A New Era with E-ELT Drivers for circumstellar environment studies

Size: px
Start display at page:

Download "A New Era with E-ELT Drivers for circumstellar environment studies"

Transcription

1 PNPS-EELT Workshop February, 4-5th 2013, Fréjus A New Era with E-ELT Drivers for circumstellar environment studies Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France

2 Outline A New Era with E-ELT I- Roadmap for the E-ELT II- Science drivers for circumstellar environment 2.1 Star Disk interaction: Accretion/Outflows 2.2 Proto-planetary disks, debris disks & exo-zodiacal dust 2.3 Characterizing Exoplanets 2.4 Multiplicity in SFRs & IMF (> E. Moraux s Talk) 2.5 Environment of Evolved stars III/ Conclusions

3 I/ E-ELT Roadmap Synergy: current/future missions Ground: Harps N/S, SOPHIE, NaCo, VISIR, CRIRES, WASP Space: Spitzer, Herschel, WISE, Corot, Kepler, VLT & VLTI 2 nd generation XShooter, PRIMA, K-MOS, SPHERE, MUSE, GRAVITY ALMA (ACA) GAIA 2013 SKA 2016 Cheops 2017 JWST 2018 Echo 2022 (?) Plato 2022 (?) NEAT 2025 (?) TMT 2022 GMT 2022 E-ELT 2022

4 Discoveries by opening a new parameter space Increased Sensitivity Spatial resolution (10 mas scale) I/ E-ELT Roadmap E-ELT & other competitive projects 50m2 400m2 600m2 1200m2 (JWST: 25m2) 1 µm 25mas 9mas 7mas 5mas (JWST: 34mas)

5 I/ E-ELT Roadmap Call for E-ELT Instruments

6 I/ E-ELT Roadmap Selection & Agenda Instruments AO Mode λ (µm) Resolution FoV & Sampling Add. mode ELT-1: CAM (MICADO) SCAO, MCAO - IMG - MRS / 3 mas Corono ELT-2 IFU (HARMONI) SCAO, LTAO - IFU (0.5) * *10.0 / 4 40 mas Corono ELT-3: MIR (METIS) SCAO, LTAO - IMG - MRS - IFU / 12 mas 0.4*1.5 / 4 mas Corono Polar. ELT-4/5: HIRES (CODEX/SIMPLE) No AO SCAO, MCAO, LTAO - HRS *0.5 ELT-4/5: MOS (EAGLE/EVE/ DIORAMA) No AO, GLAO MCAO Slits IFUs IFUs ELT-X: PCS (EPICS) XAO EPOL IFS / 2.3 mas 0.8 / 1.5 mas Corono Polar.

7 I/ E-ELT Roadmap Selection & Agenda

8 Outline A New Era with E-ELT I- Roadmap for the E-ELT II- Science drivers for circumstellar environment 2.1 Star Disk interaction: Accretion/Outflows 2.2 Proto-planetary disks, debris disks & exo-zodiacal dust 2.3 Characterizing Exoplanets 2.4 Multiplicity in SFRs & IMF (> E. Moraux s Talk) 2.5 Environment of Evolved stars III/ Conclusions

9 2.1 Star disk interactions, Jets and Outflows Science drivers for E-ELT: Inner disk structure (warp and asymmetries) Link to stellar magnetosphere Accretion flows (non steady accretion processes). Outflows nature: o steady (disk wind) o outburst (magneto-spheric ejections) Geometry of Jets & Outflows (collimation?) Romanova et al. 12

10 Star disk interactions at sub-au scale The AA Tau case Bouvier et al. 07 Light curve: periodical (~ 8.2 days) eclipses. Linear polarization increases as system fades. Periodical occultation by an optically thick, magnetically-warped inner disk region Periodic accretion shock synchronized with the disk warp Spectral lines: HeI, Balmer, Paschen, CaII

11 Jet and outflows geometry and kinematics Meliani et al. 07, Zani et al. 13 The young BD 2M1207 Jet launching region, kinematics and Collimation at < Aus Physical conditions (Excitation, temperature & density) Mass loss to mass accretion rate (mass dependence) Spectral lines: [SII], [OII], [OI], [NII], [FeII] Whelan et al. 07, 13 Artist s View

12 2.1 Star disk interactions, Jets and Outflows Diagnostics, Techniques & Requirements: Spectral lines (Balmer, Paschen and Brackett lines, S[II], HeI, FeII...) Spectral line imaging and/or spectro-astrometry HAR:10mas (1.5 AU at 150pc); Spectro-astrometry (0.015 AU) Visible, and NIR wavelengths ( um) Spectral resolution (up to to access velocity of a few km/s) Temporal resolution (from a few seconds to hrs) Most adapted instrument at E-ELT? EELT-IFU, IFU facility from visible to NIR. Interest in going to MIR (ELT-MIR/IFU?) 2D field velocity & adapted spectral coverage for the lines of interest

13 Outline A New Era with E-ELT I- Roadmap for the E-ELT II- Science drivers for circumstellar environment 2.1 Star Disk interaction: Accretion/Outflows 2.2 Proto-planetary disks, debris disks & exo-zodiacal dust 2.3 Characterizing Exoplanets 2.4 Multiplicity in SFRs & IMF (> E. Moraux s Talk) 2.5 Environment of Evolved stars III/ Conclusions

