of Stars & H-R Diagram Properties of Stars & H-R Diagram What is a star? A cloud of gas, mainly hydrogen and helium The core is so hot/dense that nuclear fusion can occur. The fusion converts light nuclei (elements) into heavier

More information

Chapter 15: Surveying the Stars

Chapter 15: Surveying the Stars Chapter 15 Lecture Chapter 15: Surveying the Stars Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How

More information

The Hertzprung-Russell (HR) Diagram

The Hertzprung-Russell (HR) Diagram Name: Partner(s): 1102 or 3311: Desk # Date: The Hertzprung-Russell (HR) Diagram Purpose Reproduce Hertzsprung s and Russell s simultaneous discovery Investigate the relationships between luminosity, mass,

More information

The Cosmic Perspective. Surveying the Properties of Stars. Surveying the Stars. How do we measure stellar luminosities?

The Cosmic Perspective. Surveying the Properties of Stars. Surveying the Stars. How do we measure stellar luminosities? Surveying the Stars Chapter 15 Lecture The Cosmic Perspective 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we

More information

Chapter 15 Surveying the Stars Pearson Education, Inc.

Chapter 15 Surveying the Stars Pearson Education, Inc. Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? 1. How

More information

Y Centauri A 6. Alpha O Centauri B 7. Alpha

Y Centauri A 6. Alpha O Centauri B 7. Alpha H-R Star Spectrum Lab The H-R diagram, as it s known for short, plots a star s luminosity its true brightness against its surface temperature in Kelvin. Are there patterns that emerge and what does this

More information

Question: How do we use a Hertzsprung-Russell Diagram to explain star characteristics?

Question: How do we use a Hertzsprung-Russell Diagram to explain star characteristics? The Hertzsprung-Russell Diagram Assignment Introduction: The development of the H-R Diagram began with Danish astronomer Ejnar Hertzsprung who began plotting the stars around 1911. American astronomer

More information

Exploratorium Teacher Institute page 1 Linda S. Shore

Exploratorium Teacher Institute page 1 Linda S. Shore Exploratorium Teacher Institute page 1 Growing Up A Star This activity helps students understand and interpret the Hertzsprung Russell (HR) diagram a graphical representation of how stars evolve that is

More information

Chapter 15 Surveying the Stars Properties of Stars

Chapter 15 Surveying the Stars Properties of Stars Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? Luminosity:

More information

Chapter 15 Surveying the Stars

Chapter 15 Surveying the Stars Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? How do we

More information

Classifying the stars: from dwarfs to supergiants

Classifying the stars: from dwarfs to supergiants Classifying the stars: from dwarfs to supergiants By SAO Encyclopedia of Astronomy, Big History Project, adapted by Newsela staff on 08.22.17 Word Count 697 Level 1170L Artist s depiction of the life cycle

More information

H-R Diagram Lab. Vocabulary:

H-R Diagram Lab. Vocabulary: H-R Diagram Lab Vocabulary: luminosity: brightness dependent on a star s size; temperature and distance spectral class: classification of stars by their spectrum and luminosity magnitude: measure of the

More information

Astron 104 Laboratory #8 The H-R Diagram

Astron 104 Laboratory #8 The H-R Diagram Name: Date: Section: Astron 104 Laboratory #8 The H-R Diagram Section 10.1, 10.5 Introduction The Hertzsprung-Russell diagram, or H-R diagram for short, relates two fundamental properties of stars and

More information

StarTalk. Sanjay Yengul May "To know ourselves, we must know the stars."

StarTalk. Sanjay Yengul May To know ourselves, we must know the stars. StarTalk Sanjay Yengul May 2016 "To know ourselves, we must know the stars." Twinkle Twinkle How many stars are there? How big are these stars? Picture of night sky What are they made of? Why do they shine?

