IV From cores to stars

Size: px
Start display at page:

Download "IV From cores to stars"

Transcription

1 IV From cores to stars

2 4.0 The Jeans condition When the supporting pressure in a region is not able to hold that region up against gravitational collapse it is said to be Jeans unstable. The Jeans length (the minimum size of a region for it to collapse) is: The Jeans mass (the minimum mass of a region for it to collapse) is:

3 4.0 The Jeans instability If a region with a particular density and sound speed has a size greater than the Jeans length, or a mass greater than the Jeans mass it will collapse. Note that these are the initial density and sound speed, during the collapse the density will change, and the sound speed will probably change, and so collapse might not continue, and the Jeans length and mass within a collapsing region will change.

4 4.1 The thermodynamics of collapse As a prestellar core collapses it will heat up due to the release of gravitational potential energy and cool due to radiation. Initially the core is able to radiate away all of the excess heat created by the collapse and the core stays roughly isothermal at 10K. Therefore the sound speed is constant, but the density is increasing, so the Jeans mass falls

5 4.1 The thermodynamics of collapse When the density reaches roughly g cm 3, the core becomes optically thick to its own sub mm radiation. At this point the core changes from isothermal to adiabatic behaviour.

6 4.1 The thermodynamics of collapse There is a minimum reached for the Jeans mass at around the critical density at which the gas becomes optically thick of ~10 2 M sun (roughly 10 Jupiter masses): the opacity limit for fragmentation

7 4.1 The thermodynamics of collapse When the Jeans mass (and length) is a minimum fragmentation is most likely to occur. Therefore the initial size of objects forming in a core during collapse are expected to be around 10 2 M sun, although they can grow very rapidly through accretion. Until it reaches the main sequence, the 'star' is a hydrostatic object it does not produce energy through nuclear fusion, just through the release of gravitational potential energy. Whilst the object is embedded it is referred to as a 'protostar' and afterwards as a 'pre main sequence star'.

8 4.2 Protostars Protostars accrete mass rapidly from the surrounding envelope, but they are unable to radiate away their energy of contraction efficiently. Protostars initially have radii of a few au and they contract very slowly (on a Kelvin Helmholtz timescale) until they reach a temperature of ~2000K when the temperature is high enough to dissociate molecular hydrogen. At this point the evolution becomes almost isothermal (gamma=1.1) again, as most of the kinetic energy is absorbed by dissociating H 2 and the protostar rapidly collapses to stellar densities: the second collapse..

9 4.3 Density temperature evolution log(t/k) 5 4 slow K H contraction 'second collapse' switch to adiabatic Log(rho/g/cm 3 )

10 4.3 Density Jeans mass evolution log(m J /M sun ) 0 1 opacity limit secondary fragmentation? Log(rho/g cm 3 )

11 4.4 'Secondary' fragmentation During the second collapse the Jeans mass falls to below even the opacity limit for fragmentation. It is possible that the collapsing protostar could fragment again in this phase to produce a very close binary system. This may solve the origin of < 1 day binaries, although simulations have found it very difficult to get secondary fragmentation to work.

12 Summary The Jeans conditions (length/mass) show if a core will collapse or not. Initially core collapse is isothermal and the Jeans mass decreases during the collapse. At a density of ~10 13 g cm 3, the core becomes optically thick to its own radiation and the collapse becomes adiabatic. This sets the opacity limit for fragmentation at ~10 2 M sun. Collapse then proceeds on a Kelvin Helmholtz timescale until a temperature of ~2000K when molecular hydrogen dissociates. A 'second collapse' occurs to stellar densities at this point.