14 Gas dynamics in the proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr) Dust Gap at 18 AU (sub-mm continuum emission Brown e al. 07) VLT/CRIRES (R = ) Spectro-astrometry CO v=1.0 ro-vibration line at 4.7um > Tracer for warm gas in the inner disk CO emission within a ring cut at 7 AU Dust gap formation by grain growth? Companion at less than 4AU? Pontoppidan et al. 08, 10

15 Gas dynamics in the proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr) Dust Gap at 18 AU (sub-mm continuum emission Brown e al. 07) E-ELT-MIR simulations of 12 CO line emission at 4.7um of SR21. o Left: Continuum subtracted and velocity channel co-added o Right: Velocity map with a resolving power of (3 km/s) Brandl et al AU

16 Water in the planet-forming zones of DR Tau and AS 205N Keck-NIRSPEC high resolution (R = ) spectroscopy in L-band Detection of strong MIR lines of H20 and related OH radicals Hot (800K) water detected probably from the inner AUs Salyk et al. 08

17 Imaging gaps and asymmetries in proto-planetary disks ELT-MIR simulations of high-contrast imaging at 10 µm. Jupiter footprint at 20 AU from G-star? Gap detection at a few mjy/as2 at (10 20 AU) ELT-MIR very competitive with JWST (spatial resolution and sensitivity) Eric s Talk

18 2.2 Physics of proto-planetary and debris disks Diagnostics, Techniques & Requirements: Molecular lines (CO, H2, H20, OH, CH4, C2H2, HCN...) and Si/PAH signatures Visible, NIR and MIR ( µm) Spectral resolution (up to to access velocity of a few km/s) Imaging at AU scale & Spectral line imaging, spectro-astrometry HAR and High-contrast: o SCAO o Coronagraphy o differential imaging techniques Most adapted instrument at E-ELT? Imaging: EELT-CAM and MIR, then ELT-PCS Spectral line IMG: EELT-IFU and MIR, IFU facility from visible to NIR and LM

19 Outline A New Era with E-ELT I- Roadmap for the E-ELT II- Science drivers for circumstellar environment 2.1 Star Disk interaction: Accretion/Outflows 2.2 Proto-planetary disks, debris disks & exo-zodiacal dust 2.3 Characterizing Exoplanets 2.4 Multiplicity in SFRs & IMF (> E. Moraux s Talk) 2.5 Environment of Evolved stars III/ Conclusions

20 2.3 Exoplanets Characterization Science drivers for E-ELT: Detection of Exo-Earths, particularly an Earth-Twin Super-Earth to Giant Planet Imaging. Planet disk interactions Characterization of Super-Earths to Super Jupiters at all orbits o Frequency & multiple systems o Orbital & physical properties o Atmosphere (composition, evaporation...) o Dependence on stellar properties (mass, age, metallicity & binarity) Planetary formation & evolution mechanisms o Connection to the stellar properties o to the planet properties (composition, orbital & physical properties) Temporal variation of planet's properties o Atmospheric circulation (day/night variation) o Weather forecast (clouds formation) o Star planet magnetic interactions

21 An Earth-mass planet orbiting Alpha Centauri B ESO3.6m/HARPS observations Dealing with: instrumental noise, stellar oscillation, granulatio, rotation, longterm activity, contamination and binary signal. Alpha Cen Bb: T = 3.23 days M = 1.13±0.09 M Earth K = 0.51 m/s ecc = 0.0 (fixed) Dumusque et al. 12

22 Twin-Earth with E-ELT-HIRES Simulations of 1.8 M Earth Exo-Earth in HZ (P=145 days) around a bright and lowactivity K1V star. Limitations: instrumental noise, stellar oscillations, granulation and activity. Detailed observing strategy: 3 meas./night every 3 nights over 8 months Periodogram: 3σ detection (red)

23 Population of closed-in telluric and giant planets Expected planet population detected by Doppler spectroscopy with: o HARPS on the ESO 3.6-metre (precision 1 ms 1; left), o ESPRESSO on the VLT(precision 10 cms 1; middle) o and HIRES on the E-ELT(precision 1 cms 1; right). > HIRES, required to detect Earth-like planets in HZ of solar-type stars

24 Imaging Giant Planets to Super Earths VLT/NaCo ADI High-contrast imaging in NIR & LM β Pic b planet (Lagrange et al. 08), o Sep = 400 mas o ΔJ = mag, o pc, o > Mass = 7 8 Mjup ( Hot-Start ) Atmospheric properties Bonnefoy et al. 13

25 Imaging Giant Planets to Super Earths VLT/NaCo ADI High-contrast imaging in NIR & LM β Pic b planet (Lagrange et al. 08), o Sep = 400 mas o ΔJ = mag, o pc, o > Mass = 7 8 Mjup ( Hot-Start ) Atmospheric properties Planet orbital revolution Chauvin et al. 12 Bonnefoy et al. 13

26 Characterizing Giant Planets to Super Earths GAIA SPHERE ELT-PCS ELT-HIRES Mesa et al. 11 Kasper et al. 10 Lattanzi & Sozzetti 10 >> Synergy btw the different observing techniques

27 2.3 Exoplanets Characterization Diagnostics, Techniques & Requirements: High-Contrast Imaging from VIS to MIR at diffraction limit (XAO, coronagraphic, differential imaging ) LRS to MRS spectroscopy from NIR to MIR (Atmosphere) HRS (R > ) spectroscopy for RV High astrometric accuracy(50 µas) High photometric accuracy(transit) Most adapted instrument at E-ELT? Imaging: EELT-IFU and MIR, then ELT-PCS LRS & MRS spectro: EELT-IFU and MIR HRS spectro: EELT-HIRES Transit: EELT-MIR, CAM, IFU?

