Circumbinary Planets/Disks

Size: px
Start display at page:

Download "Circumbinary Planets/Disks"

Transcription

1 Circumbinary Planets/Disks Dong Lai Cornell University -- Simula6ons of circumbinary accre6on: Eccentric Disks, Ang. Mom. Transfer Diego Munoz & DL 2016 Ryan Miranda, Munoz, DL Misaligned circumbinary planets around compact (<5 day) binaries. Munoz & DL Destruc6on of circumbinary planets by evec6on resonance Wenrui Xu & DL /6/2016, Exoplanets I, Davos

2 Hiding Planets Behind a Big Friend Multi-Planet System with an External Companion Dong Lai & Bonan Pu Cornell University arxiv: Exoplanets I Conference, Davos, July 6, 2016

3 Kepler: 4700 planets in 3600 systems (mostly super-earth or sub-neptunes, <200 days) (5/17/2016) Observed Transit MulGplicity DistribuGon F (N tran ) Number of systems Number of TransiGng planets

4 F (N tran ) ===> the underlying mulgplicity distribugon & mutual inclinagons Degeneracy can be broken by RV data (Tremaine & Dong 12) Transit dura6on ra6o (Fabrycky+14) Kepler compact systems are flat, with mutual inclinagon dispersion < 2 degrees Lissauer+11, Tremaine & Dong 12, Figueira+12, Fabrycky+14; Fang & Margot 12

5 Models with single inclinagon dispersion (e.g. in Rayleigh) do not fit well: Under-predict Kepler singles by a factor of > 2 Lissauer+11, Johansen, Davies +12, Weissbein+12, Ballard & Johnson+16 Number of systems Red: best-fit to mu6ple-transit planet systems with single Inclina6on dispersion Number of TransiGng planets

6 Kepler Dichotomy Kepler systems consist of at least two underlying populagons: (1) Systems N > ~6 planets with small mutual inclina6ons (~2 degrees): Account for most of Kepler Mul6 s (N tran >1) (2) Systems with fewer planets or with higher mutual inclina6ons: Account for a (large) frac6on Kepler singles (N tran =1)

7 Kepler Dichotomy Kepler systems consist of at least two underlying populagons: (1) Systems N > ~6 planets with small mutual inclina6ons (~2 degrees): Account for most of Kepler Mul6 s (N tran >1) (2) Systems with fewer planets or with higher mutual inclina6ons: Account for a large frac6on Kepler singles (N tran =1) Other evidence that (some) Kepler singles are special : (1) singles have higher stellar obliqui6es (Morton & Winn 14) (2) Mul6 s have more detectable TTVs than singles (Xie, Wu & Lithwick 14) (3) 10-30% of singles have higher e s (Jiwei Xie s poster) (4) Single Hot Earth excess (Jason Staffen s talk)

8 Origin of Kepler Dichotomy -- Primordial in-situ assembly of planetesimal disks with different mass & density profile (Mariarty & Ballard 15) -- Dynamical instability 6ghtly packed system! unstable! collision/consolida6on (Volk & Gladman 15; Pu & Wu 15) -- External Perturber (Giant planet or companion star)

9 Two-planet system with an external inclined perturber m 1, m 2 ini6ally co-planar m 1 m 2 p m p companion star or cold Jupiter (e.g. produced by planet-planet scaperings)

10 m 1 p L 1 Lp m p Precession of 1 driven by p : 1p m p M? a1 3 n 1 / m p a p a 3 p a 3/2 1

11 m 1 m 2! 12! 21 1p 2p m p Mutual inclina6on induced by perturber depends on Coupling Parameter

12

13 Maximum Mutual InclinaGon Induced by external perturber p = 10 / m p a 3 p

14 Resonance Feature: 12 1 exists when m 2 & m 1 Nodal Precession Resonance m 1 m 2! 12 1p 2p m p In the m 2 m 1 limit: Resonance occurs at 2p = 1p +! 12 or 12 =1

15 Resonance Feature: 12 1 Can produce much larger mutual inclination than p

16 Resonance Feature: 12 1 Can produce much larger mutual inclination than p

17 MulG-planet system with an external inclined perturber m 1 m 2 m 3 m 4 p m p

18 4 planet system with an external perturber dispersion of mutual inclination averaged coupling parameter / m p /a 3 p