BROWN DWARF FORMATION BY DISC FRAGMENTATION

BROWN DWARF FORMATION BY DISC FRAGMENTATION BROWN DWARF FORMATION BY DISC FRAGMENTATION Ant Whitworth, Cardiff Dimitri Stamatellos, Cardiff plus Steffi Walch, Cardiff Murat Kaplan, Cardiff Simon Goodwin, Sheffield David Hubber, Sheffield Richard

More information

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG Stellar structure and evolution Pierre Hily-Blant 2017-18 April 25, 2018 IPAG pierre.hily-blant@univ-grenoble-alpes.fr, OSUG-D/306 10 Protostars and Pre-Main-Sequence Stars 10.1. Introduction 10 Protostars

More information

Pre Main-Sequence Evolution

Pre Main-Sequence Evolution Stellar Astrophysics: Stellar Evolution Pre Main-Sequence Evolution The free-fall time scale is describing the collapse of the (spherical) cloud to a protostar 1/2 3 π t ff = 32 G ρ With the formation

More information

Protostars 1. Early growth and collapse. First core and main accretion phase

Protostars 1. Early growth and collapse. First core and main accretion phase Protostars 1. First core and main accretion phase Stahler & Palla: Chapter 11.1 & 8.4.1 & Appendices F & G Early growth and collapse In a magnetized cloud undergoing contraction, the density gradually

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 4ac kr L T 3 4pr 2 Large luminosity and / or a large opacity k implies

More information

Star formation Part III

Star formation Part III Lecture 4 Star formation Part III Lecture Universität Heidelberg WS 11/12 Dr. C. Mordasini Based partially on script of Prof. W. Benz Matthew R. Bate Mentor Prof. T. Henning Lecture 4 overview 1. Heating

More information

EVOLUTION OF STARS: A DETAILED PICTURE

EVOLUTION OF STARS: A DETAILED PICTURE EVOLUTION OF STARS: A DETAILED PICTURE PRE-MAIN SEQUENCE PHASE CH 9: 9.1 All questions 9.1, 9.2, 9.3, 9.4 at the end of this chapter are advised PRE-PROTOSTELLAR PHASE SELF -GRAVITATIONAL COLL APSE p 6

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Basic Principles Equations of Hydrostatic Equilibrium and Mass Conservation Central Pressure, Virial

More information

Protostars and pre-main sequence evolution. Definitions. Timescales

Protostars and pre-main sequence evolution. Definitions. Timescales Protostars and pre-main sequence evolution 1. Timescales 2. Early growth and collapse 3. Dust envelope 4. Stellar structure I. Mass-radius relation II. Deuterium burning III. Lithium destruction IV. Hydrogen

More information

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae)

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae) Astrophysics: Stellar Evolution 1 Stellar Birth Stellar Formation A. Interstellar Clouds (Nebulae) B. Protostellar Clouds 2 C. Protostars Dr. Bill Pezzaglia Updated: 10/02/2006 A. Interstellar Clouds 1.

More information

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2) Chapter 12 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) As a main-sequence star, the Sun's hydrogen supply should last about 10 billion years from the zero-age

More information

Life and Death of a Star 2015

Life and Death of a Star 2015 Life and Death of a Star 2015 Name Date 1. In the main-sequence, the core is slowly shrinking because A. the mass of the star is slowly increasing B. hydrogen fusing to helium makes the core more dense

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

Chapter 14. Stellar Evolution I. The exact sequence of evolutionary stages also depends on the mass of a star.

Chapter 14. Stellar Evolution I. The exact sequence of evolutionary stages also depends on the mass of a star. Chapter 14 Stellar Evolution I I. Introduction Stars evolve in the sense that they pass through different stages of a stellar life cycle that is measured in billions of years. The longer the amount of

More information

Accretion Mechanisms

Accretion Mechanisms Massive Protostars Accretion Mechanism Debate Protostellar Evolution: - Radiative stability - Deuterium shell burning - Contraction and Hydrogen Ignition Stahler & Palla (2004): Section 11.4 Accretion

