Extreme AO Coronagraph Science with GPI. James R. Graham UC, Berkeley

Size: px
Start display at page:

Download "Extreme AO Coronagraph Science with GPI. James R. Graham UC, Berkeley"

Transcription

1 Extreme AO Coronagraph Science with GPI James R. Graham UC, Berkeley

2 Outline 2 ExAOC science impact Direct vs. indirect planet searches GPI experimental design Our knowledge of exoplanets defines AO design Trade studies ExAOC exoplanet surveys Debris disks Adjunct Science Science Team

3 Why is High Contrast Useful? 3 Exoplanet detection Direct methods explore beyond 5 AU Indirect methods give only M sin i, a & e Circumstellar disks Proto-planetary & debris disks Fundamental stellar astrophysics Large mass ratio main sequence binaries Stellar evolution mass transfer & loss Cataclysmic variables, symbiotic stars & supergiants Solar system Icy moons, Titan & asteroids

4 Direct Detection of Planets 4 Voyager family portrait illustrates the impact of imaging Solar system observations are the initial data point for the theory of planet formation Virtually all we know about exoplanets comes from indirect Doppler methods: M sin i, a & e

5 Planet Searches Doppler surveys have cataloged about 150 planets Indirect searches are limited by Kepler s third law: a = P 2/3 P Jupiter = 11 years P Neptune = 165 years Exo-Jupiters remain undetected A survey of outer regions (a > 10 AU) is impractical using indirect methods 1/r 2 dimming of reflected light renders TPF-C insensitive to planets in Neptune orbits ExAO finds self-luminous planets between 4 40 AU 5 CoDR p. 27

6 Architecture of Planetary Systems 6 Only 5% of stars have Doppler planets Why isn t it 15 to 50%? A diversity of exoplanets Is the Solar System typical? 20% of the Solar System s orbital phase space explored Do A, F or M stars have planets? How do planets form? Core accretion vs. gravitational collapse New questions What is the origin of dynamical diversity? CoDR p. 27

7 Imaging Beyond the Snowline Fast alternative to Doppler Improved statistics 4 40 AU vs AU Find exoplanets at large (> 4AU) semimajor axes Is the solar system is unique? Sample beyond the snow line Reveal if gravitational instability forms planets ( AU) Uncover traces of planetary migration Resolve M sin i ambiguity? Mass from cooling curves Q min = yr 350 yr Q min =1.4 Mayer et al AU 7 CoDR p. 29

8 Exoplanet Atmospheres Eclipses + Doppler data yield mass & radius for a few rare cases Precision astrometry can be used to derive masses synergy with SIM (2010) Direct detection of exoplanet light is the key to unlocking chemical, structural, & evolutionary secrets Exoplanets are the last frontier of classical stellar atmospheres Condensation of H 2 O and NH 3 8

9 Exoplanet Atmospheres 9 Exoplanets occupy a unique location in (log g, T eff ) phase space Over 5 Gyr a 1 M J exoplanet traverses the locus of H 2 O and NH 3 cloud condensation CoDR p. 31 NH 3 Galileo log 10 (g) [cm s-2 ] Jupiter Mass Age T eff [K] Burrows Sudarsky & Lunine 2003 ApJ

10 Detection of Cooling Planets Contrast required detect a exo-jupiter in a 5 AU orbit in the visible is 2 x 10-9 Near-IR contrast is two to three orders of magnitude less Radiation escapes in gaps in the CH 4 and H 2 O opacity at Y, J, H, & K Burrows Sudarsky & Hubeny 2004 ApJ CoDR p. 26 Wavelength µm

11 Experimental Design No simple metric identifies a suitable design For example, minimize residual wavefront error This system works for a handful of bright, nearby stars Could detect a few planets if these stars host exoplanets Reveals nothing about the statistical properties of exoplanets How do we maximize scientific productivity of ExAOC? Large multi-dimensional trade space Contrast vs. limiting magnitude Field of view (inner and outer working distances) Observing wavelength Spectral resolution Speckle suppression Adopt number of detected planets as a metric Define selection effects for exoplanet mass, age or spectral type 11