19 4 planet system with an external perturber dispersion of mutual inclination averaged coupling parameter / m p /a 3 p

20 Recap: An understanding and semi-analygc expression for the mutual inclina6on of mul6-planets induced by distant perturber m 1 m 2 p 1p 12 = 2p! 12 +! 21 3 mp a2 m p m 2 a p for m 2 m 1, a 2 1.5a 1 e.g., for m 2 m at a au 1M J perturber at 3 au gives For 12 & 2: For : 12 2 p sin 2 p

21 ApplicaGon: Evaluate /constrain external perturber of observed systems Examples: (see DL & Pu for more) Kepler-68: Two super-earths at 0.06,0.09 au, 1 M J planet at 1.4 au is weak Kepler-56: WASP-47:... Kepler-48: Three transi6ng planets (0.012,0.046,0.015M J ) at 0.053,0.085,0.23 au, >2M J companion (Kepler-48e) at 1.85 au (Marcy+14) " Kepler-48e must be aligned <2 degree Kepler-454: one super-earth at 0.1 au with a >5M J at 524 days (Gepel+16) " any neighbor to the inner planet could be strongly misaligned by the giant (This could of mul6-planet system that has been turned into Kepler single by an external giant planet) I am happy to receive about other systems (star or giant planet perturbers)

22 What about Kepler Dichotomy? A significant frac6on of Kepler singles (N tran =1) are/were mul6-planet systems that have been misaligned (in mutual inclina6ons) or disrupted by external perturbers (cold giant planets or stellar companions) Cold Giant Planets: Some have been found, but general census not clear? (50% of HJs/WJs have 1-20M J companion at 5-20 au; Bryan et al 2016) Stellar Companions: J.Wang et al (2015): ~5% of Kepler mul6s have stellar companion au (4x lower than field stars) More studies are needed.

23 General Comment: Influences of External Perturbers on (Inner) Planetary Systems --- Mutual inclina6ons (DL & Pu 2016) --- Forma6on of Hot Jupiters and Warm Jupiters (high-e migra6on) (many papers ) e.g. High-e migra6on induced by stellar companion contrinutes ~10-15% of HJs (Petrovich 15; Anderson, Storch & DL 16; Munoz, DL+16) --- Evec6on resonance (Touma & Sridhar 15; Xu & DL 16)

Misaligned Planets/Stars, Disks and Rings Dong Lai

Misaligned Planets/Stars, Disks and Rings Dong Lai Misaligned Planets/Stars, Disks and Rings Dong Lai Cornell University Nice Observatoire, 12/7/2016 Misaligned Planets/Stars, Disks and Rings (1) Binary-Disk-Star Interac4on! Misaligned protoplanetary disk

More information

Dynamic Exoplanets. Alexander James Mustill

Dynamic Exoplanets. Alexander James Mustill Dynamic Exoplanets Alexander James Mustill Exoplanets: not (all) like the Solar System Exoplanets: not (all) like the Solar System Solar System Lissauer et al 14 Key questions to bear in mind What is role

More information

Secular Planetary Dynamics: Kozai, Spin Dynamics and Chaos

Secular Planetary Dynamics: Kozai, Spin Dynamics and Chaos Secular Planetary Dynamics: Kozai, Spin Dynamics and Chaos Dong Lai Cornell University 5/17/2014 Tsinghua IAS Chaotic Dynamics of Stellar Spin in Binaries and the Production of Misaligned Hot Jupiters

More information

The dynamical evolution of exoplanet systems. Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University

The dynamical evolution of exoplanet systems. Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University The dynamical evolution of exoplanet systems Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University Today s Talk 1) Begin with our Solar System. 2) Then consider tightly-packed

More information

Probing the Dynamical History of Exoplanets: Spectroscopic Observa<ons of Transi<ng Systems

Probing the Dynamical History of Exoplanets: Spectroscopic Observa<ons of Transi<ng Systems June. 4, 215 @ NAOJ Probing the Dynamical History of Exoplanets: Spectroscopic Observa