More information

Homologous Stellar Models and Polytropes

Homologous Stellar Models and Polytropes Homologous Stellar Models and Polytropes Main Sequence Stars Stellar Evolution Tracks and Hertzsprung-Russell Diagram Star Formation and Pre-Main Sequence Contraction Main Sequence Star Characteristics

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS3010W1 SEMESTER 2 EXAMINATION 2014-2015 STELLAR EVOLUTION: MODEL ANSWERS Duration: 120 MINS (2 hours) This paper contains 8 questions. Answer all questions in Section A and

More information

The Sun. Nearest Star Contains most of the mass of the solar system Source of heat and illumination

The Sun. Nearest Star Contains most of the mass of the solar system Source of heat and illumination The Sun Nearest Star Contains most of the mass of the solar system Source of heat and illumination Outline Properties Structure Solar Cycle Energetics Equation of Stellar Structure TBC Properties of Sun

More information

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes Astronomy Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes are hot, compact stars whose mass is comparable to the Sun's and size to the Earth's. A. White dwarfs B. Neutron stars

More information

The Life Cycle of Stars. : Is the current theory of how our Solar System formed.

The Life Cycle of Stars. : Is the current theory of how our Solar System formed. Life Cycle of a Star Video (5 min) http://www.youtube.com/watch?v=pm9cqdlqi0a The Life Cycle of Stars Solar Nebula Theory : Is the current theory of how our Solar System formed. This theory states that

More information

Gravitational collapse of gas

Gravitational collapse of gas Gravitational collapse of gas Assume a gas cloud of mass M and diameter D Sound speed for ideal gas is c s = γ P ρ = γ nkt ρ = γ kt m Time for sound wave to cross the cloud t sound = D == D m c s γ kt

More information

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc. Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth 2014 Pearson Education, Inc. Star Birth The dust and gas between the star in our galaxy is referred to as the Interstellar medium (ISM).

More information

Recall what you know about the Big Bang.

Recall what you know about the Big Bang. What is this? Recall what you know about the Big Bang. Most of the normal matter in the universe is made of what elements? Where do we find most of this normal matter? Interstellar medium (ISM) The universe

More information

HR Diagram, Star Clusters, and Stellar Evolution

HR Diagram, Star Clusters, and Stellar Evolution Ay 1 Lecture 9 M7 ESO HR Diagram, Star Clusters, and Stellar Evolution 9.1 The HR Diagram Stellar Spectral Types Temperature L T Y The Hertzsprung-Russel (HR) Diagram It is a plot of stellar luminosity

More information

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes The spectral lines of stars tell us their approximate composition Remember last year in Physics?

More information

ASTRONOMY QUALIFYING EXAM August 2014

ASTRONOMY QUALIFYING EXAM August 2014 ASTRONOMY QUALIFYING EXAM August 2014 L = 3.9 10 33 erg s 1 M = 2 10 33 g M bol = 4.74 R = 7 10 10 cm 1 AU = 1.5 10 13 cm 1 pc = 3.26 Ly. = 3.1 10 18 cm a = 7.56 10 15 erg cm 3 K 4 c = 3 10 10 cm s 1 σ

More information

Astro Instructors: Jim Cordes & Shami Chatterjee.

Astro Instructors: Jim Cordes & Shami Chatterjee. Astro 2299 The Search for Life in the Universe Lecture 8 Last time: Formation and function of stars This time (and probably next): The Sun, hydrogen fusion Virial theorem and internal temperatures of stars

More information

Remember from Stefan-Boltzmann that 4 2 4

Remember from Stefan-Boltzmann that 4 2 4 Lecture 17 Review Most stars lie on the Main sequence of an H&R diagram including the Sun, Sirius, Procyon, Spica, and Proxima Centauri. This figure is a plot of logl versus logt. The main sequence is

More information

What tool do astronomers use to understand the evolution of stars?

