# Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23

Size: px
Start display at page:

Download "Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23"

Transcription

1 Midterm Exam #2 Tuesday, March 23 Outline - March 18, 2010 Closed book Will cover Lecture 8 (Special Relativity) through Lecture 14 (Star Formation) only If a topic is in the book, but was not covered in class, it will not be on the exam! Some combination of multiple choice, short answer, short calculation Equations, constants will all be given Standard calculators allowed Protostar to Main Sequence star (pgs ) HR Diagram revisit Define low, intermediate and high mass stars (pg. 565) Evolution and death of low mass stars (pgs ) Evolution and death of high mass stars (pgs ) Cell phones, PDAs, computers not allowed Protostar to Main Sequence Star H-R Diagram Review Protostar becomes a main sequence star with the onset of hydrogen fusion About 90% of stars in the sky are Main Sequence stars All main sequence stars are stable (gravity exactly balances pressure) and energy source is fusion of HYDROGEN to form HELIUM What are all of the nonmain squence objects on the HR diagram? 1

3 Evolution of a Low-Mass Star Red Giant Phase for Low Mass Stars As He core contracts, the star moves up the HR diagram. As outer envelope expands, the star becomes physically larger (increases luminosity) and the surface temperature cools (becomes redder). Star becomes a Red Giant. Onset of He burning in the core happens quite suddenly (helium flash ) once the temperature and density of the core are high enough to fuse He. Core is now 100 million Kelvin (about 10x hotter than when the star was a main sequence star) Two sources of energy: 1. H to He in a shell 2. He to C ( triple alpha process) in the core Helium flash doesn t disrupt the star (localized region of 1/1000 of the star), but does cause the core to expand a little bit (and envelope shrinks in response). Triple Alpha Process (nuclear fusion of Helium to produce Carbon) Red Giants are Truly Enormous (sun as a red giant results in end of life on Earth) Today 5 billion years in the future When the sun becomes a Red Giant it will engulf Mercury, and perhaps Venus. The surface temperature of the sun will be about 1/2 its current temperature, but the sun will be so large that it will take up half the noon-time sky! End of life on earth - we ll be toasted. 3

4 Final Stage of Evolution of Low-Mass Star It s only a matter of time before the star gets in trouble again This time it s CARBON ash that has sunk to the center (non-burning carbon core, surrounded by a shell of He burning, surrounded by a shell of H burning). Death of a Low Mass Star Carbon-Oxygen core contracts in an attempt to help hold the star up against gravitational collapse; but there isn t enough mass in the star to make the temperature and density high enough to fuse the oxgygen Core shrinks down to about the size of the earth, and can t go any farther because of a quantum mechanical effect Can only compress electrons so far - this is what stops the core contraction Most low mass stars can repeat the core contraction process, and ignite Carbon fusion (which produces Oxygen). But, once a significant amount of oxygen has built up in the core, it s game over for the star!! Pressure in the core is provided by degenerate electron gas and the core becomes stable (no longer contracting) Burning fronts (H, He, C) plow out into the very light, fluffy layers of the (enormous!) star, and the outer layers of the star lift off due to radiation pressure Formation of White Dwarf and Planetary Nebula Planetary Nebulae (end of a low-mass star) (have nothing to do with planets!) Outer layers of star lift off, revealing small, hot core = White Dwarf Gas from original envelope of star is heated by the white dwarf Initially, the white dwarf is very hot, but it cools off because it has no internal source of energy (will eventually be black!) Sirius A Sirius B (white dwarf companion to Sirius A) 4