28 Outline A New Era with E-ELT I- Roadmap for the E-ELT II- Science drivers for circumstellar environment 2.1 Star Disk interaction: Accretion/Outflows 2.2 Proto-planetary disks, debris disks & exo-zodiacal dust 2.3 Characterizing Exoplanets 2.4 Multiplicity in SFRs & IMF (> E. Moraux s Talk) 2.5 Environment of Evolved stars III/ Conclusions

29 2.5 Evolved stars Science drivers for E-ELT: Outflows geometry Interacting binaries and wind-wind collision Jet in cataclysmic variables and symbiotic system Disks around evolved stars Plasma disks around massive interacting systems Diagnostics, Techniques & Requirements: Similar to Accretion/Outflows Similar to Disks Most adapted instrument at E-ELT? Imaging: EELT-CAM and MIR, then ELT-PCS Spectral line IMG: EELT-IFU and MIR, IFU facility from visible to NIR and LM VLT/NaCo (Chesneau et al. 07)

30 Outline A New Era with E-ELT I- Roadmap for the E-ELT II- Science drivers for circumstellar environment 2.1 Star Disk interaction: Accretion/Outflows 2.2 Proto-planetary disks, debris disks & exo-zodiacal dust 2.3 Characterizing Exoplanets 2.4 Multiplicity in SFRs & IMF (> E. Moraux s Talk) 2.5 Environment of Evolved stars III/ Conclusions

31 III- Conclusions E-ELT, ideal for the future exploration of the circumstellar environment o Star disk interaction at sub-au scale (IFU) o Gas and dust component of proto-planetary disks (MIR) o Exoplanet Characterization (PCS) Still a lot to learn & develop, o o o MIR Sensitivity (MIR): Aquarius detectors on VISIR XAO design (PCS): SPHERE & GPI HRS (HIRES): HARPS & ESPRESSO and observing strategy for exo-earths BUT, o first-light instruments (-CAM and IFU, 2022) driven by the X-Gal community o Less interest for high-contrast imaging or HRS capabilities / MOS? o HIRES, PCS should not arrive before o Must support Top Level Requirements that would serve the Stellar Community >> Exple: coronagraphic mode on CAM and IFU (disk & exoplanets) >> Astrometric precision on CAM for astrometric planet search >> Polarimetric capabilities of the E-ELT

Exoplanetary Science with the E-ELT

Exoplanetary Science with the E-ELT SF2A, MONTPELLIER, 4-7 JUNE 2013 Exoplanetary Science with the E-ELT Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST, and E-ELT CAM,

More information

Exoplanets at the E-ELT era

Exoplanets at the E-ELT era Towards Other Earths II: The Star Planet Connection, Porto, September 15-19 th, 2014 Exoplanets at the E-ELT era Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France ESO-Project

More information

E-ELT s View of Exoplanetary Atmospheres

E-ELT s View of Exoplanetary Atmospheres Exo-Abundances Workshop, May 12th 14th, Grenoble E-ELT s View of Exoplanetary Atmospheres Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST,

More information

Synergies between E-ELT and space instrumentation for extrasolar planet science

Synergies between E-ELT and space instrumentation for extrasolar planet science Synergies between E-ELT and space instrumentation for extrasolar planet science Raffaele Gratton and Mariangela Bonavita INAF Osservatorio Astronomico di Padova - ITALY Main topics in exo-planetary science

More information

Direct imaging characterisation of (exo-) planets with METIS

Direct imaging characterisation of (exo-) planets with METIS Direct imaging characterisation of (exo-) planets with METIS Jupiter HR8799 Saturn VLT/ISAAC VLT/NACO Cassini/VIMS Wolfgang Brandner (MPIA) with contributions by Ian Crossfield, Lisa Kaltenegger (MPIA),

More information

Exoplanets in the mid-ir with E-ELT & METIS

Exoplanets in the mid-ir with E-ELT & METIS Exoplanets in the mid-ir with E-ELT & METIS Wolfgang Brandner (MPIA), Eric Pantin (CEA Saclay), Ralf Siebenmorgen (ESO), Sebastian Daemgen (MPIA/ESO), Kerstin Geißler (MPIA/ESO), Markus Janson (MPIA/Univ.

More information

Revealing the evolution of disks at au from high-resolution IR spectroscopy

Revealing the evolution of disks at au from high-resolution IR spectroscopy Protoplanetary seen through the eyes of new-generation high-resolution instruments - Rome, June 6, 08 Revealing the evolution of at 0.0-0 au from high-resolution IR spectroscopy VLT IR interferometry (not

More information

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology A. Sozzetti INAF Osservatorio Astrofisico di Torino Detection/Characterization Detection (Visible): - Doppler spectroscopy (95%) -

More information

Characterization of Exoplanets in the mid-ir with JWST & ELTs

Characterization of Exoplanets in the mid-ir with JWST & ELTs Characterization of Exoplanets in the mid-ir with JWST & ELTs Jupiter HR8799 Saturn VLT/ISAAC VLT/NACO Cassini/VIMS Wolfgang Brandner (MPIA), Eric Pantin (CEA Saclay), Ralf Siebenmorgen (ESO), Carolina

More information

Exoplanet Science with E-ELT/METIS

Exoplanet Science with E-ELT/METIS Science with E-ELT/METIS Sascha P. Quanz (ETH Zurich) METIS Project Scientist EPSC 2015 - Nantes 1 Oct 2015 Image credit: BBC METIS is a 3-19 micron imager and spectrograph... METIS instrument baseline

More information

Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST

Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST Jean Schneider, A. Boccaletti, P. Baudoz, R. Galicher, R. Gratton, D. Stam et al. & E. Pantin, Complementarity of techniques

More information

Science with EPICS, the E-ELT planet finder

Science with EPICS, the E-ELT planet finder The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution Proceedings IAU Symposium No. 276, 2010 c International Astronomical Union 2011 A. Sozzetti, M. G. Lattanzi & A. P.