More information

Orbit Dynamics Resonant Chains and External Companions

Orbit Dynamics Resonant Chains and External Companions Orbit Dynamics Resonant Chains and External Companions Daniel Fabrycky University of Chicago Sean Mills Kathryn Chapman Enid Cruz-Colon Pierre Gratia Other Institutions: Cezary Migaszweski, Darin Ragozzine,

More information

The dynamical evolution of transiting planetary systems including a realistic collision prescription

The dynamical evolution of transiting planetary systems including a realistic collision prescription The dynamical evolution of transiting planetary systems including a realistic collision prescription Alexander James Mustill Melvyn B. Davies Anders Johansen MNRAS submitted, arxiv.org/abs/1708.08939 Alexander

More information

Exoplanets: a dynamic field

Exoplanets: a dynamic field Exoplanets: a dynamic field Alexander James Mustill Amy Bonsor, Melvyn B. Davies, Boris Gänsicke, Anders Johansen, Dimitri Veras, Eva Villaver The (transiting) exoplanet population Solar System Hot Jupiters:

More information

The Long-Term Dynamical Evolution of Planetary Systems

The Long-Term Dynamical Evolution of Planetary Systems The Long-Term Dynamical Evolution of Planetary Systems Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University Co-authors: Fred Adams, Philip Armitage, John Chambers, Eric Ford,

More information

Circumbinary Planets and Assembly of Protoplanetary Disks

Circumbinary Planets and Assembly of Protoplanetary Disks Circumbinary Planets and Assembly of Protoplanetary Disks Dong Lai Cornell University with Francois Foucart (CITA) Aspen Exoplanets in the Kepler Era, 2/14/2013 Transiting Circumbinary Planets from Kepler

More information

Detecting Terrestrial Planets in Transiting Planetary Systems

Detecting Terrestrial Planets in Transiting Planetary Systems Detecting Terrestrial Planets in Transiting Planetary Systems Jason H. Steffen Brinson Postdoctoral Fellow, Fermilab Northwestern University May 3, 2007 Fermilab Planetary Science Team Jason H. Steffen

More information

Short-period planetary systems and their mysteries

Short-period planetary systems and their mysteries Short-period planetary systems and their mysteries Rosemary Mardling Monash Geneva 3 December 2014 Some open questions: gas giants How do hot jupiters arrive at their orbits? Are systems multiple systems

More information

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory Finding Extra-Solar Earths with Kepler William Cochran McDonald Observatory Who is Bill Cochran? Senior Research Scien;st McDonald Observatory Originally interested in outer planet atmospheres Started

More information

Kepler Planets back to the origin

Kepler Planets back to the origin Kepler Planets back to the origin Acknowledgements to the Kepler Team Yanqin Wu (Toronto) + Yoram Lithwick, James Owen, Ji-Wei Xie, Nikhil Mahajan, Bonan Pu, Ari Silburt Kepler planets: an Unexpected population

More information

Extreme Exoplanets Production of Misaligned Hot Jupiters. Dong Lai Cornell University

Extreme Exoplanets Production of Misaligned Hot Jupiters. Dong Lai Cornell University Extreme Exoplanets Production of Misaligned Hot Jupiters Dong Lai Cornell University Physics Colloquium, Columbia University, Feb.2, 2015 Number of planets by year of discovery 1500+ confirmed, 3000+ Kepler

More information

Architecture and demographics of planetary systems

Architecture and demographics of planetary systems Architecture and demographics of planetary systems Struve (1952) The demography of the planets that we detect is strongly affected by detection methods psychology of the observer Understanding planet demography

More information

Dynamical Tides in Binaries

Dynamical Tides in Binaries Dynamical Tides in Binaries I. Merging White Dwarf Binaries II. Kepler KOI-54 III. Hot Jupiter Systems Dong Lai Cornell University 4/5/2012, IAS, Princeton Equilibrium Tide M, R M Equilibrium Tide M, R

More information

Transit Timing Variations

Transit Timing Variations Transit Timing Variations Dan Fabrycky UCSC / UChicago Thanks to Michelson (/NExScI) and Hubble for support! Planet Detection Method ETVs! TTVs! Overview The dynamics that give rise to TTV Sensitivity