12 Exoplanet Populations 12 CoDR p. 43

13 An Example 13 ExAOC configuration AO r 0 = 100 cm 2500 Hz update rate 13 cm subapertures R = 7 mag. limit Coronagraph Ideal apodization Science camera Broad band H No speckle suppression Target sample R < 7 mag field stars (< 50 pc) CoDR p. 46 Results Doppler ExAOC 110 exoplanets (6.5 % detection rate) Semimajor axis distribution is complementary to Doppler exoplanets

14 An Example 14 ExAOC configuration AO r 0 = 100 cm 2500 Hz update rate 13 cm subapertures R = 7 mag. limit Coronagraph Ideal apodization Science camera Broad band H No speckle suppression Target sample R < 7 mag field stars (< 50 pc) CoDR p. 46 Astrometric Results Doppler ExAOC 110 exoplanets (6.5 % detection rate) Semimajor axis distribution is complementary to Doppler exoplanets

15 Limiting Mag. & Detection Rate Trade Scientific success of Doppler surveys derive from the large number of planets detects diversity is the rule With ~ 100 planets trends are only just becoming apparent Statistical trends only emerge from significant samples 3 properties 5 bins per property 4-σ counting statistics = 240 planets Guide star magnitude (I ) No. of target stars No. of planets detected* AO hit rate (%)* < (1) 50 (25) < (13) 20 (20) 15 OCDD p. 25 < 6 < (82) 247 (208) 10 (10) 6.5 (5.4) * 18-cm subapertures Numbers in parenthesis are for 12-cm

16 Observing Wavelength Trade Clear dichotomy between observing wavelength/speckle suppression High performance near-ir system Operates at ambient temperature (270 K) Modest speckle suppression ( 1/16 1/32) Low background/cryogenic L-prime system No speckle suppression Atmosphere & telescope background always dominate Number of exoplanets 16 CoDR p. 48

17 Speckles & Spectral Resolution Spectral resolution is necessary for Atmosphere diagnostics T eff and log(g) Speckle suppression An IFU with λ/δλ 40, Δλ 20% supports Classification of atmospheres > 10 Speckle suppression for flat-spectrum sources > 100 speckle suppression for T dwarf spectrum 17 CoDR pp. 33 & 70

18 ExAOC Field Star Survey Field survey with the baseline CoDR system Cerro Pachon seeing 18 cm subapertures, I = 8 mag. limit Adaptive modal gain control 2500 khz maximum update Apodized pupil Lyot coronagraph IFU withλ/δλ 40, Δλ 20% ( 16 speckle suppression) No cut on stellar age Exposure time 1 hour, 5-σ detection threshold 18 CoDR p planets discovered in field star survey

19 Young Star Survey Young exoplanets are bright Ca II H&K selected sample (<2 Gyr) boosts detection rate to 36% Relax contrast demands Probe further down the exoplanet mass sequence Field star exoplanets N * = 170 η = 36% Young association exoplanets 19 OCDD p. 33

20 Debris Disks Gravitationally sculpted disks provide key evidence for exoplanets Kalas Graham & Clampin 2005 Nature, 435, 1067 Morphology of dust trapped in libration points provides key to masses and eccentricities of exoplanets Surface brightness,color, phase function, and polarization indicates quantity composition and grain size distribution Fomalhaut debris disk F606W + F814W HST/ACS coronagraph µ 20 mag arc sec-2 µ/µ High-mass exoplanet in a low eccentricity orbit Synergy with ALMA Probe disjoint dust grain populations 20 CoDR p. 36

21 Debris Disks Only a handful of debris disks have been imaged in scattered light Handful of high spatial resolution images Few non-edge on disks AU Mic/Keck AO 21 Fitzgerald Kalas & Graham 2005

22 Speckle Suppression for Debris Disks PSF subtraction AU Mic/Keck AO Polarimetry AU Mic/ACS polarimeter I Q U 22 CoDR p. 41

23 Dual Channel Polarimetry Simulations AU Mic/50 τ = 4 x 10-5 θ = 90, 70 & 30 Edge-on disk is easily detected in Stokes I in 1 hour Progressively less visible in Stokes I in non edge-on configurations Dual channel polarimetry reveals face-on disks 90 23