What tool do astronomers use to understand the evolution of stars? What tool do astronomers use to understand the evolution of stars? Groups indicate types of stars or stages in their evolution. What is plotted? How does an individual star move around the diagram? What

More information

Life and Death of a Star. Chapters 20 and 21

Life and Death of a Star. Chapters 20 and 21 Life and Death of a Star Chapters 20 and 21 90 % of a stars life Most stars spend most of their lives on the main sequence. A star like the Sun, for example, after spending a few tens of millions of years

More information

IX. Star and planet formation. h"p://sgoodwin.staff.shef.ac.uk/phy111.html

IX. Star and planet formation. hp://sgoodwin.staff.shef.ac.uk/phy111.html IX. Star and planet formation h"p://sgoodwin.staff.shef.ac.uk/phy111.html 1. The ISM Most of the volume of space around us contains the diffuse ISM at 10 4-10 6 K with densities of only a few atoms per

More information

AST101 Lecture 13. The Lives of the Stars

AST101 Lecture 13. The Lives of the Stars AST101 Lecture 13 The Lives of the Stars A Tale of Two Forces: Pressure vs Gravity I. The Formation of Stars Stars form in molecular clouds (part of the interstellar medium) Molecular clouds Cold: temperatures

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Lecture 5: As Long as the Sun Shines. Temperature of the Sun. Spectrum of the Sun Sunspots. Chromosphere. Sodium. Hydrogen.

Lecture 5: As Long as the Sun Shines. Temperature of the Sun. Spectrum of the Sun Sunspots. Chromosphere. Sodium. Hydrogen. Lecture 5: As Long as the Sun Shines Temperature of the Sun Spectrum of the Sun Sunspots Sodium Hydrogen Magnesium Chromosphere In astronomy, we often see gas glowing in red because of H emission lines.

More information

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. Lecture 4 Stars The physics of stars A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. X-ray ultraviolet infrared radio To understand

More information

Astronomy. Stellar Evolution

Astronomy. Stellar Evolution Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Stellar Evolution Main Sequence star changes during nuclear fusion What happens when the fuel runs out Old stars and second

More information

Astronomy 404 October 9, 2013

Astronomy 404 October 9, 2013 Nuclear reaction rate: Astronomy 404 October 9, 2013 from the tunneling increases with increasing E from the velocity distrib. decreases with increasing E The Gamow peak occurs at energy Energy generation

More information

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition The Bizarre Stellar Graveyard 18.1 White Dwarfs What is a white dwarf? What can happen to a white dwarf in a close binary system? What supports

More information

Stars: Their Life and Afterlife

Stars: Their Life and Afterlife The 68 th Compton Lecture Series Stars: Their Life and Afterlife Lecture 3: The Life and Times of Low Mass Stars Brian Humensky, lecturer http://kicp.uchicago.edu/~humensky/comptonlectures.htm October

More information

ASTR-1020: Astronomy II Course Lecture Notes Section VI

ASTR-1020: Astronomy II Course Lecture Notes Section VI ASTR-1020: Astronomy II Course Lecture Notes Section VI Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence.

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence. Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence http://apod.nasa.gov/apod/astropix.html Outline of today s lecture Hydrostatic equilibrium: balancing gravity and pressure

More information

10/29/2009. The Lives And Deaths of Stars. My Office Hours: Tuesday 3:30 PM - 4:30 PM 206 Keen Building. Stellar Evolution

10/29/2009. The Lives And Deaths of Stars. My Office Hours: Tuesday 3:30 PM - 4:30 PM 206 Keen Building. Stellar Evolution of s Like s of Other Stellar The Lives And Deaths of s a Sun-like s More 10/29/2009 My Office Hours: Tuesday 3:30 PM - 4:30 PM 206 Keen Building Test 2: 11/05/2009 of s Like s of Other a Sun-like s More

More information

Stellar Evolution: Outline

Stellar Evolution: Outline Stellar Evolution: Outline Interstellar Medium (dust) Hydrogen and Helium Small amounts of Carbon Dioxide (makes it easier to detect) Massive amounts of material between 100,000 and 10,000,000 solar masses