More information

Book page cgrahamphysics.com Stellar Spectra

Book page cgrahamphysics.com Stellar Spectra Book page 650-652 Stellar Spectra Emission and absorption Spectra The black lines of the absorption spectrum match up with the bright lines of the emission spectrum Spectra unique to each element Emission

More information

HOMEWORK - Chapter 17 The Stars

HOMEWORK - Chapter 17 The Stars Astronomy 20 HOMEWORK - Chapter 7 The Stars Use a calculator whenever necessary. For full credit, always show your work and explain how you got your answer in full, complete sentences on a separate sheet

More information

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran GALAXIES AND STARS 1. Compared with our Sun, the star Betelgeuse is A smaller, hotter, and less luminous B smaller, cooler, and more luminous C larger, hotter, and less luminous D larger, cooler, and more

More information

Mass-Luminosity and Stellar Lifetimes WS

Mass-Luminosity and Stellar Lifetimes WS Name Mass-Luminosity and Stellar Lifetimes WS The graph shows the Mass-Luminosity Relationship for main sequence stars. Use it to answer questions 1-3. 1) A star with a mass of 0.5 solar masses would be

More information

The Hertzsprung - Russell Diagram Laboratory 11

The Hertzsprung - Russell Diagram Laboratory 11 The Hertzsprung - Russell Diagram Laboratory 11 Objective: In this laboratory a random sample of stars will be used to create a HR Diagram. From the diagram it will be determined which category certain

More information

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Family of Stars Lines of Hydrogen Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Balmer Thermometer Balmer line strength is sensitive to temperature: Most hydrogen

More information

Parallax: Measuring the distance to Stars

Parallax: Measuring the distance to Stars Measuring the Stars Parallax: Measuring the distance to Stars Use Earth s orbit as baseline Parallactic angle = 1/2 angular shift Distance from the Sun required for a star to have a parallactic angle of

More information

The Hertzsprung-Russell Diagram

The Hertzsprung-Russell Diagram The Hertzsprung-Russell Diagram Our Objectives To determine the physical properties of the stars; to learn how they differ; and to understand why those differences arise We can now get around the problem

More information

ASTR 1120 February 6

ASTR 1120 February 6 ASTR 1120 February 6. First Exam: Thursday, February 20 Recitations will be held Duane G131, Mondays 5-5:50 Website http://casa.colorado.edu/~wcash/aps1120/aps1120.html Third Homework Posted to Web Due

More information

18. Which graph best represents the relationship between the number of sunspots and the amount of magnetic activity in the Sun?

18. Which graph best represents the relationship between the number of sunspots and the amount of magnetic activity in the Sun? 1. Which star has a surface temperature most similar to the surface temperature of Alpha Centauri? A) Polaris B) Betelgeuse C) Procyon B D) Sirius 2. Giant stars have greater luminosity than our sun mainly

More information

Astronomy-part 3 notes Properties of Stars

Astronomy-part 3 notes Properties of Stars Astronomy-part 3 notes Properties of Stars What are Stars? Hot balls of that shine because nuclear fusion (hydrogen to helium) is happening at their cores. They create their own. Have different which allow

More information

THE STARS. Information and contacts: -

THE STARS. Information and contacts:  - THE STARS G. Iafrate (a), M. Ramella (a) and V. Bologna (b) (a) INAF - Astronomical Observatory of Trieste (b) Istituto Comprensivo S. Giovanni Sc. Sec. di primo grado M. Codermatz" - Trieste Information

More information

Characterizing Stars

Characterizing Stars Characterizing Stars 1 Guiding Questions 1. How far away are the stars? 2. What evidence do astronomers have that the Sun is a typical star? 3. What is meant by a first-magnitude or second magnitude star?

More information

Characterizing Stars. Guiding Questions. Parallax. Careful measurements of the parallaxes of stars reveal their distances

Characterizing Stars. Guiding Questions. Parallax. Careful measurements of the parallaxes of stars reveal their distances Guiding Questions Characterizing Stars 1. How far away are the stars? 2. What evidence do astronomers have that the Sun is a typical star? 3. What is meant by a first-magnitude or second magnitude star?