More information

Investigating the origin of stellar jets with SPHERE

Investigating the origin of stellar jets with SPHERE Investigating the origin of stellar jets with SPHERE HH 30 - HST Linda Podio (INAF-Arcetri) & Simone Antoniucci (INAF-Rome) SPHERE Consortium SVT proposal (1 target): Dec 1-12 2014 P94 EGTO-Other Science

More information

E-ELT METIS * AND MATISSE: PROSPECTS FOR AGB-STARS

E-ELT METIS * AND MATISSE: PROSPECTS FOR AGB-STARS E-ELT METIS * AND MATISSE: PROSPECTS FOR AGB-STARS J. Hron 1, J. Blommaert 2, L. Decin 2, T. Lebzelter 1, C. Paladini 3,1, H. Van Winckel 2 and the METIS and MATISSE teams (1) Universitätssternwarte Wien,

More information

E-ELT Programme; ESO Instrumentation Project Office Ground-based Instrumentation for VLT, VLTI and E-ELT

E-ELT Programme; ESO Instrumentation Project Office Ground-based Instrumentation for VLT, VLTI and E-ELT Ground-based Instrumentation for VLT, VLTI and E-ELT Raffaele Gratton (with strong help by Sandro D Odorico) VLT 2 nd generation instruments Launched in 2001, completed 2012 HAWK-I (2007): wide field (7.5

More information

E-ELT/HIRES Disk-Star Interactions at the epoch of planet formation

E-ELT/HIRES Disk-Star Interactions at the epoch of planet formation E-ELT/HIRES Disk-Star Interactions at the epoch of planet formation Leonardo Testi (ESO/INAF-Arcetri) B. Nisini (INAF-Monteporzio), J. Alcalaʼ (INAF-Capodimonte) From Cores to Planetary Systems Core (Hernandez

More information

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh DEPARTMENT OF PHYSICS AND ASTRONOMY Planets around white dwarfs Matt Burleigh Contents Original motivation DODO - results from our direct imaging survey Where do we go next? The role for E-ELT Direct imaging

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Red dwarfs and the nearest terrestrial planets

Red dwarfs and the nearest terrestrial planets Red dwarfs and the nearest terrestrial planets Guillem Anglada-Escudé Queen Mary University of London Abel Mendez/PHL Alexandre Santerne/ESO Alexandre Santerne/ESO Fantastic planet$ And where to find them

More information

Science of extrasolar Planets A focused update

Science of extrasolar Planets A focused update Science of extrasolar Planets A focused update Raffaele Gratton, INAF Osservatorio Astronomico di Padova Extrasolar planets: a rapidly growing field of astronomy Top Tenz: Top 10 most important discoveries

More information

The Austrian contribution to the European Extremely Large Telescope

The Austrian contribution to the European Extremely Large Telescope The Austrian contribution to the European Extremely Large Telescope Werner W. Zeilinger consortium Evolution of Telescope Size Scientific American 2015 14/15.Dec.2015 From Ground to Space 2 Discoveries

More information

Science Drivers for the European Extremely Large Telescope

Science Drivers for the European Extremely Large Telescope Science Drivers for the European Extremely Large Telescope Suzanne Ramsay E-ELT Instrumentation Project Manager for Michele Cirasuolo E-ELT Programme Scientist Outline of the talk From an scientific idea

More information

Prospects for ground-based characterization of Proxima Centauri b

Prospects for ground-based characterization of Proxima Centauri b Prospects for ground-based characterization of Proxima Centauri b Ma#eo Brogi Hubble Fellow, CU-Boulder Ignas Snellen, Remco de Kok, Henrie5e Schwarz (Leiden, NL) Jayne Birkby (CfA, USA), Simon Albrecht

More information

Preparing staff for ELT science operations activities

Preparing staff for ELT science operations activities Preparing staff for ELT science operations activities Andres Pino Pavez European Southern Observatory ESA/ESO Sciops Workshop 2017 Working together in support of science 17-20 OCTOBER 2017 - EUROPEAN SPACE

More information

Jean- Luc Beuzit and David Mouillet

Jean- Luc Beuzit and David Mouillet ONERA Scien,fic Days / Journées Scien,fiques Onera High Contrast Imaging / Imagerie à Haute Dynamique Perspec8ves for exoplanet imaging Jean- Luc Beuzit and David Mouillet Perspec8ve: back in 8me A rela8vely

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

SPICA Science for Transiting Planetary Systems

SPICA Science for Transiting Planetary Systems SPICA Science for Transiting Planetary Systems Norio Narita Takuya Yamashita National Astronomical Observatory of Japan 2009/06/02 SPICA Science Workshop @ UT 1 Outline For Terrestrial/Jovian Planets 1.