More information

Lecture 7: Stellar evolution I: Low-mass stars

Lecture 7: Stellar evolution I: Low-mass stars Lecture 7: Stellar evolution I: Low-mass stars Senior Astrophysics 2018-03-21 Senior Astrophysics Lecture 7: Stellar evolution I: Low-mass stars 2018-03-21 1 / 37 Outline 1 Scaling relations 2 Stellar

More information

Basic concepts in stellar physics

Basic concepts in stellar physics Basic concepts in stellar physics Anthony Brown brown@strw.leidenuniv.nl 1.2.21 Abstract. These notes provide extra material on the basics of stellar physics. The aim is to provide an overview of the nature

More information

Disk Formation and Jet Driving in Collapsing Cloud Cores

Disk Formation and Jet Driving in Collapsing Cloud Cores Disk Formation and Jet Driving in Collapsing Cloud Cores Masahiro Machida (Kyushu University) Star Formation Process Observations have shown that Low-velocity outflows and high-velocity jets are ubiquitous

More information

7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik)

7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik) 7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik) In the previous chapters we have seen that the timescale of stellar evolution is set by the (slow) rate of consumption

More information

Exam #2 Review Sheet. Part #1 Clicker Questions

Exam #2 Review Sheet. Part #1 Clicker Questions Exam #2 Review Sheet Part #1 Clicker Questions 1) The energy of a photon emitted by thermonuclear processes in the core of the Sun takes thousands or even millions of years to emerge from the surface because

More information

Lecture 21 Formation of Stars November 15, 2017

Lecture 21 Formation of Stars November 15, 2017 Lecture 21 Formation of Stars November 15, 2017 1 2 Birth of Stars Stars originally condense out of a COLD, interstellar cloud composed of H and He + trace elements. cloud breaks into clumps (gravity)

More information

Binary star formation

Binary star formation Binary star formation So far we have ignored binary stars. But, most stars are part of binary systems: Solar mass stars: about 2 / 3 are part of binaries Separations from: < 0.1 au > 10 3 au Wide range

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O HW2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The polarization of light passing though the dust grains shows that: 1) A) the dust grains

More information

Cosmic Evolution, Part II. Heavy Elements to Molecules

Cosmic Evolution, Part II. Heavy Elements to Molecules Cosmic Evolution, Part II Heavy Elements to Molecules First a review of terminology: Element Atom Electro- magnetic Electrons Nucleus Electromagnetic Strong Nuclear Compound Molecule Protons Neutrons Neutral

More information

10/17/2012. Stellar Evolution. Lecture 14. NGC 7635: The Bubble Nebula (APOD) Prelim Results. Mean = 75.7 Stdev = 14.7

10/17/2012. Stellar Evolution. Lecture 14. NGC 7635: The Bubble Nebula (APOD) Prelim Results. Mean = 75.7 Stdev = 14.7 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10/17/2012 Stellar Evolution Lecture 14 NGC 7635: The Bubble Nebula (APOD) Prelim Results 9 8 7 6 5 4 3 2 1 0 Mean = 75.7 Stdev = 14.7 1 Energy

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Cosmic Evolution, Part II. Heavy Elements to Molecules

Cosmic Evolution, Part II. Heavy Elements to Molecules Cosmic Evolution, Part II Heavy Elements to Molecules Heavy elements molecules First a review of terminology: Electromagnetic Electrons Element Atom Nucleus Compound Molecule Electromagnetic Strong Nuclear

More information

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy 18. Stellar Birth Star observations & theories aid understanding Interstellar gas & dust in our galaxy Protostars form in cold, dark nebulae Protostars evolve into main-sequence stars Protostars both gain

More information

Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23

Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23 Midterm Exam #2 Tuesday, March 23 Outline - March 18, 2010 Closed book Will cover Lecture 8 (Special Relativity) through Lecture 14 (Star Formation) only If a topic is in the book, but was not covered