More information

Stars III The Hertzsprung-Russell Diagram

Stars III The Hertzsprung-Russell Diagram Stars III The Hertzsprung-Russell Diagram Attendance Quiz Are you here today? (a) yes Here! (b) no (c) here is such a 90 s concept Today s Topics (first half) Spectral sequence and spectral types Spectral

More information

OTHER MOTIONS. Just so far away they appear to move very slowly

OTHER MOTIONS. Just so far away they appear to move very slowly OTHER MOTIONS The position of a nearby star changing over a year gives us parallax Stars can also move on their own Real motion, not just our point of view They are just balls of gas and are moving around

More information

My God, it s full of stars! AST 248

My God, it s full of stars! AST 248 My God, it s full of stars! AST 248 N * The number of stars in the Galaxy N = N * f s f p n h f l f i f c L/T The Galaxy M31, the Andromeda Galaxy 2 million light years from Earth The Shape of the Galaxy

More information

Pr P ope p rti t es s of o f St S a t rs

Pr P ope p rti t es s of o f St S a t rs Properties of Stars Distances Parallax ( Triangulation ): - observe object from two separate points - use orbit of the Earth (1 AU) - measure angular shift of object - angle depends on distance to object

More information

Review Chapter 10. 2) A parsec is slightly more than 200,000 AU. 2)

Review Chapter 10. 2) A parsec is slightly more than 200,000 AU. 2) Review Chapter 10 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) A parsec is about 3.3 light-years. 1) 2) A parsec is slightly more than 200,000 AU. 2) 3) The nearest

More information

Modern Astronomy Review #1

Modern Astronomy Review #1 Modern Astronomy Review #1 1. The red-shift of light from distant galaxies provides evidence that the universe is (1) shrinking, only (3) shrinking and expanding in a cyclic pattern (2) expanding, only

More information

Lab 8: Stellar Classification and the H-R Diagram

Lab 8: Stellar Classification and the H-R Diagram Name: Section: Date: Lab 8: Stellar Classification and the H-R Diagram 1 Introduction Stellar Classification As early as the beginning of the 19th century, scientists have studied absorption spectra in

More information

Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.

Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process. Galaxies and Stars 1. To an observer on Earth, the Sun appears brighter than the star Rigel because the Sun is A) hotter than Rigel B) more luminous than Rigel C) closer than Rigel D) larger than Rigel

More information

Instructions. Students will underline the portions of the PowerPoint that are underlined.

Instructions. Students will underline the portions of the PowerPoint that are underlined. STARS Instructions Students will underline the portions of the PowerPoint that are underlined. Nuclear Furnace 1. A star is like a gigantic nuclear furnace. 2. The nuclear reactions inside convert hydrogen

More information

a. Star A c. The two stars are the same distance b. Star B d. Not enough information

a. Star A c. The two stars are the same distance b. Star B d. Not enough information Name: Astro 102 S17 Test 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Your test is Version A. Please fill in the circle for A for this question on

More information

Astron 104 Laboratory #9 The H-R Diagram

Astron 104 Laboratory #9 The H-R Diagram Name: Date: Section: Astron 104 Laboratory #9 The H-R Diagram Section 10.1, 10.5 If we know the temperature of a star (or its Spectral Type) and the stars intrinsic brightness (or luminosity), a great

More information

How can we use an H-R diagram to know where a star is in its life cycle?

How can we use an H-R diagram to know where a star is in its life cycle? How can we use an H-R diagram to know where a star is in its life cycle? Just like humans, stars go through a life cycle. Over the course of their lives, stars change in ways that make each stage different

More information

Calculating Main Sequence Lifetimes

Calculating Main Sequence Lifetimes Calculating Main Sequence ifetimes At the beginning of the twentieth century two astronomers, the Danish E. Hertzsprung and the American H. N. Russell, established a correlation between two important stellar

More information

Magnitudes. How Powerful Are the Stars? Luminosities of Different Stars

Magnitudes. How Powerful Are the Stars? Luminosities of Different Stars How Powerful Are the Stars? Some stars are more powerful than others Power is energy output per. (Example: 00 Watts = 00 joules per second) Astronomers measure the power, or brightness of stars in ways:

More information

Student Exploration: H-R Diagram

Student Exploration: H-R Diagram Name: Date: Student Exploration: H-R Diagram Vocabulary: giant, H-R diagram, luminosity, main sequence, star, supergiant, white dwarf Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. The

More information

Chapter 8: The Family of Stars

Chapter 8: The Family of Stars Chapter 8: The Family of Stars We already know how to determine a star s surface temperature chemical composition motion Next, we will learn how we can determine its distance luminosity radius mass Measuring