24 Dual Channel Polarimetry Simulations AU Mic/50 τ = 4 x 10-5 θ = 90, 70 & 30 Edge-on disk is easily detected in Stokes I in 1 hour Progressively less visible in Stokes I in non edge-on configurations Dual channel polarimetry reveals face-on disks 70 24

25 Dual Channel Polarimetry Simulations AU Mic/50 τ = 4 x 10-5 θ = 90, 70 & 30 Edge-on disk is easily detected in Stokes I in 1 hour Progressively less visible in Stokes I in non edge-on configurations Dual channel polarimetry reveals face-on disks 30 25

26 Adjunct Science General utility of high contrast Binaries Main sequence binaries L & T dwarfs White dwarf companions Evolved stars Mass loss from red giants, proto-planetary nebulae Symbiotic stars RY Scuti R. Campbell Solar system Geomorphology of icy/rocky moons Broad opportunity for serendipity 26

27 International Science Team Adam Burrows (UofA) Constraining effective temperatures and surface gravities. Theoretical uncertainties in exoplanet detection. Eugene Chiang (UCB) Radiative transfer & dynamics of debris disks René Doyon (UdM) Optimal detection techniques for exoplanets James Graham (UCB) Project Scientist. Coordinate science team activities. Monte Carlo trade-study tools. Traceability of science requirements. Doug Johnstone (HIA) Interpretation of structure debris disks, including planetary & nonplanetary signatures. Paul Kalas (UCB) Detection of disks & selection of debris disk 27 target stars James Larkin (UCLA) Multi-color exoplanet detection. Bruce Macintosh (LLNL) PI Deliver estimates of integrated system performance. Franck Marchis (UCB) Solar system science. Geoff Marcy (UCB) Young star catalogs. Algorithms for measurement of orbital elements Ian Mclean (UCLA) Polarization science Ben Oppenheimer (AMNH) Detection & characterization of exoplanets. Jenny Patience (Caltech) Catalog young associations & moving groups. Age of field stars. Yanqin Wu (Toronto) Imprint of planets on disks. Vol 3 p. 21

DIRECT PLANET DETECTION

DIRECT PLANET DETECTION DIRECT PLANET DETECTION James R. Graham (UCB) Bruce Macintosh (LLNL) & Mitchell Troy (JPL) 1 High Contrast Imaging? Broad new frontier enabled by large telescopes & AO Exoplanet detection Direct methods

More information

High Contrast Imaging: Direct Detection of Extrasolar Planets

High Contrast Imaging: Direct Detection of Extrasolar Planets High Contrast Imaging: Direct Detection of Extrasolar Planets James R. Graham University of Toronto Dunlap Institute and Astronomy & Astrophysics September 16, 2010 Exoplanet Science How and where to planets

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

Synergies between E-ELT and space instrumentation for extrasolar planet science

Synergies between E-ELT and space instrumentation for extrasolar planet science Synergies between E-ELT and space instrumentation for extrasolar planet science Raffaele Gratton and Mariangela Bonavita INAF Osservatorio Astronomico di Padova - ITALY Main topics in exo-planetary science

More information

Gemini Planet Imager. Raphaël Galicher from presentations provided by James Graham and Marshall Perrin

Gemini Planet Imager. Raphaël Galicher from presentations provided by James Graham and Marshall Perrin Gemini Planet Imager from presentations provided by James Graham and Marshall Perrin Outline Ojectives The instrument Three examples of observations The GPI Exoplanet Survey 2 Objectives Radial velocity

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

Searching for Other Worlds: The Methods

Searching for Other Worlds: The Methods Searching for Other Worlds: The Methods John Bally 1 1 Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder The Search Extra-Solar

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow EXOPLANET LECTURE PLANET FORMATION Dr. Judit Szulagyi - ETH Fellow (judits@ethz.ch) I. YOUNG STELLAR OBJECTS AND THEIR DISKS (YSOs) Star Formation Young stars born in 10 4 10 6 M Sun Giant Molecular Clouds.

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Data from: The Extrasolar Planet Encyclopaedia.