More information

Sta%s%cal Proper%es of Exoplanets

Sta%s%cal Proper%es of Exoplanets Sta%s%cal Proper%es of Exoplanets Mordasini et al. 2009, A&A, 501, 1139 Next: Popula%on Synthesis 1 Goals of Population Synthesis: incorporate essential planet formation processes, with simplifying approximation

More information

Global models of planetary system formation. Richard Nelson Queen Mary, University of London

Global models of planetary system formation. Richard Nelson Queen Mary, University of London Global models of planetary system formation Richard Nelson Queen Mary, University of London Hot Jupiters Cold Jupiters Super-Earths/ Neptunes 2 Sumi et al (2016) Occurence rates 30-50% of FGK stars host

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

The obliquities of the planetary systems detected with CHEOPS. Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence

The obliquities of the planetary systems detected with CHEOPS. Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence The obliquities of the planetary systems detected with CHEOPS Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence CHEOPS Characterizing Exoplanets Satellite Science Workshop

More information

A Habitable Zone Census via Transit Timing and the Imperative for Continuing to Observe the Kepler Field

A Habitable Zone Census via Transit Timing and the Imperative for Continuing to Observe the Kepler Field A Habitable Zone Census via Transit Timing and the Imperative for Continuing to Observe the Kepler Field Authors: Daniel C. Fabrycky (U Chicago), Eric B. Ford (Penn State U), Matthew J. Payne (Harvard-Smithsonian

More information

Search for & Characterizing Small Planets with NASA s Kepler Mission

Search for & Characterizing Small Planets with NASA s Kepler Mission Search for & Characterizing Small Planets with NASA s Kepler Mission Eric Ford University of Florida SAMSI Astrostatistics Workshop September 21, 2012 Image credit: NASA/ESA/StSci Golden Age for Planet

More information

Kozai-Lidov oscillations

Kozai-Lidov oscillations Kozai-Lidov oscillations Kozai (1962 - asteroids); Lidov (1962 - artificial satellites) arise most simply in restricted three-body problem (two massive bodies on a Kepler orbit + a test particle) e.g.,

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week - Dynamics Reynolds number, turbulent vs. laminar flow Velocity fluctuations, Kolmogorov cascade Brunt-Vaisala frequency, gravity waves Rossby waves,

More information

From pebbles to planetesimals and beyond

From pebbles to planetesimals and beyond From pebbles to planetesimals... and beyond (Lund University) Origins of stars and their planetary systems Hamilton, June 2012 1 / 16 Overview of topics Size and time Dust µ m Pebbles cm Planetesimals

More information

Planetary Systems in Stellar Clusters

Planetary Systems in Stellar Clusters Planetary Systems in Stellar Clusters Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund Observatory Collaborators: John Chambers, Ross Church, Francesca de Angeli, Douglas Heggie, Thijs

More information

Ruth Murray-Clay University of California, Santa Barbara

Ruth Murray-Clay University of California, Santa Barbara A Diversity of Worlds: Toward a Theoretical Framework for the Structures of Planetary Systems Ruth Murray-Clay University of California, Santa Barbara Strange New Worlds. Slide credit: Scott Gaudi ~1500

More information

A review of TTV techniques, and their application to PLATO

A review of TTV techniques, and their application to PLATO A review of TTV techniques, and their application to PLATO Valerio Nascimbeni (UNIPD) & WP 112600 valerio.nascimbeni@unipd.it The WP 112600 (PSM) What a TTV is T0 Transiting planets allow us to measure

More information

Testing Theories of Planet Formation & Dynamical Evolution of Planetary Systems using Orbital Properties of Exoplanets

Testing Theories of Planet Formation & Dynamical Evolution of Planetary Systems using Orbital Properties of Exoplanets Testing Theories of Planet Formation & Dynamical Evolution of Planetary Systems using Orbital Properties of Exoplanets Eric B. Ford Harvard-Smithsonian Center for Astrophysics (Starting at UF in August

More information

Tidal Dissipation in Binaries

Tidal Dissipation in Binaries Tidal Dissipation in Binaries From Merging White Dwarfs to Exoplanetary Systems Dong Lai Cornell University March 14, 2013, Harvard ITC Colloquium Tidal Dissipation in Binaries I. Merging White Dwarf Binaries