More information

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013 T-REX Renato Falomo T-REX meeting, Bologna 14 Jan 2013 1 T-REX MICADO: Multi-AO Imaging Camera for Deep Observations The Consortium MPE Garching, Germany MPIA Heidelberg, Germany USM Munich, Germany OAPD

More information

Exoplanet science with ground based ELTs

Exoplanet science with ground based ELTs Exoplanet science with ground based ELTs Markus Kasper, European Southern Observatory (ESO) 1 Outline Scaling laws and Adaptive Optics Observational properties of Exoplanets E-ELT CODEX METIS EPICS (high

More information

Design Reference Mission. DRM approach

Design Reference Mission. DRM approach Design Reference Mission The Design Reference Mission (DRM) is a set of observing programs which together provide a tool to assist with tradeoff decisions in the design of the E-ELT (examples of observing

More information

MIRI, METIS and the exoplanets. P.O. Lagage CEA Saclay

MIRI, METIS and the exoplanets. P.O. Lagage CEA Saclay MIRI, METIS and the exoplanets P.O. Lagage CEA Saclay French Co-PI of JWST-MIRI and Coordinator of European MIRI GTO on exoplanets Member of the ELT-METIS science team Why MIRI and METIS? Because of my

More information

What will the future bring? Scientific discoveries expected from the E-ELT

What will the future bring? Scientific discoveries expected from the E-ELT What will the future bring? Scientific discoveries expected from the E-ELT Planets & Stars Stars & Galaxies Galaxies & Cosmology Eline Tolstoy Kapteyn Astronomical Institute, University of Groningen E-ELT

More information

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

Searching for extrasolar planets with SPHERE. Mesa Dino, Raffaele Gratton, Silvano Desidera, Riccardo Claudi (INAF OAPD)

Searching for extrasolar planets with SPHERE. Mesa Dino, Raffaele Gratton, Silvano Desidera, Riccardo Claudi (INAF OAPD) Searching for extrasolar planets with SPHERE Mesa Dino, Raffaele Gratton, Silvano Desidera, Riccardo Claudi (INAF OAPD) The field of extrasolar planets today At the moment 2017 planets have been discovered.

More information

SCIENCE WITH. HARMONI A near-infrared & visible integral field spectrograph for the E-ELT. Niranjan Thatte University of Oxford

SCIENCE WITH. HARMONI A near-infrared & visible integral field spectrograph for the E-ELT. Niranjan Thatte University of Oxford SCIENCE WITH HARMONI A near-infrared & visible integral field spectrograph for the E-ELT Niranjan Thatte University of Oxford HARMONI Consortium Niranjan Thatte, Matthias Tecza,! Fraser Clarke, Tim Goodsall,!

More information

EPICS: A planet hunter for the European ELT

EPICS: A planet hunter for the European ELT EPICS: A planet hunter for the European ELT M. Kasper, C. Verinaud, J.L. Beuzit, N. Yaitskova, A. Boccaletti, S. Desidera, K. Dohlen, T. Fusco, N. Hubin, A. Glindemann, R. Gratton, N. Thatte 42-m E-ELT

More information

Polarimetry and spectral imaging of mature Jupiter and super Earth SEE COAST

Polarimetry and spectral imaging of mature Jupiter and super Earth SEE COAST Polarimetry and spectral imaging of mature Jupiter and super Earth SEE COAST Jean Schneider, A. Boccaletti, P. Baudoz, G. Tinetti, D. Stam, R. Gratton,... Eth Zurich Univ. of Leiden Univ. Amsterdam CSL

More information

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg Classical Interferometric Arrays Andreas Quirrenbach Landessternwarte Heidelberg The VLT Interferometer Tucson 11/14/2006 Andreas Quirrenbach 2 Optical / Infrared Interferometry Today Access to milliarcsecond-scale

More information

Exoplanet Science in the 2020s

Exoplanet Science in the 2020s Exoplanet Science in the 2020s NOAO 2020 Decadal Survey Community Planning Workshop Courtney Dressing Assistant Professor of Astronomy at University of California, Berkeley February 20, 2018 Origins Space

More information

TMT High-Contrast Exoplanet Science. Michael Fitzgerald University of California, Los Angeles (UCLA)

TMT High-Contrast Exoplanet Science. Michael Fitzgerald University of California, Los Angeles (UCLA) TMT High-Contrast Exoplanet Science Michael Fitzgerald University of California, Los Angeles (UCLA) The Next Decade+ Demographics Kepler has provided rich census of radius/semimajoraxis space down to terrestrial

More information

Instrumentation for The European Extremely Large Telescope Science and Technology with E-ELT Erice, October 2015

Instrumentation for The European Extremely Large Telescope Science and Technology with E-ELT Erice, October 2015 Instrumentation for The European Extremely Large Telescope Science and Technology with E-ELT Erice, October 2015 Suzanne Ramsay (sramsay@eso.org) Outline of the talk The environment for instruments on

More information

Direct imaging of extra-solar planets

Direct imaging of extra-solar planets Chapter 6 Direct imaging of extra-solar planets Direct imaging for extra-solar planets means that emission from the planet can be spatially resolved from the emission of the bright central star The two

More information

Potential Synergies Between MSE and the ELTs A Purely TMT-centric perspective But generally applicable to ALL ELTs

Potential Synergies Between MSE and the ELTs A Purely TMT-centric perspective But generally applicable to ALL ELTs Potential Synergies Between MSE and the ELTs A Purely TMT-centric perspective But generally applicable to ALL ELTs Warren Skidmore, TMT Instrument System Scientist 2 nd May, 2018 IPAC Science Talk 1 TMT

More information

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation PLATO PLAnetary Transits and Oscillations of Stars revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation The PLATO Consortium:

More information

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work PLATO-20 Follow-up PLATO Follow-up activities Context'and'organisaon S Udry University of Geneva Overall PSPM structure The prime science product of PLATO = sample of fully characterized planets (various