Data from: The Extrasolar Planet Encyclopaedia. Data from: The Extrasolar Planet Encyclopaedia http://exoplanet.eu/ 2009->10 Status of Exoplanet Searches Direct Detection: 5->9 planets detected Sensitive to large planets in large orbits around faint

More information

HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST

HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST ExSoCal Conference September 18-19th 2017, Pasadena HIGH-CONTRAST IMAGING OF YOUNG PLANETS WITH JWST Marie Ygouf HR 8799 planetary system Jason Wang / Christian Marois Keck data Giants planets and brown

More information

Characterizing Exoplanets and Brown Dwarfs With JWST

Characterizing Exoplanets and Brown Dwarfs With JWST Characterizing Exoplanets and Brown Dwarfs With JWST C. Beichman NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology On Behalf of the NIRCam Exoplanet Team September

More information

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

Solar Systems Near and Far - ALMA View

Solar Systems Near and Far - ALMA View Solar Systems Near and Far - ALMA View Bryan Butler National Radio Astronomy Observatory Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very

More information

Chapter 15: The Origin of the Solar System

Chapter 15: The Origin of the Solar System Chapter 15: The Origin of the Solar System The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites

More information

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh DEPARTMENT OF PHYSICS AND ASTRONOMY Planets around white dwarfs Matt Burleigh Contents Original motivation DODO - results from our direct imaging survey Where do we go next? The role for E-ELT Direct imaging

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

Science with EPICS, the E-ELT planet finder

Science with EPICS, the E-ELT planet finder The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution Proceedings IAU Symposium No. 276, 2010 c International Astronomical Union 2011 A. Sozzetti, M. G. Lattanzi & A. P.

More information

Formation and Evolution of Planetary Systems

Formation and Evolution of Planetary Systems Formation and Evolution of Planetary Systems Meyer, Hillenbrand et al., Formation and Evolution of Planetary Systems (FEPS): First Results from a Spitzer Legacy Science Program ApJ S 154: 422 427 (2004).

More information

The architecture of planetary systems revealed by debris disk imaging

The architecture of planetary systems revealed by debris disk imaging The architecture of planetary systems revealed by debris disk imaging Paul Kalas University of California at Berkeley Collaborators: James Graham, Mark Clampin, Brenda Matthews, Mike Fitzgerald, Geoff

More information

Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

More information

The atmosphere of Exoplanets AND Their evolutionary properties. I. Baraffe

The atmosphere of Exoplanets AND Their evolutionary properties. I. Baraffe The atmosphere of Exoplanets AND Their evolutionary properties I. Baraffe I) Properties of cool atmospheres: 1) Atmospheric chemistry 2) Main opacity sources 3) Non solar composition 4) Non equilibrium

More information

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Planet formation in protoplanetary disks Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Suggested literature "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP "Protostars

More information

Direct detection: Seeking exoplanet colors and spectra

Direct detection: Seeking exoplanet colors and spectra Direct detection: Seeking exoplanet colors and spectra John Trauger, JPL / Caltech Keck Institute for Space Studies Workshop Caltech -- 10 November 2009 (c) 2009 California Institute of Technology. Government

More information

Exoplanets in the mid-ir with E-ELT & METIS

Exoplanets in the mid-ir with E-ELT & METIS Exoplanets in the mid-ir with E-ELT & METIS Wolfgang Brandner (MPIA), Eric Pantin (CEA Saclay), Ralf Siebenmorgen (ESO), Sebastian Daemgen (MPIA/ESO), Kerstin Geißler (MPIA/ESO), Markus Janson (MPIA/Univ.

More information

arxiv:astro-ph/ v1 2 Oct 2002

arxiv:astro-ph/ v1 2 Oct 2002 **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** The Extra-Solar Planet Imager (ESPI) arxiv:astro-ph/0210046v1 2 Oct 2002 P. Nisenson, G.J. Melnick, J. Geary,

More information

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

TMT High-Contrast Exoplanet Science. Michael Fitzgerald University of California, Los Angeles (UCLA)

TMT High-Contrast Exoplanet Science. Michael Fitzgerald University of California, Los Angeles (UCLA) TMT High-Contrast Exoplanet Science Michael Fitzgerald University of California, Los Angeles (UCLA) The Next Decade+ Demographics Kepler has provided rich census of radius/semimajoraxis space down to terrestrial