More information

Multiplanet Systems as Laboratories for Planet Formation

Multiplanet Systems as Laboratories for Planet Formation Multiplanet Systems as Laboratories for Planet Formation Lauren Weiss Parrent Fellow IfA, University of Hawaii Treasure Island California-Kepler Survey (CKS) Keck/HIRES Spectra of 1305 Kepler Planet-hosting

More information

Frequency of Exoplanets Beyond the Snow Line from 6 Years of MOA Data Studying Exoplanets in Their Birthplace

Frequency of Exoplanets Beyond the Snow Line from 6 Years of MOA Data Studying Exoplanets in Their Birthplace Frequency of Exoplanets Beyond the Snow Line from 6 Years of MOA Data Studying Exoplanets in Their Birthplace David Bennett University of Notre Dame Analysis to appear in Suzuki et al. (2015) MicroFUN

More information

The Dynamical Evolution of Exoplanet Systems

The Dynamical Evolution of Exoplanet Systems The Dynamical Evolution of Exoplanet Systems Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund Observatory Collaborators: Clément Bonnerot, John Chambers, Ross Church, Francesca de

More information

FORMING DIFFERENT PLANETARY ARCHITECTURES. I. FORMATION EFFICIENCY OF HOT JUPITES FROM HIGH-ECCENTRICITY MECHANISMS

FORMING DIFFERENT PLANETARY ARCHITECTURES. I. FORMATION EFFICIENCY OF HOT JUPITES FROM HIGH-ECCENTRICITY MECHANISMS Draft version February 7, Preprint typeset using L A TEX style AASTeX v.. FORMING DIFFERENT PLANETARY ARCHITECTURES. I. FORMATION EFFICIENCY OF HOT JUPITES FROM HIGH-ECCENTRICITY MECHANISMS Ying Wang,

More information

What can be learned from the dynamics of packed planetary systems?

What can be learned from the dynamics of packed planetary systems? What can be learned from the dynamics of packed planetary systems? Rosemary Mardling Monash University University of Geneva some Kepler gravitational molecules... credit: Fabrycky :-) a stable pair of

More information

High-Accuracy Measurements of Variations in Transit Timing: A New Method for Detecting Terrestrial-Class Extrasolar Planets

High-Accuracy Measurements of Variations in Transit Timing: A New Method for Detecting Terrestrial-Class Extrasolar Planets High-Accuracy Measurements of Variations in Transit Timing: A New Method for Detecting Terrestrial-Class Extrasolar Planets A science white paper submitted to Astro2010 Decadal Survey (Planetary Systems

More information

Probing the Galactic Planetary Census

Probing the Galactic Planetary Census Probing the Galactic Planetary Census Greg Laughlin -- UCSC Astronomy Exoplanet News from the AAS meeting (New York Times) The finding was called exciting by Dr. Kenneth Franklin of the American Museum-Hayden

More information

Planetesimal Migration and the Curious Trend in the Period Ratio Distribution of the Kepler Multis

Planetesimal Migration and the Curious Trend in the Period Ratio Distribution of the Kepler Multis Planetesimal Migration and the Curious Trend in the Period Ratio Distribution of the Kepler Multis Sourav Chatterjee Eric B. Ford University of Florida April 5, 2013 University of Florida Kepler multiple

More information

The Transit Method: Results from the Ground

The Transit Method: Results from the Ground The Transit Method: Results from the Ground Results from individual transit search programs The Mass-Radius relationships (internal structure) Global Properties The Rossiter-McClaughlin Effect There are

More information

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets. Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

More information

arxiv: v3 [astro-ph.ep] 4 Jun 2015

arxiv: v3 [astro-ph.ep] 4 Jun 2015 Accepted to ApJ Preprint typeset using L A TEX style emulateapj v. 12/16/11 THE DESTRUCTION OF INNER PLANETARY SYSTEMS DURING HIGH-ECCENTRICITY MIGRATION OF GAS GIANTS Alexander J. Mustill, Melvyn B. Davies,

More information

arxiv: v1 [astro-ph.ep] 11 Oct 2016

arxiv: v1 [astro-ph.ep] 11 Oct 2016 Mon. Not. R. Astron. Soc. 000, 1 8 (0000) Printed 13 October 2016 (MN LATEX style file v2.2) A population of planetary systems characterized by short-period, Earth-sized planets Jason H. Steffen 1 and