5 Evolutionary Track on the HR Diagram (Low-Mass Star) Evolution of High-Mass Stars Unlike low mass stars, high mass stars make a steady transition from H fusion in the core to He fusion in the core (no helium flash ), to O fusion in the core, and they keep on going to heavier chemical elements. High-mass stars evolve off the main sequence to become supergiant stars. Onion Layers of Fusion in a High-Mass Star Timescales of Fusion (M star = 20 M sun ) Star undergoes cycles of core contraction and envelope expansion, fusing heavier and heavier chemical elements, until an iron core forms. H fusion in core: 10 million years He fusion in core: 1 million years C fusion in core: 1000 years Once silicon starts to fuse, the star has about a week to live. O Fusion in core: 1 year Si fusion in core: 1 week 5

6 What s so special about Iron (Fe)? Death of a High-Mass Star Supernova: Implosion followed by Explosion Once substantial amount of iron has built up, star implodes on itself Fusion of nucleii that are lighter than iron result in a net gain of energy (takes less energy to bring the nucleii close together than you get from mass loss) Fusion of nucleii that are as heavy or heavier than iron result in a net loss of energy (takes more energy to bring the nucleii close together than you get from mass loss) Bottom line: star can t use iron as a nuclear fuel to support itself from gravitational collapse, because fusing iron is a losing proposition in the energy balance! Core reaches temperature of 10 billion Kelvin (= tremendously high energy photons), the nuclei are split apart into protons and neutrons ( photodisintegration ) In less than 1 second, the star undoes most of the effects of nuclear fusion that happened in the previous 11 million years!!!!! High-energy photons are absorbed, giving rise to loss of thermal energy in the core, the core becomes even more unstable, and the collapse accelerates Protons and electrons in the core combine together ( neutronization ), resulting in nothing but neutrons in the core Collapse continues until it s not possible to squeeze the neutrons together any tighter (size of core = size of Manhattan) Collapse starts to slow, but overshoots and outer layers of star are driven out into space (perhaps by bounce off the neutron core) in a massive explosion Supernovae Generate Tremendous Amounts of Energy How long does a supernova last? At their maximum brightness, supernovae are as bright as an entire galaxy. Type II supernovae are exploding highmass stars Peak luminosity is about ergs = the sun s total output of energy over 10 billion years! Type Ia supernovae are something else entirely (and involve binary star systems) 6

7 Why should you care about supernovae? Extraordinarily bright, so can use them to measure distances to galaxies that are very far away: b = L / (4π d2) Supernovae are the source of all heavy chemical elements! The heavy chemical elements are produced during the explosion itself, when there is more than enough energy to fuse nuclei heavier than iron (doesn t matter that there is a net loss of energy - the star is already VERY far out of equilibrium) Supernova Remnants (high-mass star guts) Cycle of Star Formation and Supernovae Stars form out of gas in the ISM, evolve, and blow much of themselves back into the ISM Massive stars create heavy chemical elements during the explosions, which enriches the ISM with heavy chemical elements New stars form, and make yet more heavy chemical elements It takes about 500 cycles of massive star formation to account for all the heavy chemical elements in the universe More than enough time for this to happen (universe is 14 billion years old, massive stars take a few million years to evolve and explode) 7

### H-R Diagram. Outline - March 25, Build-up of Inert Helium Core. Evolution of a Low-Mass Star

Outline - March 25, 2010 H-R Diagram Recap: Evolution and death of low mass stars (pgs. 566-572) About 90% of stars in the sky are Main Sequence stars Evolution and death of high mass stars (pgs. 572-581)

### Review: HR Diagram. Label A, B, C respectively

Stellar Evolution Review: HR Diagram Label A, B, C respectively A C B a) A: White dwarfs, B: Giants, C: Main sequence b) A: Main sequence, B: Giants, C: White dwarfs c) A: Main sequence, B: White Dwarfs,

### Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

### Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

### The Deaths of Stars 1

The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

### Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. HW#7 due Friday by 5 pm! (available Tuesday)

Stars, Galaxies & the Universe Announcements HW#7 due Friday by 5 pm! (available Tuesday) Midterm Grades (points) posted today in ICON Exam #2 next week (Wednesday) Review sheet and study guide posted

### Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

### Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula.