More information

Review Questions for the new topics that will be on the Final Exam

Review Questions for the new topics that will be on the Final Exam Review Questions for the new topics that will be on the Final Exam Be sure to review the lecture-tutorials and the material we covered on the first three exams. How does speed differ from velocity? Give

More information

Chapter 9: Measuring the Stars

Chapter 9: Measuring the Stars Chapter 9: Measuring the Stars About 10 11 (100,000,000,000) stars in a galaxy; also about 10 11 galaxies in the universe Stars have various major characteristics, the majority of which fall into several

More information

Hertzsprung-Russel Diagrams and Distance to Stars

Hertzsprung-Russel Diagrams and Distance to Stars Chapter 10 Hertzsprung-Russel Diagrams and Distance to Stars 10.1 Purpose In this lab, we will explore how astronomer classify stars. This classificatin one way that can be used to determine the distance

More information

Ohio University - Lancaster Campus slide 1 of 47 Spring 2009 PSC 100. A star s color, temperature, size, brightness and distance are all related!

Ohio University - Lancaster Campus slide 1 of 47 Spring 2009 PSC 100. A star s color, temperature, size, brightness and distance are all related! Ohio University - Lancaster Campus slide 1 of 47 A star s color, temperature, size, brightness and distance are all related! Ohio University - Lancaster Campus slide 2 of 47 The Beginnings Late 1800 s,

More information

Types of Stars and the HR diagram

Types of Stars and the HR diagram Types of Stars and the HR diagram Full window version (looks a little nicer). Click button to get back to small framed version with content indexes. This material (and images) is copyrighted! See

More information

HR Diagram Student Guide

HR Diagram Student Guide Name: HR Diagram Student Guide Pretest Score: Background Information Work through the background sections on Spectral Classification, Luminosity, and the Hertzsprung-Russell Diagram. Then complete the

More information

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc.

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc. Chapter 15 Lecture The Cosmic Perspective Seventh Edition Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures?

More information

ASTR-1020: Astronomy II Course Lecture Notes Section III

ASTR-1020: Astronomy II Course Lecture Notes Section III ASTR-1020: Astronomy II Course Lecture Notes Section III Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

Vocabulary. Section Resources

Vocabulary. Section Resources Section 26.2 26.2 Stars 1 FOCUS Objectives 26.2.1 Demonstrate how distance to a star is measured. 26.2.2 Classify stars according to chemical and physical properties. 26.2.3 Interpret the H-R diagram.

More information

Directions: For numbers 1-30 please choose the letter that best fits the description.

Directions: For numbers 1-30 please choose the letter that best fits the description. Directions: For numbers 1-30 please choose the letter that best fits the description. 1. The main force responsible for the formation of the universe is: a. Gravity b. Frictional force c. Magnetic force

More information

Stellar Spectra ASTR 2110 Sarazin. Solar Spectrum

Stellar Spectra ASTR 2110 Sarazin. Solar Spectrum Stellar Spectra ASTR 2110 Sarazin Solar Spectrum Test #1 Monday, October 9, 11-11:50 am Ruffner G006 (classroom) You may not consult the text, your notes, or any other materials or any person Bring pencils,

More information

Galaxies Galore. Types of Galaxies: Star Clusters. Spiral spinning wit arms Elliptical roundish Irregular no set pattern

Galaxies Galore. Types of Galaxies: Star Clusters. Spiral spinning wit arms Elliptical roundish Irregular no set pattern Stars Studying Stars Astronomers use a spectroscope to study the movement of stars Blue shift towards earth Red shift away from earth Change in a wavelength moving toward or away from earth is the Doppler

More information

The Hertzsprung-Russell Diagram

The Hertzsprung-Russell Diagram The Hertzsprung-Russell Diagram Name: Date: 1 Introduction As you may have learned in class, the Hertzsprung-Russell Diagram, or the HR diagram, is one of the most important tools used by astronomers:

More information

Chapter 10 Measuring the Stars

Chapter 10 Measuring the Stars Chapter 10 Measuring the Stars Some of the topics included in this chapter Stellar parallax Distance to the stars Stellar motion Luminosity and apparent brightness of stars The magnitude scale Stellar