More information

Formation Mechanisms of Brown Dwarfs: Observations & Theories. Dan Li April 2009

Formation Mechanisms of Brown Dwarfs: Observations & Theories. Dan Li April 2009 Formation Mechanisms of Brown Dwarfs: Observations & Theories Dan Li April 2009 What is brown dwarf (BD)? BD Mass : upper-limit ~ 0.075 M lower-limit ~ 0.013 M (?) Differences between BD and giant planet:

More information

while the Planck mean opacity is defined by

while the Planck mean opacity is defined by PtII Astrophysics Lent, 2016 Physics of Astrophysics Example sheet 4 Radiation physics and feedback 1. Show that the recombination timescale for an ionised plasma of number density n is t rec 1/αn where

More information

Collapse of Low-Mass Protostellar Cores: Part I

Collapse of Low-Mass Protostellar Cores: Part I Collapse of Low-Mass Protostellar Cores: Part I Isothermal Unmagnetized Solutions and Observational Diagnostics Andrea Kulier AST 541 October 9, 2012 Outline Models of Isothermal Unmagnetized Collapse

More information

Astronomy 311: Lecture 2 - Solar System Formation. A theory for the formation of the Solar System must explain:

Astronomy 311: Lecture 2 - Solar System Formation. A theory for the formation of the Solar System must explain: Astronomy 311: Lecture 2 - Solar System Formation A theory for the formation of the Solar System must explain: Patterns of Motion. 2 types of planets. High numbers of asteroids, KBO s and Oort Cloud objects.

More information

The Life Cycles of Stars. Modified from Information provided by: Dr. Jim Lochner, NASA/GSFC

The Life Cycles of Stars. Modified from Information provided by: Dr. Jim Lochner, NASA/GSFC The Life Cycles of Stars Modified from Information provided by: Dr. Jim Lochner, NASA/GSFC Twinkle, Twinkle, Little Star... What do you see? How I Wonder What You Are... Stars have: Different Colors -

More information

Stellar Models ASTR 2110 Sarazin

Stellar Models ASTR 2110 Sarazin Stellar Models ASTR 2110 Sarazin Jansky Lecture Tuesday, October 24 7 pm Room 101, Nau Hall Bernie Fanaroff Observing the Universe From Africa Trip to Conference Away on conference in the Netherlands

More information

Chapter 11 The Formation and Structure of Stars

Chapter 11 The Formation and Structure of Stars Chapter 11 The Formation and Structure of Stars Guidepost The last chapter introduced you to the gas and dust between the stars that are raw material for new stars. Here you will begin putting together

More information

The First Stars. Simone Ferraro Princeton University. Sept 25, 2012

The First Stars. Simone Ferraro Princeton University. Sept 25, 2012 The First Stars Simone Ferraro Princeton University Sept 25, 2012 Outline Star forming minihalos at high z Cooling physics and chemistry Gravitational Collapse and formation of protostar Magnetic fields

More information

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION 0.1. Accretion If a particle of mass m falls from infinity and comes to rest on the surface of a star of mass

More information

Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4

Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4 Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4 For the protostar and pre-main-sequence phases, the process was the same for the high and low mass stars, and the main

More information

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 9 Energy Production and Scaling Laws

Physics 556 Stellar Astrophysics Prof. James Buckley. Lecture 9 Energy Production and Scaling Laws Physics 556 Stellar Astrophysics Prof. James Buckley Lecture 9 Energy Production and Scaling Laws Equations of Stellar Structure Hydrostatic Equilibrium : dp Mass Continuity : dm(r) dr (r) dr =4πr 2 ρ(r)

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM

More information

1.1 Motivation. 1.2 The H-R diagram

1.1 Motivation. 1.2 The H-R diagram 1.1 Motivation Observational: How do we explain stellar properties as demonstrated, e.g. by the H-R diagram? Theoretical: How does an isolated, self-gravitating body of gas behave? Aims: Identify and understand

More information

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow EXOPLANET LECTURE PLANET FORMATION Dr. Judit Szulagyi - ETH Fellow (judits@ethz.ch) I. YOUNG STELLAR OBJECTS AND THEIR DISKS (YSOs) Star Formation Young stars born in 10 4 10 6 M Sun Giant Molecular Clouds.