Low mass stars Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Low mass stars Interstellar Cloud

### Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

### What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

Stars What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth? Answer: The SUN It s about 150,000,000 km from earth =

### Stars IV Stellar Evolution

Stars IV Stellar Evolution Attendance Quiz Are you here today? Here! (a) yes (b) no (c) my views are evolving on the subject Today s Topics Stellar Evolution An alien visits Earth for a day A star s mass

### Life of a High-Mass Stars

Life of a High-Mass Stars 1 Evolutionary Tracks Paths of high-mass stars on the HR Diagram are different from those of low-mass stars. Once these stars leave the main sequence, they quickly grow in size

### High Mass Stars. Dr Ken Rice. Discovering Astronomy G

High Mass Stars Dr Ken Rice High mass star formation High mass star formation is controversial! May form in the same way as low-mass stars Gravitational collapse in molecular clouds. May form via competitive

### Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams:

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: 1. The evolution of a number of stars all formed at the same time

### Stellar Astronomy Sample Questions for Exam 4

Stellar Astronomy Sample Questions for Exam 4 Chapter 15 1. Emission nebulas emit light because a) they absorb high energy radiation (mostly UV) from nearby bright hot stars and re-emit it in visible wavelengths.

### Life and Death of a Star. Chapters 20 and 21

Life and Death of a Star Chapters 20 and 21 90 % of a stars life Most stars spend most of their lives on the main sequence. A star like the Sun, for example, after spending a few tens of millions of years

### Lecture 33: The Lives of Stars

Lecture 33 The Lives of Stars Astronomy 141 Winter 2012 This lecture concerns the life cycle of normal stars. Stars shine because they are hot, and need a source of energy to keep shining. Main Sequence

### Low-mass Stellar Evolution

Low-mass Stellar Evolution The lives of low-mass stars And the lives of massive stars The Structure of the Sun Let s review: The Sun is held together by? The inward force is balanced by? Thinking about

### Ch. 29 The Stars Stellar Evolution

Ch. 29 The Stars 29.3 Stellar Evolution Basic Structure of Stars Mass effects The more massive a star is, the greater the gravity pressing inward, and the hotter and more dense the star must be inside

### Life Cycle of a Star Worksheet

Life Cycle of a Star Worksheet A STAR IS BORN STAGES COMMON TO ALL STARS All stars start as a nebula. A nebula is a large cloud of gas and dust. Gravity can pull some of the gas and dust in a nebula together.

### HR Diagram, Star Clusters, and Stellar Evolution

Ay 1 Lecture 9 M7 ESO HR Diagram, Star Clusters, and Stellar Evolution 9.1 The HR Diagram Stellar Spectral Types Temperature L T Y The Hertzsprung-Russel (HR) Diagram It is a plot of stellar luminosity

### Evolution of High Mass Stars

Luminosity (L sun ) Evolution of High Mass Stars High Mass Stars O & B Stars (M > 4 M sun ): Burn Hot Live Fast Die Young Main Sequence Phase: Burn H to He in core Build up a He core, like low-mass stars

### Chapters 12 and 13 Review: The Life Cycle and Death of Stars. How are stars born, and how do they die? 4/1/2009 Habbal Astro Lecture 27 1

Chapters 12 and 13 Review: The Life Cycle and Death of Stars How are stars born, and how do they die? 4/1/2009 Habbal Astro 110-01 Lecture 27 1 Stars are born in molecular clouds Clouds are very cold:

### Reading and Announcements. Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28

Reading and Announcements Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28 The life of the Sun The Sun started as a cloud of gas. Gravity caused the cloud to collapse.

### 1. What is the primary difference between the evolution of a low-mass star and that of a high-mass star?

FYI: The Lives of Stars E3:R6b 1. Read FYI: The Lives of Stars As you read use the spaces below to write down any information you find especially interesting. Also define the bold terms used in the text.

### Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.