More information

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars 4. Direct imaging of extrasolar planets Reminder: Direct imaging is challenging: The proximity to its host star: 1 AU at 1 for alpha Cen 0.15 for the 10th most nearby solar-type star The low ratio of planet

More information

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question Key Concepts: Lecture 21: Measuring the properties of stars (cont.) The Hertzsprung-Russell (HR) Diagram (L versus T) The Hertzprung-Russell Diagram The Stefan-Boltzmann Law: flux emitted by a black body

More information

Techniques for direct imaging of exoplanets

Techniques for direct imaging of exoplanets Techniques for direct imaging of exoplanets Aglaé Kellerer Institute for Astronomy, Hawaii 1. Where lies the challenge? 2. Contrasts required for ground observations? 3. Push the contrast limit Recycle!

More information

Who was here? How can you tell? This is called indirect evidence!

Who was here? How can you tell? This is called indirect evidence! 1 Who was here? How can you tell? This is called indirect evidence! 2 How does a planetary system form? The one we can study in the most detail is our solar system. If we want to know whether the solar

More information

The Lyot Project Status and Results

The Lyot Project Status and Results The Lyot Project Status and Results Anand Sivaramakrishnan American Museum of Natural History NSF Center for Adaptive Optics Stony Brook University 941-channel AO on 3.6m AEOS telescope FPM 0.35 in H-band

More information

The Fomalhaut Debris Disk

The Fomalhaut Debris Disk The Fomalhaut Debris Disk IRAS 12 micron http://ssc.spitzer.caltech.edu/documents/compendium/foma lhaut/ Fomalhaut is a bright A3 V star 7.7 pc away IRAS discovered an IR excess indicating a circumstellar

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has

More information

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1. The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary

More information

Planets and Brown Dwarfs

Planets and Brown Dwarfs Extra Solar Planets Extra Solar Planets We have estimated there may be 10 20 billion stars in Milky Way with Earth like planets, hospitable for life. But what evidence do we have that such planets even

More information

Observations of Extrasolar Planets

Observations of Extrasolar Planets Observations of Extrasolar Planets Hamilton 2005 Shay Zucker Observations of Extrasolar Planets Spectroscopic detection of exoplanets Emerging properties of the sample Transiting planets Future prospects

More information

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 1 Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 2 Why Should We Expect to Find Other Planets? Observations show young stars are surrounded

More information

From measuring and classifying the stars to understanding their physics

From measuring and classifying the stars to understanding their physics From measuring and classifying the stars to understanding their physics What we can measure directly: Surface temperature and color Spectrum Apparent magnitude or intensity Diameter of a few nearby stars

More information

Ruth Murray-Clay University of California, Santa Barbara

Ruth Murray-Clay University of California, Santa Barbara A Diversity of Worlds: Toward a Theoretical Framework for the Structures of Planetary Systems Ruth Murray-Clay University of California, Santa Barbara Strange New Worlds. Slide credit: Scott Gaudi ~1500

More information

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects Transneptunian objects Minor bodies in the outer Solar System Planets and Astrobiology (2016-2017) G. Vladilo Around 1980 it was proposed that the hypothetical disk of small bodies beyond Neptune (called

More information

Planet Detection. AST 105 Intro Astronomy The Solar System

Planet Detection. AST 105 Intro Astronomy The Solar System Review AST 105 Intro Astronomy The Solar System MIDTERM III this THURSDAY 04/8 covering LECT. 17 through We ve talked about the Terrestrial Planets and the Jovian Planets - What about planets around other

More information

Class 15 Formation of the Solar System

Class 15 Formation of the Solar System Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

More information

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017 Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

More information

Extrasolar Planets: Molecules and Disks

Extrasolar Planets: Molecules and Disks Extrasolar Planets: Molecules and Disks The basic question: Is our solar system typical of what we should affect around other stars (inhabited or not), or is it an unusual freak? One approach is to look