More information

Assignments for Monday Oct. 22. Read Ch Do Online Exercise 10 ("H-R Diagram" tutorial)

Assignments for Monday Oct. 22. Read Ch Do Online Exercise 10 (H-R Diagram tutorial) Assignments for Monday Oct. 22 Read Ch. 13 + Do Online Exercise 10 ("H-R Diagram" tutorial) Luminosity passing through each sphere is the same. Area of sphere: 4π(radius) 2 Divide luminosity by area to

More information

A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet

A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet Student Name: Lab TA Name: A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet One of the most basic physical properties of a star is its luminosity, the rate at which it radiates energy

More information

Astronomy Part 1 Regents Questions

Astronomy Part 1 Regents Questions Regents Questions 1. The Sun revolves around the center of A) Polaris B) Aldebaran C) Earth D) the Milky Way Galaxy 4. In which sequence are the items listed from least total mass to greatest total mass?

More information

The H-R Diagram. Image credit: NOAO

The H-R Diagram. Image credit: NOAO The H-R Diagram Image credit: NOAO Luminosity, Temperature, Radius Recall: apparent magnitude, absolute magnitude, and distance are related. We now have a method for finding the luminosity and a method

More information

Sun. Sirius. Tuesday, February 21, 2012

Sun. Sirius. Tuesday, February 21, 2012 Spectral Classification of Stars Sun Sirius Stellar Classification Spectral Lines H Fe Na H Ca H Spectral Classification of Stars Timeline: 1890s Edward C. Pickering (1846-1919) and Williamina P. Fleming

More information

Stars: some basic characteristics

Stars: some basic characteristics Stars: some basic characteristics Stars! How bright are they? How massive are they? What are the different types? How long do they live? How hot are they? Stellar brightness and luminosity The apparent

More information

Temperature, Blackbodies & Basic Spectral Characteristics.

Temperature, Blackbodies & Basic Spectral Characteristics. Temperature, Blackbodies & Basic Spectral Characteristics. Things that have one primary temperature but also exhibit a range of temperatures are known in physics as blackbodies. They radiate energy thermally.

More information

Chapter 8: The Family of Stars

Chapter 8: The Family of Stars Chapter 8: The Family of Stars Motivation We already know how to determine a star s surface temperature chemical composition surface density In this chapter, we will learn how we can determine its distance

More information

Oheliocentric system.

Oheliocentric system. Name: Date: Science Period Astronomy Unit PracticeTest 2014 Sci 7 Directions: Write the letter of the BEST answer on the appropriate space on the answer sheet. 2 points each 1.The model in which SUN is

More information

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes The spectral lines of stars tell us their approximate composition Remember last year in Physics?

More information

They developed a graph, called the H-R diagram, that relates the temperature of a star to its absolute magnitude.

They developed a graph, called the H-R diagram, that relates the temperature of a star to its absolute magnitude. Ejnar Hertzsprung and Henry Russell noticed that stars with higher temperatures and large sizes also have brighter absolute magnitudes the actual amount of light given off by a star. (also referred to

More information

Imagine the Universe: Life Cycle of Stars

Imagine the Universe: Life Cycle of Stars Objective: To explore the similarities of stars through a Hertzsprung-Russell diagram. Grade Level: 9-12 Subject(s): Space Science Prep Time: < 10 minutes Duration: 30 minutes Materials Category: None

More information

Lecture 26 The Hertzsprung- Russell Diagram January 13b, 2014

Lecture 26 The Hertzsprung- Russell Diagram January 13b, 2014 1 Lecture 26 The Hertzsprung- Russell Diagram January 13b, 2014 2 Hertzsprung-Russell Diagram Hertzsprung and Russell found a correlation between luminosity and spectral type (temperature) 10000 Hot, bright

More information

Position 1 Position 2 6 after position 1 Distance between positions 1 and 2 is the Bigger = bigger parallax (Ɵ)

Position 1 Position 2 6 after position 1 Distance between positions 1 and 2 is the Bigger = bigger parallax (Ɵ) STARS CHAPTER 10.1 the solar neighborhood The distances to the nearest stars can be measured using Parallax => the shift of an object relative to some distant background as the observer s point of view

More information

Class Notes: Astronomy

Class Notes: Astronomy Name: Date: Period: Astronomy The Physical Setting: Earth Science Class Notes: Astronomy I. Apparent Motion Geocentric Universe -! Starts all rotate around the Earth on a single sphere at º/hour Planets

More information

λ = 650 nm = c = m s 1 f =? c = fλ f = c λ = ( m s 1 ) ( m) = = Hz T = 1 f 4.