More information

Protoplanetary Disk * ELT *

Protoplanetary Disk * ELT * Protoplanetary Disk * ELT * Miwa Goto Max Planck Institute for Extraterrestrial Physics Garching, Germany Observing CO vibrational band in Protoplanetary Disk angular resolution + IR high angular resolution

More information

Adam Burrows, Princeton April 7, KITP Public Lecture

Adam Burrows, Princeton April 7, KITP Public Lecture Adam Burrows, Princeton April 7, 2010 KITP Public Lecture The Ancient History of Comparative Planetology There are infinite worlds both like and unlike this world of ours...we must believe that in all

More information

DIRECT PLANET DETECTION

DIRECT PLANET DETECTION DIRECT PLANET DETECTION James R. Graham (UCB) Bruce Macintosh (LLNL) & Mitchell Troy (JPL) 1 High Contrast Imaging? Broad new frontier enabled by large telescopes & AO Exoplanet detection Direct methods

More information

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech A Tale of Star and Planet Formation Lynne Hillenbrand Caltech Vermeer s The Astronomer (1688) Mauna Kea (last week) photos by: Sarah Anderson and Bill Bates Context: Our Sun The Sun is a completely average

More information

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Exoplanet atmospheres

Exoplanet atmospheres Exoplanet atmospheres at high spectral resolution Matteo Brogi Hubble Fellow, CU-Boulder I. Snellen, R. de Kok, H. Schwarz (Leiden, NL) J. Birkby (CfA, USA), S. Albrecht (Aarhus, DK)! J. Bean (Chicago,

More information

Star Formation. Spitzer Key Contributions to Date

Star Formation. Spitzer Key Contributions to Date Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information

ALMA Observations of the Disk Wind Source AS 205

ALMA Observations of the Disk Wind Source AS 205 ALMA Observations of the Disk Wind Source AS 205 Keck/VLT ALMA 8 April 2013 Geoffrey A. Blake, Division of GPS, Caltech Transformational Science with ALMA: From Dust to Rocks to Planets Folks doing the

More information

Synergies between and E-ELT

Synergies between and E-ELT Synergies between and E-ELT Aprajita Verma & Isobel Hook 1) E- ELT Summary 2) E- ELT Project Status 3) Parameter space 4) Examples of scientific synergies The World s Biggest Eye on the Sky 39.3m diameter,

More information

OBSERVATIONAL CONSTRAINTS on the FORMATION of VERY LOW MASS STARS & BROWN DWARFS

OBSERVATIONAL CONSTRAINTS on the FORMATION of VERY LOW MASS STARS & BROWN DWARFS OBSERVATIONAL CONSTRAINTS on the FORMATION of VERY LOW MASS STARS & BROWN DWARFS Subhanjoy Mohanty (Spitzer Fellow, Harvard University) Gibor Basri, Ray Jayawardhana, Antonella Natta David Barrado y Navascués,

More information

The Galactic Center with METIS

The Galactic Center with METIS The Galactic Center with METIS THE E-ELT E ELT DESIGN REFERENCE MISSION DRM & DRSP Workshop 26 28 May 2009 ESO Garching Andreas Eckart I.Physikalisches Institut der Universität zu Köln Max-Planck Planck-Institut

More information

Looking to the Future: the rest of the planets

Looking to the Future: the rest of the planets AGU Chapman Conference 24-28 June 2013 Annapolis, MD Crossing Boundaries in Planetary Atmospheres Looking to the Future: the rest of the planets Heidi B. Hammel AURA, Washington, DC Looking to the future

More information

GHOST. GIARPS High-resolution ObservationS of T Tauri Stars. S. Antoniucci (INAF- OAR)

GHOST. GIARPS High-resolution ObservationS of T Tauri Stars. S. Antoniucci (INAF- OAR) JEts and Disks @Inaf GHOST GIARPS High-resolution ObservationS of T Tauri Stars S. Antoniucci (INAF- OAR) B. Nisini, T. Giannini (OAR), K. Biazzo, A. Frasca (OACt), J. M. Alcalà (OACn), D. Fedele, L. Podio,

More information

PProbing New Planet Views Forming on Disks: INTRODUCTION! Contributions from Spitzer and Ground-based Facilities. Joan Najita (NOAO)

PProbing New Planet Views Forming on Disks: INTRODUCTION! Contributions from Spitzer and Ground-based Facilities. Joan Najita (NOAO) PProbing New Planet Views Forming on Disks: Gas Clues in the to the Planet Origins Formation of Planetary Region Systems! of Disks INTRODUCTION! Contributions from Spitzer and Ground-based Facilities Joan

More information

Astrophysical false alarms in high contrast imaging surveys

Astrophysical false alarms in high contrast imaging surveys Astrophysical false alarms in high contrast imaging surveys The SPHERE/NIRSUR case G. Chauvin IPAG Institut de Planétologie et Astrophysique de Grenoble P. Delorme (IPAG), A. Vigan, A. Zurlo, C. Moutou

More information

Identification of compact objects in X-ray/gamma-ray binaries and the exploration of long-period exoplanets by high-precision astrometry

Identification of compact objects in X-ray/gamma-ray binaries and the exploration of long-period exoplanets by high-precision astrometry X-ray binary Gaia Gaia-JASMINE Joint Meeting @NAOJ, 6-9 Dec. 2016 exoplanet ESA/ATG NAOJ Identification of compact objects in X-ray/gamma-ray binaries and the exploration of long-period exoplanets by high-precision