More information

EPICS: A planet hunter for the European ELT

EPICS: A planet hunter for the European ELT EPICS: A planet hunter for the European ELT M. Kasper, C. Verinaud, J.L. Beuzit, N. Yaitskova, A. Boccaletti, S. Desidera, K. Dohlen, T. Fusco, N. Hubin, A. Glindemann, R. Gratton, N. Thatte 42-m E-ELT

More information

Astronomy 210 Midterm #2

Astronomy 210 Midterm #2 Astronomy 210 Midterm #2 This Class (Lecture 27): Birth of the Solar System II Next Class: Exam!!!! 2 nd Hour Exam on Friday!!! Review Session on Thursday 12-1:30 in room 236 Solar Observing starts on

More information

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy Chariho Regional School District - Science Curriculum September, 2016 ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy OVERVIEW Summary Students will be introduced to the overarching concept of astronomy.

More information

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002 The Potential of Ground Based Telescopes Jerry Nelson UC Santa Cruz 5 April 2002 Contents Present and Future Telescopes Looking through the atmosphere Adaptive optics Extragalactic astronomy Planet searches

More information

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel High contrast imaging at 3-5 microns Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel University of Arizona ABSTRACT The 6.5 m MMT with its integrated deformable

More information

Investigations of the Formation and Evolution of Planetary Systems

Investigations of the Formation and Evolution of Planetary Systems Investigations of the Formation and Evolution of Planetary Systems Alwyn Wootten, Bryan Butler, Antonio Hales, Stuartt Corder, 1 Robert Brown 2 & David Wilner 3 Abstract. Stars and planets are the fundamental

More information

Internal structure and atmospheres of planets

Internal structure and atmospheres of planets Internal structure and atmospheres of planets SERGEI POPOV 1312.3323 Sizes and masses Radius vs. mass Results of modeling. Old (relaxed) planets. Colors correspond to different fractions of light elements.

More information

Direct imaging characterisation of (exo-) planets with METIS

Direct imaging characterisation of (exo-) planets with METIS Direct imaging characterisation of (exo-) planets with METIS Jupiter HR8799 Saturn VLT/ISAAC VLT/NACO Cassini/VIMS Wolfgang Brandner (MPIA) with contributions by Ian Crossfield, Lisa Kaltenegger (MPIA),

More information

Adam Burrows, Princeton April 7, KITP Public Lecture

Adam Burrows, Princeton April 7, KITP Public Lecture Adam Burrows, Princeton April 7, 2010 KITP Public Lecture The Ancient History of Comparative Planetology There are infinite worlds both like and unlike this world of ours...we must believe that in all

More information

High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets

High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets Jiangpei Dou 1, Deqing Ren 1,2, Yongtian Zhu 1, Xi Zhang 1 1 Astronomical Observatories/Nanjing Institute of Astronomical

More information

Planets & Life. Planets & Life PHYS 214. Please start all class related s with 214: 214: Dept of Physics (308A)

Planets & Life. Planets & Life PHYS 214. Please start all class related  s with 214: 214: Dept of Physics (308A) Planets & Life Planets & Life PHYS 214 Dr Rob Thacker Dept of Physics (308A) thacker@astro.queensu.ca Please start all class related emails with 214: 214: Today s s lecture Assignment 1 marked will hand

More information

13 - EXTRASOLAR PLANETS

13 - EXTRASOLAR PLANETS NSCI 314 LIFE IN THE COSMOS 13 - EXTRASOLAR PLANETS Dr. Karen Kolehmainen Department of Physics, CSUSB http://physics.csusb.edu/~karen/ EXTRASOLAR PLANETS? DO PLANETS ORBIT AROUND OTHER STARS? WE WOULD

More information

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds 10/16/17 Lecture Outline 10.1 Detecting Planets Around Other Stars Chapter 10: Other Planetary Systems The New Science of Distant Worlds Our goals for learning: How do we detect planets around other stars?