Chapter 17 Lecture The Cosmic Perspective Seventh Edition Star Stuff Star Stuff 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect

### ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19

ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19 WHEN S THE NEXT TEST?!?!?!? If anyone is following the syllabus, you know that it says there is a test today. The test will be on April 11 th (a

### Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

### Why Do Stars Leave the Main Sequence? Running out of fuel

Star Deaths Why Do Stars Leave the Main Sequence? Running out of fuel Observing Stellar Evolution by studying Globular Cluster HR diagrams Plot stars in globular clusters in Hertzsprung-Russell diagram

### Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

### Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence

Lecture 9: Post-main sequence evolution of stars Lifetime on the main sequence Shell burning and the red giant phase Helium burning - the horizontal branch and the asymptotic giant branch The death of

### Stellar Evolution and the HertzsprungRussell Diagram 7/14/09. Astronomy 101

Stellar Evolution and the HertzsprungRussell Diagram 7/14/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Outline for Today Astronomy Picture of the Day News Articles Business Return Lab 5

### Heading for death. q q

Hubble Photos Credit: NASA, The Hubble Heritage Team (STScI/AURA) Heading for death. q q q q q q Leaving the main sequence End of the Sunlike star The helium core The Red-Giant Branch Helium Fusion Helium

### Stellar Evolution. Eta Carinae

Stellar Evolution Eta Carinae Evolution of Main Sequence Stars solar mass star: from: Markus Bottcher lecture notes, Ohio University Evolution off the Main Sequence: Expansion into a Red Giant Inner core

### Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars

Today Stars Evolution of High Mass Stars Nucleosynthesis Supernovae - the explosive deaths of massive stars 1 Another good job on exam! Class average was 71% Given the difficulty of the exam, this was

### Life Cycle of a Star - Activities

Name: Class Period: Life Cycle of a Star - Activities A STAR IS BORN STAGES COMMON TO ALL STARS All stars start as a nebula. A nebula is a large cloud of gas and dust. Gravity can pull some of the gas

### 10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

10/26/16 Lecture Outline 13.1 Star Birth Chapter 13: Star Stuff How do stars form? Our goals for learning: How do stars form? How massive are newborn stars? Star-Forming Clouds Stars form in dark clouds

### High Mass Stars and then Stellar Graveyard 7/16/09. Astronomy 101

High Mass Stars and then Stellar Graveyard 7/16/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool Betelgeuse Astronomy 101 Outline for Today Astronomy Picture of the Day Something

### How Do Stars Appear from Earth?

How Do Stars Appear from Earth? Magnitude: the brightness a star appears to have from Earth Apparent Magnitude depends on 2 things: (actual intrinsic brightness) The color of a star is related to its temperature:

### Star Stuff. Star Formation. Star Formation. Stars form in the interstellar medium

Star Stuff Star Formation Stars form in the interstellar medium Nebula in Scorpius Star Formation Stars form in the interstellar medium This contains very cold, dark clouds of dusty molecular gas Pillars

### Stars: Their Life and Afterlife

The 68 th Compton Lecture Series Stars: Their Life and Afterlife Lecture 3: The Life and Times of Low Mass Stars Brian Humensky, lecturer http://kicp.uchicago.edu/~humensky/comptonlectures.htm October

### PHYS 1401: Descriptive Astronomy Notes: Chapter 12

CHAPTER 12: STELLAR EVOLUTION 12.1: LEAVING THE MAIN SEQUENCE Stars and the Scientific Method You cannot observe a single star from birth to death You can observe a lot of stars in a very short period

### The Evolution of Low Mass Stars

The Evolution of Low Mass Stars Key Ideas: Low Mass = M < 4 M sun Stages of Evolution of a Low Mass star: Main Sequence star star star Asymptotic Giant Branch star Planetary Nebula phase White Dwarf star

### A Star Becomes a Star

A Star Becomes a Star October 28, 2002 1) Stellar lifetime 2) Red Giant 3) White Dwarf 4) Supernova 5) More massive stars Review Solar winds/sunspots Gases and Dust Molecular clouds Protostars/Birth of

### Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

Chapter 12 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) As a main-sequence star, the Sun's hydrogen supply should last about 10 billion years from the zero-age

### Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars.