More information

Perspectives for Future Groundbased Telescopes. Astronomy

Perspectives for Future Groundbased Telescopes. Astronomy Perspectives for Future Groundbased Telescopes Tim de Zeeuw 1 Astronomy Study of everything beyond the Earth Objects far away, hence small and faint Limited information about their nature Searches and

More information

E-ELT/METIS. 1 Introduction to METIS

E-ELT/METIS. 1 Introduction to METIS Conditions and Impact of Star Formation R. Simon, R. Schaaf and J. Stutzki (eds) EAS Publications Series, 75-76 (2015) 405 410 E-ELT/METIS B. Brandl 1, S. Quanz 2,M.Feldt 3,A.Glasse 4,M.Guedel 5,M.Meyer

More information

Characterizing Exoplanets and Brown Dwarfs With JWST

Characterizing Exoplanets and Brown Dwarfs With JWST Characterizing Exoplanets and Brown Dwarfs With JWST C. Beichman NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology On Behalf of the NIRCam Exoplanet Team September

More information

Recent VLTI results on stellar winds and perspectives with second generation instruments. Xavier Haubois

Recent VLTI results on stellar winds and perspectives with second generation instruments. Xavier Haubois Recent VLTI results on stellar winds and perspectives with second generation instruments Xavier Haubois Outline - The VLTI and its instruments - Massive stars - HMXBs - AGBs - Planetary Nebulae - Perspectives

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has

More information

Scientific context in 2025+

Scientific context in 2025+ Outline Scientific context and goals O 2 detection on an Exoplanet with the E-ELT? PCS concept and technological challenges Timeframe for E-ELT high-contrast imaging Scientific context in 2025+ GAIA: Know

More information

Probing the embedded phase of star formation with JWST spectroscopy

Probing the embedded phase of star formation with JWST spectroscopy Probing the embedded phase of star formation with JWST spectroscopy NIRSPEC Spitzer NGC 1333 Low mass Herschel Cygnus X High mass Jorgensen et al. Gutermuth et al. 10 10 Motte, Henneman et al. E.F. van

More information

SPHERE GTO Program S. Desidera On behalf of SPHERE GTO team

SPHERE GTO Program S. Desidera On behalf of SPHERE GTO team SPHERE GTO Program S. Desidera On behalf of SPHERE GTO team Aims Provide an overview of the SPHERE GTO program to have a clear view of what is already on-going GTO targets (for the requested observing

More information

Searching for Other Worlds: The Methods

Searching for Other Worlds: The Methods Searching for Other Worlds: The Methods John Bally 1 1 Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder The Search Extra-Solar

More information

CASE/ARIEL & FINESSE Briefing

CASE/ARIEL & FINESSE Briefing CASE/ARIEL & FINESSE Briefing Presentation to NRC Committee for Exoplanet Science Strategy including material from the ARIEL consortium Mark Swain - JPL 19 April 2019 2018 California Institute of Technology.

More information

The effect of stellar activity on radial velocities. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory

The effect of stellar activity on radial velocities. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory The effect of stellar activity on radial velocities Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory Mass and radius are the most fundamental parameters of a planet Main inputs for models

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Extreme AO Coronagraph Science with GPI. James R. Graham UC, Berkeley

Extreme AO Coronagraph Science with GPI. James R. Graham UC, Berkeley Extreme AO Coronagraph Science with GPI James R. Graham UC, Berkeley Outline 2 ExAOC science impact Direct vs. indirect planet searches GPI experimental design Our knowledge of exoplanets defines AO design

More information

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

Exoplanet atmosphere Spectroscopy present observations and expectations for the ELT

Exoplanet atmosphere Spectroscopy present observations and expectations for the ELT Exoplanet atmosphere Spectroscopy present observations and expectations for the ELT Hành tinh ngoại không khí phổ quan sát và kỳ vọng đối với các kính viễn vọng cực kỳ lớn Ignas Snellen, Leiden University

More information

IGRINS: Immersion GRating INfrared Spectrograph. Jae-Joon Lee (KASI) on behalf of IGRINS Team

IGRINS: Immersion GRating INfrared Spectrograph. Jae-Joon Lee (KASI) on behalf of IGRINS Team IGRINS: Immersion GRating INfrared Spectrograph Jae-Joon Lee (KASI) on behalf of IGRINS Team Efficient & Compact NIR Spectrograph, simultaneously covering H & K band with R~45,000. Given the FINITE detector

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Detection and characterization of exoplanets from space

Detection and characterization of exoplanets from space Detection and characterization of exoplanets from space Heike Rauer 1,2, 1:Institute for Planetary Research, DLR, Berlin 2:Center for Astronomy and Astrophysics, TU Berlin Exoplanet Space Missions and

More information

Extra-solar Planets (Exoplanets)

Extra-solar Planets (Exoplanets) Extra-solar Planets (Exoplanets) The search for planets around other stars David Wood Oct 1, 2014 Outline Why do we care? Overview of our knowledge Discovery techniques Space-based observations Results

More information

Origins of Stars and Planets in the VLT Era

Origins of Stars and Planets in the VLT Era Origins of Stars and Planets in the VLT Era Michael R. Meyer Institute for Astronomy, ETH-Zurich From Circumstellar Disks to Planets 5 November 2009, ESO/MPE Garching Planet Formation = Saving the Solids