λ = 650 nm = c = m s 1 f =? c = fλ f = c λ = ( m s 1 ) ( m) = = Hz T = 1 f 4. Chapter 13 Stars Section 13.1 Astronomical measurements Worked example: Try yourself 13.1.1 CALCULATING THE FREQUENCY AND PERIOD OF LIGHT The speed of light in a vacuum is approximately 3.0 10 8 m s 1.

More information

Hertzsprung-Russell Diagram 7 Oct

Hertzsprung-Russell Diagram 7 Oct Hertzsprung-Russell Diagram 7 Oct Outline Thermal radiation Wien s Law Stefan Boltzmann Law Hertzsprung Russell diagram There are 3 types of stars: main sequence or dwarfs, giants, white dwarfs Missouri

More information

Selected Questions from Minute Papers. Outline - March 2, Stellar Properties. Stellar Properties Recap. Stellar properties recap

Selected Questions from Minute Papers. Outline - March 2, Stellar Properties. Stellar Properties Recap. Stellar properties recap Black Holes: Selected Questions from Minute Papers Will all the material in the Milky Way eventually be sucked into the BH at the center? Does the star that gives up mass to a BH eventually get pulled

More information

HR Diagram Lab. Area 1 Area 4. Area 5. Area 2. Area 6 Area 3

HR Diagram Lab. Area 1 Area 4. Area 5. Area 2. Area 6 Area 3 Name / 65 pts HR Diagram Lab Introduction Some of the greatest advances concerning the nature of stars have come about by comparing their properties using graphs. In the early 1900 s, while studying the

More information

Wednesday 21 June 2017 Morning

Wednesday 21 June 2017 Morning Oxford Cambridge and RSA Wednesday 21 June 2017 Morning A2 GCE PHYSICS B (ADVANCING PHYSICS) G495/01 Field and Particle Pictures ADVANCE NOTICE Duration: 2 hours *6744539949* INSTRUCTIONS TO CANDIDATES

More information

Lecture 16 The Measuring the Stars 3/26/2018

Lecture 16 The Measuring the Stars 3/26/2018 Lecture 16 The Measuring the Stars 3/26/2018 Test 2 Results D C B A Questions that I thought were unfair: 13, 18, 25, 76, 77, 80 Curved from 85 to 79 Measuring stars How far away are they? How bright are

More information

Lecture Outlines. Chapter 17. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 17. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 17 Astronomy Today 8th Edition Chaisson/McMillan Chapter 17 Measuring the Stars Units of Chapter 17 17.1 The Solar Neighborhood 17.2 Luminosity and Apparent Brightness 17.3 Stellar

More information

Characteristics of Stars

Characteristics of Stars Characteristics of Stars This section explains how astronomers measure distances to stars. It also describes how stars are classified. Use Target Reading Skills As you read about stars, stop and write

More information

A Stellar Spectra 3. Stars shine at night (during the day too!). A star is a self-luminous sphere of gas. Stars are held together by gravity.

A Stellar Spectra 3. Stars shine at night (during the day too!). A star is a self-luminous sphere of gas. Stars are held together by gravity. Stellar Spectra Relativity and Astrophysics Lecture 12 Terry Herter Outline What is a star? Stellar Spectra Kirchhoff s Laws Spectral Classification Spectral Types: O B A F G K M L T Stellar Photometry

More information

Observing the Stars. radius: the distance from the center of a sphere to its surface; half its diameter. VY Canis Majoris

Observing the Stars. radius: the distance from the center of a sphere to its surface; half its diameter. VY Canis Majoris Think about the night sky. What can you see? Stars might be one of the first things to come to mind. There are too many stars for scientists to count them all. There are probably billions and billions