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar evolution during the main-sequence life-time, and during the post-main-sequence

### LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

### AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies Summary: When a Low-Mass Star runs out of Hydrogen in its Core 1. With fusion no longer occurring in the core, gravity causes core collapse 2. Hydrogen

### 10/17/2012. Stellar Evolution. Lecture 14. NGC 7635: The Bubble Nebula (APOD) Prelim Results. Mean = 75.7 Stdev = 14.7

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10/17/2012 Stellar Evolution Lecture 14 NGC 7635: The Bubble Nebula (APOD) Prelim Results 9 8 7 6 5 4 3 2 1 0 Mean = 75.7 Stdev = 14.7 1 Energy

### NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM

### Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture.

Announcements BRIGHT Homework#3 will be handed out at the end of this lecture. Due October 14 (next Thursday) Review of Mid-term exam will be handed out Tuesday. Mid-term exam will be variants (if not

### The Formation of Stars

The Formation of Stars A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful objects in the sky. We are interested

### Astronomy Notes Chapter 13.notebook. April 11, 2014

All stars begin life in a similar way the only difference is in the rate at which they move through the various stages (depends on the star's mass). A star's fate also depends on its mass: 1) Low Mass

### Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

### TA feedback forms are online!

1 Announcements TA feedback forms are online! find the link at the class website. Please take 5 minutes to tell your TAs your opinion. In case you did not notice, the Final is set for 03/21 from 12:00-3:00

### Lecture 8: Stellar evolution II: Massive stars

Lecture 8: Stellar evolution II: Massive stars Senior Astrophysics 2018-03-27 Senior Astrophysics Lecture 8: Stellar evolution II: Massive stars 2018-03-27 1 / 29 Outline 1 Stellar models 2 Convection

### Comparing a Supergiant to the Sun

The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

### Star formation and Evolution

Star formation and Evolution 1 Star formation and Evolution Stars burn fuel to produce energy and shine so they must evolve and live through a life cycle In the Milky Way we see stars at every stage of

### the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes The spectral lines of stars tell us their approximate composition Remember last year in Physics?

### Astronomy 104: Stellar Astronomy

Astronomy 104: Stellar Astronomy Lecture 18: A High-Mass Star s Life and Death (a.k.a. - Things that go BOOM in the night) Spring Semester 2013 Dr. Matt Craig 1 1 Reading Today: Chapter 12.1 (Life and

### The Life Cycle of Stars. : Is the current theory of how our Solar System formed.

Life Cycle of a Star Video (5 min) http://www.youtube.com/watch?v=pm9cqdlqi0a The Life Cycle of Stars Solar Nebula Theory : Is the current theory of how our Solar System formed. This theory states that

### The Life and Death of Stars

The Life and Death of Stars What is a Star? A star is a sphere of plasma gas that fuses atomic nuclei in its core and so emits light The name star can also be tagged onto a body that is somewhere on the

### Ch. 16 & 17: Stellar Evolution and Death

Ch. 16 & 17: Stellar Evolution and Death Stars have lives: born, evolve, die Mass determines stellar evolution: Really Low Mass (0.08 to 0.4 M sun ) Low Mass: (0.4 to 4 M sun ) Long lives High Mass (4

### Exam #2 Review Sheet. Part #1 Clicker Questions

Exam #2 Review Sheet Part #1 Clicker Questions 1) The energy of a photon emitted by thermonuclear processes in the core of the Sun takes thousands or even millions of years to emerge from the surface because