More information

E-ELT S VIEW OF CIRCUMSTELLAR ENVIRONMENTS

E-ELT S VIEW OF CIRCUMSTELLAR ENVIRONMENTS Florence, Italy. May 2013 ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.17033 E-ELT S VIEW OF CIRCUMSTELLAR ENVIRONMENTS Gaël Chauvin 1a and the E-ELT Project Science Team 1 UJF-Grenoble1/CNRS-INSU, Institut

More information

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany Circumstellar disks The MIDI view Sebastian Wolf Kiel University, Germany MPIA MIDI SG concluding meeting May 5, 2014 Overview Circumstellar disks: Potential of IR long-baseline interferometry MIDI: Exemplary

More information

EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey

EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey Peter Plavchan Assistant Professor George Mason University 1 @PlavchanPeter http://exo.gmu.edu

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC Exploring the giant planet - brown dwarf connection with astrometry ESA Research Fellow at ESAC Who s Who, Paris - 2 July 215 IS MASS A GOOD DEMOGRAPHIC INDICATOR? 2MASSWJ127334 393254 first image of a

More information

Brown Dwarfs and Planets around Nearby Stars. A Coronagraphic Search for. B. R. Oppenheimer (AMNH) Morino,, H. Suto,, M. Ishii, M. K.

Brown Dwarfs and Planets around Nearby Stars. A Coronagraphic Search for. B. R. Oppenheimer (AMNH) Morino,, H. Suto,, M. Ishii, M. K. A Coronagraphic Search for Brown Dwarfs and Planets around Nearby Stars T. Nakajima, J.-I. Morino,, H. Suto,, M. Ishii, M. Tamura, N. Kaifu,, S. Miyama, H. Takami,, N. Takato, S. Oya, S. Hayashi, M. Hayashi

More information

The ALMA SKA Synergy For Star and Stellar Cluster Formation

The ALMA SKA Synergy For Star and Stellar Cluster Formation The ALMA SKA Synergy For Star and Stellar Cluster Formation Gary Fuller Jodrell Bank Centre for Astrophysics & UK ALMA Regional Centre Node University of Manchester What is ALMA? Atacama Large Millimetre/Sub-millimetre

More information

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg"

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg" Spectroscopy of (cool) giants and supergiants! Maria Bergemann MPIA Heidelberg" Outline! Motivation why do spectroscopy of giant

More information

Overall science goals and top level AO requirements for the E-ELT

Overall science goals and top level AO requirements for the E-ELT 1st AO4ELT conference, 01001 (2010) DOI:10.1051/ao4elt/201001001 Owned by the authors, published by EDP Sciences, 2010 Overall science goals and top level AO requirements for the E-ELT Markus Kissler-Patig

More information

@ CFHT. Isabelle Boisse (LAM) and the SPIRou team France, Canada, CFHT, Brazil, Hawaii, Taiwan, Switzerland & Portugal

@ CFHT. Isabelle Boisse (LAM) and the SPIRou team France, Canada, CFHT, Brazil, Hawaii, Taiwan, Switzerland & Portugal @ CFHT Isabelle Boisse (LAM) and the SPIRou team France, Canada, CFHT, Brazil, Hawaii, Taiwan, Switzerland & Portugal Consortium PIs Jean-François Donati (IRAP, France) - René Doyon (Canada) Project scientists

More information

10x Effective area JVLA, ALMA 10x Resolution w. 50% to few km + 50% to 300km Frequency range: 1 50, GHz

10x Effective area JVLA, ALMA 10x Resolution w. 50% to few km + 50% to 300km Frequency range: 1 50, GHz 10x Effective area JVLA, ALMA 10x Resolution w. 50% to few km + 50% to 300km Frequency range: 1 50, 70 115 GHz JVLA: Good 3mm site, elev. ~ 2200m Residual phase rms after calibration 90% coherence 550km

More information

Extra Solar Planetary Systems and Habitable Zones

Extra Solar Planetary Systems and Habitable Zones Lecture Overview Extra Solar Planetary Systems and Habitable Zones Our Galaxy has 200 Billion Stars, Our Sun has 8 planets. It seems like an awful waste if we are alone Exoplanets Karen J. Meech, Svetlana

More information

High-Contrast Exoplanet Gemini. Christian Marois NRC-NSI, DAO GPI DA&A

High-Contrast Exoplanet Gemini. Christian Marois NRC-NSI, DAO GPI DA&A High-Contrast Exoplanet Imaging @ Gemini Christian Marois NRC-NSI, DAO GPI DA&A Gemini Altair 2001 ADI first ever testing Exoplanet Science with Altair/NIRI GDPS/IDPS/SONIC/Janson/DavidL (young stars)

More information

Direct imaging and characterization of habitable planets with Colossus

Direct imaging and characterization of habitable planets with Colossus Direct imaging and characterization of habitable planets with Colossus Olivier Guyon Subaru Telescope, National Astronomical Observatory of Japan University of Arizona Contact: guyon@naoj.org 1 Large telescopes

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute How Common Are Planets Around Other Stars? Transiting Exoplanets Kailash C. Sahu Space Tel. Sci. Institute Earth as viewed by Voyager Zodiacal cloud "Pale blue dot" Look again at that dot. That's here.

More information

The Large UV Optical IR survey telescope. Debra Fischer

The Large UV Optical IR survey telescope. Debra Fischer The Large UV Optical IR survey telescope Debra Fischer Yale University How do we identify worlds that are most promising for life? Host star insolation determines the probability of retaining water. Habitable

More information

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Can We See Them?! Planet Detection! Planet is Much Fainter than Star! Can We See Them?! Planet Detection! Estimating f p! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information