More information

arxiv: v2 [astro-ph.ep] 30 Nov 2013

arxiv: v2 [astro-ph.ep] 30 Nov 2013 Extreme orbital evolution from hierarchical secular coupling of two giant planets Jean Teyssandier,, Smadar Naoz 2,3, Ian Lizarraga 4, Frederic A. Rasio 3,5 arxiv:3.548v2 [astro-ph.ep] 3 Nov 23 ABSTRACT

More information

The Rossiter- McLaughlin Effect

The Rossiter- McLaughlin Effect The Rossiter- McLaughlin Effect B. Scott Gaudi The Ohio State University (special thanks to Josh Winn) Relative flux Time Relative flux Time Relative flux Time Relative flux Time Relative flux Time Relative

More information

Planetenbewegung in Sternsystemen. The Effect of Resonances. Part 2

Planetenbewegung in Sternsystemen. The Effect of Resonances. Part 2 Planetenbewegung in Sternsystemen The Effect of Resonances Part 2 Topics overview 1. Definition and examples of resonances 2. Disturbing function 3. Mean-motion resonance (MMR) 4. Secular resonance (SR)

More information

arxiv: v1 [astro-ph.ep] 23 Oct 2018

arxiv: v1 [astro-ph.ep] 23 Oct 2018 Draft version October 25, 2018 Typeset using LATEX twocolumn style in AASTeX62 Compact multi-planet systems are more common around metal poor hosts arxiv:1810.10009v1 [astro-ph.ep] 23 Oct 2018 John M.

More information

[25] Exoplanet Characterization (11/30/17)

[25] Exoplanet Characterization (11/30/17) 1 [25] Exoplanet Characterization (11/30/17) Upcoming Items APOD 12/2/16 1. Read chapters 24.1-24.3 for Tuesday 2. We will have a final exam review in the last discussion section (Friday, Dec 8) and also

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

arxiv: v1 [astro-ph.ep] 30 Jan 2013

arxiv: v1 [astro-ph.ep] 30 Jan 2013 Draft version June 27 2018 Preprint typeset using L A TEX style emulateapj v. 5/2/11 TESTING IN SITU ASSEMBLY WITH THE KEPLER PLANET CANDIDATE SAMPLE Brad M. S. Hansen 1 & Norm Murray 23 Draft version

More information

The formation & evolution of solar systems

The formation & evolution of solar systems The formation & evolution of solar systems Content expectations Birth of the Solar System What did the material that eventually became the Sun and planets look like originally? Interstellar clouds like

More information

Kepler s Multiple Planet Systems

Kepler s Multiple Planet Systems Kepler s Multiple Planet Systems TITech & Kobe Univ. February 2018 Jack J. Lissauer NASA Ames Outline Solar System & Exoplanets Kepler Mission Kepler planets and planetery systems Principal Kepler findings

More information

Update on SysSim: Determining the Distribution of Exoplanetary Architectures

Update on SysSim: Determining the Distribution of Exoplanetary Architectures Update on SysSim: Determining the Distribution of Exoplanetary Architectures Darin Ragozzine (UF / Florida Tech), Eric Ford (UF / Penn State) ExoStats 2014 CMU June 19, 2014 Invitation to Join BayCEP Bayesian

More information

Planet formation and (orbital) Evolution

Planet formation and (orbital) Evolution W. Kley Planet formation and (orbital) Evolution Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen 31. July, 2013 W. Kley Plato 2.0, ESTEC: 31.