More information

Foundations of Astrophysics

Foundations of Astrophysics Foundations of Astrophysics Barbara Ryden The Ohio State University Bradley M. Peterson The Ohio State University Preface xi 1 Early Astronomy 1 1.1 The Celestial Sphere 1 1.2 Coordinate Systems on a Sphere

More information

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology A. Sozzetti INAF Osservatorio Astrofisico di Torino Detection/Characterization Detection (Visible): - Doppler spectroscopy (95%) -

More information

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009 Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets PHY 688, Lecture 24 Mar 23, 2009 Outline Review of previous lecture: atmospheric temperature structure of irradiated planets isothermal

More information

The WFIRST Coronagraphic Instrument (CGI)

The WFIRST Coronagraphic Instrument (CGI) The WFIRST Coronagraphic Instrument (CGI) N. Jeremy Kasdin Princeton University CGI Adjutant Scientist WFIRST Pasadena Conference February 29, 2016 The Coronagraph Instrument Optical Bench Triangular Support

More information

Nature and Origin of Planetary Systems f p "

Nature and Origin of Planetary Systems f p Nature and Origin of Planetary Systems f p " Our Solar System as Example" We know far more about our solar system than about any other" It does have (at least) one planet suitable for life" Start with

More information

Extrasolar Planets. By: Steve Strom 1

Extrasolar Planets. By: Steve Strom 1 Extrasolar Planets By: Steve Strom 1 NOTES: (a) JWST numbers appropriate to the assumptions in their updated Science Requirements Document must be calculated; (b) the GSMT sensitivity calculations must

More information

OPTION E, ASTROPHYSICS TEST REVIEW

OPTION E, ASTROPHYSICS TEST REVIEW IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS OPTION E, ASTROPHYSICS TEST REVIEW S1. This question is about the nature of certain stars on the Hertzsprung-Russell diagram and determining

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

Our Planetary System & the Formation of the Solar System

Our Planetary System & the Formation of the Solar System Our Planetary System & the Formation of the Solar System Chapters 7 & 8 Comparative Planetology We learn about the planets by comparing them and assessing their similarities and differences Similarities

More information

Discovery of Planetary Systems With SIM

Discovery of Planetary Systems With SIM Discovery of Planetary Systems With SIM Principal Investigator: Geoffrey W. Marcy (UC Berkeley) Team Members: Paul R. Butler (Carnegie Inst. of Washington), Sabine Frink (UC San Diego), Debra Fischer (UC

More information

Spectroscopy, the Doppler Shift and Masses of Binary Stars

Spectroscopy, the Doppler Shift and Masses of Binary Stars Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its present location. Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html

More information

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009 Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets PHY 688, Lecture 23 Mar 20, 2009 Outline Review of previous lecture hot Jupiters; transiting planets primary eclipses and atmospheric

More information

Origins of Gas Giant Planets

Origins of Gas Giant Planets Origins of Gas Giant Planets Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Image Credit: NASA Graduate Students Piso Tripathi Dawson Undergraduates Wolff Lau Alpert Mukherjee Wolansky Jackson

More information

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION 0.1. Accretion If a particle of mass m falls from infinity and comes to rest on the surface of a star of mass

More information

First Visible-Light Image of an Extrasolar Planet

First Visible-Light Image of an Extrasolar Planet National Aeronautics and Space Administration First Visible-Light Image of an Extrasolar Planet Taken from: Hubble 2008: Science Year in Review Produced by NASA Goddard Space Flight Center and the Space

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

Coronagraphic Imaging of Exoplanets with NIRCam

Coronagraphic Imaging of Exoplanets with NIRCam Coronagraphic Imaging of Exoplanets with NIRCam C. Beichman NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology For the NIRCam Team September 27, 2016 Copyright

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/22837 holds various files of this Leiden University dissertation. Author: Juan Ovelar, Maria de Title: Imaging polarimetry for the characterisation of exoplanets

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley Extrasolar Planets Properties 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Finding extrasolar planets is hard quick recap Planet Detection Direct: pictures or spectra of the planets

More information

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018 2018 TIARA Summer School Origins of the Solar System Observations and Modelling of Debris Disks J.P. Marshall (ASIAA) Wednesday 18 th July 2018 [Hogerheijde 1998] Debris disks Tenuous belts of icy and

More information

Planet Occurrence Within 0.25 AU

Planet Occurrence Within 0.25 AU Planet Occurrence Within 0.25 AU Andrew W. Howard UC Berkeley California Planet Search Team: Geoff Marcy, Debra Fischer, John Johnson, Jason Wright, Howard Isaacson, Julien Spronck, Jeff ValenO, Jay Anderson,