More information

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses Lecture 1 Overview Time Scales, Temperature-density Scalings, Critical Masses I. Preliminaries The life of any star is a continual struggle between the force of gravity, seeking to reduce the star to a

More information

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses. I. Preliminaries

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses. I. Preliminaries I. Preliminaries Lecture 1 Overview Time Scales, Temperature-density Scalings, Critical Masses The life of any star is a continual struggle between the force of gravity, seeking to reduce the star to a

More information

Review: HR Diagram. Label A, B, C respectively

Review: HR Diagram. Label A, B, C respectively Stellar Evolution Review: HR Diagram Label A, B, C respectively A C B a) A: White dwarfs, B: Giants, C: Main sequence b) A: Main sequence, B: Giants, C: White dwarfs c) A: Main sequence, B: White Dwarfs,

More information

Lecture 14: The Sun and energy transport in stars. Astronomy 111

Lecture 14: The Sun and energy transport in stars. Astronomy 111 Lecture 14: The Sun and energy transport in stars Astronomy 111 Energy transport in stars What is a star? What is a star composed of? Why does a star shine? What is the source of a star s energy? Laws

More information

1. Star: A object made of gas found in outer space that radiates.

1. Star: A object made of gas found in outer space that radiates. 1. Star: A object made of gas found in outer space that radiates. 2. Stars produce extremely great quantities of energy through the process of. The chemical formula for nuclear fusion looks like this:

More information

Homologous Stellar Models and Polytropes

Homologous Stellar Models and Polytropes Homologous Stellar Models and Polytropes Main Sequence Stars Stellar Evolution Tracks and Hertzsprung-Russell Diagram Star Formation and Pre-Main Sequence Contraction Main Sequence Star Characteristics

More information

Astronomy Notes Chapter 13.notebook. April 11, 2014

Astronomy Notes Chapter 13.notebook. April 11, 2014 All stars begin life in a similar way the only difference is in the rate at which they move through the various stages (depends on the star's mass). A star's fate also depends on its mass: 1) Low Mass

More information

Answer Key for Exam C

Answer Key for Exam C Answer Key for Exam C 2 points each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Answer Key for Exam B

Answer Key for Exam B Answer Key for Exam B 2 points each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Dark Matter. About 90% of the mass in the universe is dark matter Initial proposals: MACHOs: massive compact halo objects

Dark Matter. About 90% of the mass in the universe is dark matter Initial proposals: MACHOs: massive compact halo objects 1 Dark Matter About 90% of the mass in the universe is dark matter Initial proposals: MACHOs: massive compact halo objects Things like small black holes, planets, other big objects They must be dark (so

More information

The Interiors of the Stars

The Interiors of the Stars The Interiors of the Stars Hydrostatic Equilibrium Stellar interiors, to a good first approximation, may be understood using basic physics. The fundamental operating assumption here is that the star is

More information

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency! Theoretical ideas About Galaxy Wide Star Formation Theoretical predictions are that galaxy formation is most efficient near a mass of 10 12 M based on analyses of supernova feedback and gas cooling times

More information

From Last Time: We can more generally write the number densities of H, He and metals.

From Last Time: We can more generally write the number densities of H, He and metals. From Last Time: We can more generally write the number densities of H, He and metals. n H = Xρ m H,n He = Y ρ 4m H, n A = Z Aρ Am H, How many particles results from the complete ionization of hydrogen?