### Astro 1050 Fri. Apr. 10, 2015

Astro 1050 Fri. Apr. 10, 2015 Today: Continue Ch. 13: Star Stuff Reading in Bennett: For Monday: Finish Chapter 13 Star Stuff Reminders: Ch. 12 HW now on Mastering Astronomy, due Monday. Ch. 13 will be

### Stellar Evolution Notes

Name: Block: Stellar Evolution Notes Stars mature, grow old and die. The more massive a star is, the shorter its life will be. Our Sun will live about 10 billion years. It is already 5 billion years old,

### Age of M13: 14 billion years. Mass of stars leaving the main-sequence ~0.8 solar masses

Age of M13: 14 billion years. Mass of stars leaving the main-sequence ~0.8 solar masses Helium coreburning stars Giants Subgiants Main Sequence Here is a way to think about it. Outside of star Plenty of

### 17.3 Life as a High-Mass Star

17.3 Life as a High-Mass Star Our goals for learning: What are the life stages of a high-mass star? How do high-mass stars make the elements necessary for life? How does a high-mass star die? What are

### Life of a Star. Pillars of Creation

Life of a Star Life of a Star Pillars of Creation Life of a Star Pillars of Creation Stars form from massive clouds of gas that primarily consist of hydrogen. Life of a Star Gravity causes gas to contract

### Things to do 3/6/14. Topics for Today & Tues. Clicker review red giants. 2: Subgiant to Red Giant (first visit)

ASTR 1040: Stars & Galaxies Prof. Juri Toomre TA: Ryan Orvedahl Lecture 16 Thur 6 Mar 2014 zeus.colorado.edu/astr1040-toomre Blinking Eye Nebula Topics for Today & Tues Briefly revisit: planetary nebulae

### Astro 21 first lecture. stars are born but also helps us study how. Density increases in the center of the star. The core does change from hydrogen to

Astro 21 first lecture The H-R H R Diagram helps us study how stars are born but also helps us study how they die. Stars spend most of their lives as main sequence stars. The core does change from hydrogen

### Lec 9: Stellar Evolution and DeathBirth and. Why do stars leave main sequence? What conditions are required for elements. Text

1 Astr 102 Lec 9: Stellar Evolution and DeathBirth and Evolution Why do stars leave main sequence? What conditions are required for elements Text besides Hydrogen to fuse, and why? How do stars die: white

### Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro 110-01 Lecture 25 1 12.3 Life as a High-Mass Star Learning Goals What are the life stages of a

### Astronomy 122 Midterm

Astronomy 122 Midterm This Class (Lecture 15): Stellar Evolution: The Main Sequence Next Class: Stellar Evolution: Post-Main Sequence Midterm on Thursday! Last week for Nightlabs 1 hour exam in this classroom

### Protostars evolve into main-sequence stars

Understanding how stars evolve requires both observation and ideas from physics The Lives of Stars Because stars shine by thermonuclear reactions, they have a finite life span That is, they fuse lighter

### Planetary Nebulae White dwarfs

Life of a Low-Mass Star AST 101 Introduction to Astronomy: Stars & Galaxies Planetary Nebulae White dwarfs REVIEW END STATE: PLANETARY NEBULA + WHITE DWARF WHAS IS A WHITE DWARF? Exposed core of a low-mass

### Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4

Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4 For the protostar and pre-main-sequence phases, the process was the same for the high and low mass stars, and the main

### Gravity simplest. fusion

Gravity simplest fusion The life of a star has a complex relationship with gravity: 1. Gravity is what brings the original dust together to make a star 2. Gravity wants to crush the star Gravity pulls

### Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name: Period: Date: Astronomy Ch. 21 Stellar Explosions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused

### The dying sun/ creation of elements

The dying sun/ creation of elements Homework 6 is due Thurs, 2 April at 6:00am OBAFGKM extra credit Angel: Lessons>Extra Credit Due 11:55pm, 31 March Final exam (new, later time) 6 May, 3:00-5:00, BPS

### Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

Phys 0 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9 MULTIPLE CHOICE 1. We know that giant stars are larger in diameter than the sun because * a. they are more luminous but have about the

### Birth & Death of Stars

Birth & Death of Stars Objectives How are stars formed How do they die How do we measure this The Interstellar Medium (ISM) Vast clouds of gas & dust lie between stars Diffuse hydrogen clouds: dozens of

### Stages of the Sun's life:

Stellar Evolution Stages of the Sun's life: 1) initial collapse from interstellar gas (5 million yrs) 2) onset of nuclear reactions to start of main sequence phase (30 million yrs) 3) main sequence (10

### Introduction to Astronomy. Lecture 8: The Death of Stars White Dwarfs, Neutron Stars, and Black Holes

Introduction to Astronomy Lecture 8: The Death of Stars White Dwarfs, Neutron Stars, and Black Holes Continued from Last Week Lecture 7 Observing Stars Clusters of stars Some clouds start breaking into

### Astronomy 1144 Exam 3 Review

Stars and Stellar Classification Astronomy 1144 Exam 3 Review Prof. Pradhan 1. What is a star s energy source, or how do stars shine? Stars shine by fusing light elements into heavier ones. During fusion,

### Dark Matter. About 90% of the mass in the universe is dark matter Initial proposals: MACHOs: massive compact halo objects

1 Dark Matter About 90% of the mass in the universe is dark matter Initial proposals: MACHOs: massive compact halo objects Things like small black holes, planets, other big objects They must be dark (so

### Star Formation A cloud of gas and dust, called a nebula, begins spinning & heating up. Eventually, it gets hot enough for fusion to take place, and a

Stars Star- large ball of gas held together by gravity that produces tremendous amounts of energy and shines Sun- our closest star Star Formation A cloud of gas and dust, called a nebula, begins spinning

### Stellar Evolution. The lives of low-mass stars. And the lives of massive stars

Stellar Evolution The lives of low-mass stars And the lives of massive stars The Structure of the Sun Let s review: The Sun is held together by what force? The inward force is balanced by what other force?

### Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017

Lecture 16: The life of a low-mass star Astronomy 111 Monday October 23, 2017 Reminders Online homework #8 due Monday at 3pm Exam #2: Monday, 6 November 2017 The Main Sequence ASTR111 Lecture 16 Main sequence

### AST 101 Introduction to Astronomy: Stars & Galaxies

The H-R Diagram review So far: AST 101 Introduction to Astronomy: Stars & Galaxies - Stars on Main Sequence (MS) - Pre MS (Star Birth) Next: - Post MS: Giants, Super Giants, White dwarfs Evolution of Low

### Einführung in die Astronomie II

Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

### Chapter 13 Notes The Deaths of Stars Astronomy Name: Date:

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: I. The End of a Star s Life When all the fuel in a star is used up, will win over pressure and the star will die nuclear fuel; gravity High-mass

### Astronomy 114. Lecture 20: Death of stars. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114 Lecture 20: Death of stars Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 20 28 Mar 2007 Read: Ch. 22,23 Astronomy 114 1/19 Announcements PS#5 posted

### Lecture 24. Reprise: Evolution Timescale

Lecture 24 Life as a Low Mass Giant Dating the Stars Shell vs Core Fusion Helium Fusion Planetary Nebulae Mar 22, 2006 Astro 100 Lecture 24 1 Reprise: Evolution Timescale To estimate the duration of any

### Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name: Period: Date: Astronomy Ch. 20 Stellar Evolution MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A star (no matter what its mass) spends

### Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name: Period: Date: Astronomy Ch. 20 Stellar Evolution MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A star (no matter what its mass) spends

### LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

### Chapter 21 Stellar Explosions

Chapter 21 Stellar Explosions Units of Chapter 21 21.1 XXLife after Death for White Dwarfs (not on exam) 21.2 The End of a High-Mass Star 21.3 Supernovae Supernova 1987A The Crab Nebula in Motion 21.4