More information

The Golden Era of Planetary Exploration: From Spitzer to TPF. The Observational Promise

The Golden Era of Planetary Exploration: From Spitzer to TPF. The Observational Promise The Golden Era of Planetary Exploration: From Spitzer to TPF C. Beichman March 14, 2004 The Observational Promise In the next decade we will progress from rudimentary knowledge of gas giant planets around

More information

Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST

Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST Polarimetry and spectral imaging of mature Jupiter and super-earth with SEE-COAST Jean Schneider, A. Boccaletti, P. Baudoz, R. Galicher, R. Gratton, D. Stam et al. & E. Pantin, Complementarity of techniques

More information

Chapter 15 The Formation of Planetary Systems

Chapter 15 The Formation of Planetary Systems Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar

More information

Astronomy 230 Section 1 MWF B6 Eng Hall. Outline. Star Formation. The Protostar Stage. Gravity, Spin, & Magnetic Fields

Astronomy 230 Section 1 MWF B6 Eng Hall. Outline. Star Formation. The Protostar Stage. Gravity, Spin, & Magnetic Fields Astronomy 230 Section 1 MWF 1400-1450 106 B6 Eng Hall This Class (Lecture 7): Planet Formation and Next Class: Extrasolar Planets Oral Presentation Decisions! Deadline is Feb 6 th. Outline Star formation

More information

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Can We See Them?! Planet Detection! Planet is Much Fainter than Star! Can We See Them?! Planet Detection! Estimating f p! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging Photometry of planetary atmospheres from direct imaging Exoplanets Atmospheres Planets and Astrobiology (2016-2017) G. Vladilo Example: planetary system detected with direct imaging HR 8799 b, c, d (Marois

More information

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany Circumstellar disks The MIDI view Sebastian Wolf Kiel University, Germany MPIA MIDI SG concluding meeting May 5, 2014 Overview Circumstellar disks: Potential of IR long-baseline interferometry MIDI: Exemplary

More information

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University Planetary System Stability and Evolution N. Jeremy Kasdin Princeton University (Lots of help from Eric Ford, Florida and Robert Vanderbei, Princeton) KISS Exoplanet Workshop 10 November 2009 Motivation

More information

Pluto, the Kuiper Belt, and Trans- Neptunian Objects

Pluto, the Kuiper Belt, and Trans- Neptunian Objects Pluto, the Kuiper Belt, and Trans- Neptunian Objects 1 What about Pluto? Pluto used to be considered a planet Pluto is one of a large number of Trans-Neptunian Objects, not even the largest one! Discovery

More information

Debris discs, exoasteroids and exocomets. Mark Wyatt Institute of Astronomy, University of Cambridge

Debris discs, exoasteroids and exocomets. Mark Wyatt Institute of Astronomy, University of Cambridge Debris discs, exoasteroids and exocomets Mark Wyatt Institute of Astronomy, University of Cambridge The Solar System s outer and inner debris belts Outer debris: Kuiper belt Inner debris: Asteroid belt

More information

The formation & evolution of solar systems

The formation & evolution of solar systems The formation & evolution of solar systems Content expectations Birth of the Solar System What did the material that eventually became the Sun and planets look like originally? Interstellar clouds like

More information

Exoplanetary Science with the E-ELT

Exoplanetary Science with the E-ELT SF2A, MONTPELLIER, 4-7 JUNE 2013 Exoplanetary Science with the E-ELT Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST, and E-ELT CAM,

More information

Exoplanets: a dynamic field

Exoplanets: a dynamic field Exoplanets: a dynamic field Alexander James Mustill Amy Bonsor, Melvyn B. Davies, Boris Gänsicke, Anders Johansen, Dimitri Veras, Eva Villaver The (transiting) exoplanet population Solar System Hot Jupiters:

More information

Extra-solar Planets (Exoplanets)

Extra-solar Planets (Exoplanets) Extra-solar Planets (Exoplanets) The search for planets around other stars David Wood Oct 1, 2014 Outline Why do we care? Overview of our knowledge Discovery techniques Space-based observations Results

More information