More information

Answer Key for Exam D

Answer Key for Exam D Answer Key for Exam D 2 points each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

The Life Cycles of Stars. Dr. Jim Lochner, NASA/GSFC

The Life Cycles of Stars. Dr. Jim Lochner, NASA/GSFC The Life Cycles of Stars Dr. Jim Lochner, NASA/GSFC Twinkle, Twinkle, Little Star... A constellation is an apparent group of stars originally named for mythical characters. The sky contains 88 constellations.

More information

How Do Stars Appear from Earth?

How Do Stars Appear from Earth? How Do Stars Appear from Earth? Magnitude: the brightness a star appears to have from Earth Apparent Magnitude depends on 2 things: (actual intrinsic brightness) The color of a star is related to its temperature:

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies The H-R Diagram review So far: AST 101 Introduction to Astronomy: Stars & Galaxies - Stars on Main Sequence (MS) - Pre MS (Star Birth) Next: - Post MS: Giants, Super Giants, White dwarfs Evolution of Low

More information

Stellar Evolution. Eta Carinae

Stellar Evolution. Eta Carinae Stellar Evolution Eta Carinae Evolution of Main Sequence Stars solar mass star: from: Markus Bottcher lecture notes, Ohio University Evolution off the Main Sequence: Expansion into a Red Giant Inner core

More information

ASTRONOMY QUIZ NUMBER 11

ASTRONOMY QUIZ NUMBER 11 ASTRONOMY QUIZ NUMBER. Suppose you measure the parallax of a star and find 0. arsecond. The distance to this star is A) 0 light-years B) 0 parsecs C) 0. light-year D) 0. parsec 2. A star is moving toward

More information

The Formation of Close Binary Stars

The Formation of Close Binary Stars The Formation of Binary Stars fa U Symposium, Vol. 200, 2001 H. Zinnecker and R. D. Mathieu, eds. The Formation of Close Binary Stars Ian A. Bonnell University of St Andrews, Physics and Astronomy, North

More information

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars Lecture 11 Stellar Evolution Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars A Spiral Galaxy (Milky Way Type) 120,000 ly A few hundred billion stars

More information

Star Formation. Stellar Birth

Star Formation. Stellar Birth Star Formation Lecture 12 Stellar Birth Since stars don t live forever, then they must be born somewhere and at some time in the past. How does this happen? And when stars are born, so are planets! 1 Molecular

More information

Phases of Stellar Evolution

Phases of Stellar Evolution Phases of Stellar Evolution Phases of Stellar Evolution Pre-Main Sequence Main Sequence Post-Main Sequence The Primary definition is thus what is the Main Sequence Locus of core H burning Burning Process

More information

arxiv: v1 [astro-ph.sr] 29 Jul 2011

arxiv: v1 [astro-ph.sr] 29 Jul 2011 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 2 August 2011 (MN LATEX style file v2.2) arxiv:1108.0009v1 [astro-ph.sr] 29 Jul 2011 Collapse of a molecular cloud core to stellar densities: the formation

More information

Substantial direct and indirect information indicates that stars are born in nebulae. Basics are well understood, many details are not.

Substantial direct and indirect information indicates that stars are born in nebulae. Basics are well understood, many details are not. Chapter 7 Formation of Stars Substantial direct and indirect information indicates that stars are born in nebulae. Basics are well understood, many details are not. We shall have to gloss over various

More information

Chapter 16: Star Birth

Chapter 16: Star Birth Chapter 16 Lecture Chapter 16: Star Birth Star Birth 16.1 Stellar Nurseries Our goals for learning: Where do stars form? Why do stars form? Where do stars form? Star-Forming Clouds Stars form in dark clouds

More information

Dr G. I. Ogilvie Lent Term 2005

Dr G. I. Ogilvie Lent Term 2005 Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 Order-of-magnitude treatment Consider a simple order-of-magnitude treatment of the vertical structure in the case of a disc

More information