More information

15.1 Properties of Stars

15.1 Properties of Stars Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? How do we measure

More information

What do the Roman numerals mean and how do stars die

What do the Roman numerals mean and how do stars die What do the Roman numerals mean and how do stars die What is luminosity? Luminosity is the energy emitted from a star, or basically how bright it is compared to our Sun The higher the luminosity, the higher

More information

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars Family of stars Reminder: the stellar magnitude scale In the 1900 s, the magnitude scale was defined as follows: a difference of 5 in magnitude corresponds to a change of a factor 100 in brightness. Dm

More information

Stars and Galaxies. The Sun and Other Stars

Stars and Galaxies. The Sun and Other Stars CHAPTER 22 Stars and Galaxies LESSON 2 The Sun and Other Stars What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you

More information

Write It! Students should be encouraged to do the Research and Explore station before attempting this one.

Write It! Students should be encouraged to do the Research and Explore station before attempting this one. Kesler Science Station Lab H-R Diagram Teacher Directions Explore It! I will spend much of my time at this station making sure that the students are doing the Celebrity H-R diagram correctly and not wasting

More information

Photosphere. Bob Stein s simulation movie. Chromosphere. Corona. Solar wind

Photosphere. Bob Stein s simulation movie. Chromosphere. Corona. Solar wind Photosphere Layer from which light escapes directly into space. Photosphere is what we see. Light from lower layers scatters. Q: Suppose we observe the neutrinos from the sun. The size of the sun when

More information

Chapter 21: Stars Notes

Chapter 21: Stars Notes Branches of Earth Science Chapter 21: Stars Notes Astronomy: The study of planets, stars, and other objects in space. Lithosphere: the land masses of earth o Litho means rock Hydrosphere: waters of the

More information

Astronomy 210. Outline. Stellar Properties. The Mosquito Dilemma. Solar Observing & HW9 due April 15 th Stardial 2 is available.

Astronomy 210. Outline. Stellar Properties. The Mosquito Dilemma. Solar Observing & HW9 due April 15 th Stardial 2 is available. Astronomy 210 Outline This Class (Lecture 31): Stars: Spectra and the H-R Diagram Next Class: Life and Death of the Sun Solar Observing & HW9 due April 15 th Stardial 2 is available. The Mosquito dilemma

More information

Homework 2 AST 301, Sections and 46850, Spring NAME Student EID Score: on last page. Due Tuesday, March 1, 2016

Homework 2 AST 301, Sections and 46850, Spring NAME Student EID Score: on last page. Due Tuesday, March 1, 2016 Homework 2 AST 301, Sections 46845 and 46850, Spring 2016 NAME Student EID Score: on last page Due Tuesday, March 1, 2016 Questions A C should help you to understand the properties of light. Show your

More information

The Life Histories of Stars I. Birth and Violent Lives

The Life Histories of Stars I. Birth and Violent Lives The Life Histories of Stars I Birth and Violent Lives Stellar evolution--first problem for new discipline of astrophysics What is a star? What is it made of? How does it produce and release energy? How

More information

Astro 301/ Fall 2006 (50405) Introduction to Astronomy

Astro 301/ Fall 2006 (50405) Introduction to Astronomy Astro 301/ Fall 2006 (50405) Introduction to Astronomy http://www.as.utexas.edu/~sj/a301-fa06 Instructor: Professor Shardha Jogee TAs: Biqing For, Candace Gray, Irina Marinova Lecture 14 Th Oct 19 Kirchhoff

More information

Astronomy 210 Spring 2017: Quiz 5 Question Packet 1. can: 2. An electron moving between energy levels

Astronomy 210 Spring 2017: Quiz 5 Question Packet 1. can: 2. An electron moving between energy levels Permitted energy levels Astronomy 210 Spring 2017: Quiz 5 Question Packet 1 1. An electron in energy level 1 2 can: (A) only emit a photon. (B) only absorb a photon. (C) either emit, or absorb a photon.

More information

Test #2 results. Grades posted in UNM Learn. Along with current grade in the class

Test #2 results. Grades posted in UNM Learn. Along with current grade in the class Test #2 results Grades posted in UNM Learn D C B A Along with current grade in the class F Clicker Question: If the Earth had no Moon then what would happen to the tides? A: The tides would not be as strong

More information