More information

Observational Cosmology Journal Club

Observational Cosmology Journal Club Observational Cosmology Journal Club 07/09/2018 Shijie Wang 1. Heller, R. (2018). Formation of hot Jupiters through disk migration and evolving stellar tides. Retrieved from arxiv.1806.06601 2. Rey, J.,

More information

arxiv: v4 [astro-ph.ep] 1 Aug 2013

arxiv: v4 [astro-ph.ep] 1 Aug 2013 Exoplanet Predictions Based on the Generalised Titius-Bode Relation Timothy Bovaird 1,2, Charles H. Lineweaver 1,2,3 ABSTRACT arxiv:134.3341v4 [astro-ph.ep] 1 Aug 213 We evaluate the extent to which newly

More information

Considerable observational evidence indicates that hot Jupiter

Considerable observational evidence indicates that hot Jupiter Kepler constraints on planets near hot Jupiters Jason H. Steffen a,1, Darin Ragozzine b, Daniel C. Fabrycky c, Joshua A. Carter b, Eric B. Ford d, Matthew J. Holman b, Jason F. Rowe e, William F. Welsh

More information

SPACING OF KEPLER PLANETS: SCULPTING BY DYNAMICAL INSTABILITY

SPACING OF KEPLER PLANETS: SCULPTING BY DYNAMICAL INSTABILITY 015. The American Astronomical Society. All rights reserved. doi:10.1088/0004-637x/807/1/44 SPACING OF KEPLER PLANETS: SCULPTING BY DYNAMICAL INSTABILITY Bonan Pu ( 濮勃南 ) and Yanqin Wu ( 武延庆 ) Department

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

arxiv: v1 [astro-ph.ep] 16 Oct 2015

arxiv: v1 [astro-ph.ep] 16 Oct 2015 Mon. Not. R. Astron. Soc. 000, 1 9 (0000) Printed 19 October 2015 (MN LATEX style file v2.2) Sensitivity bias in the mass-radius distribution from Transit Timing Variations and Radial Velocity measurements

More information

Orbital Structure and Dynamical Evolution of. TNOs. Patryk Sofia Lykawka ( )

Orbital Structure and Dynamical Evolution of. TNOs. Patryk Sofia Lykawka ( ) Orbital Structure and Dynamical Evolution of TNOs Patryk Sofia Lykawka ( ) patryksan@gmail.com Outline I: Introduction and motivation II: III: IV: Dynamical stability and planet migration Stable TNO populations

More information

ASTB01 Exoplanets Lab

ASTB01 Exoplanets Lab ASTB01 Exoplanets Lab Author: Anders Johansen Revision date: $Date: 2015/08/28 14:55:59 $ Planets orbiting stars other than the Sun are called exoplanets. Stellar light reflected off

More information

arxiv: v2 [astro-ph.ep] 10 Feb 2015

arxiv: v2 [astro-ph.ep] 10 Feb 2015 Draft version February 11, 215 Preprint typeset using L A TEX style emulateapj v. 5/2/11 PLANETESIMAL INTERACTIONS CAN EXPLAIN THE MYSTERIOUS PERIOD RATIOS OF SMALL NEAR-RESONANT PLANETS Sourav Chatterjee

More information

Using the Inclinations of Kepler Systems to Prioritize New Titius-Bode-Based Exoplanet Predictions

Using the Inclinations of Kepler Systems to Prioritize New Titius-Bode-Based Exoplanet Predictions Mon. Not. R. Astron. Soc., 1?? (213) Printed 22 December 214 (MN LATEX style file v2.2) Using the Inclinations of Kepler Systems to Prioritize New Titius-Bode-Based Exoplanet Predictions T. Bovaird 1,2,

More information

Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy

Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy Eliza Kempton (Formerly: Miller-Ricci) Assistant Professor of Physics Grinnell College, Grinnell,

More information

Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology

Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology EPJ Web of Conferences 11, 52 (211) DOI:1.151/epjconf/2111152 Owned by the authors, published by EDP Sciences, 211 The Rossiter-McLaughlin effect for exoplanets J.N. Winn Department of Physics, and Kavli

More information

arxiv: v2 [astro-ph.ep] 10 Jun 2015

arxiv: v2 [astro-ph.ep] 10 Jun 2015 The statistical mechanics of planet orbits Scott Tremaine 1 Institute for Advanced Study, Princeton, NJ 08540 arxiv:1504.01160v2 [astro-ph.ep] 10 Jun 2015 tremaine@ias.edu ABSTRACT The final giant-impact

More information

A SECULAR RESONANT ORIGIN FOR THE LONELINESS OF HOT JUPITERS

A SECULAR RESONANT ORIGIN FOR THE LONELINESS OF HOT JUPITERS Draft version July, 07 Preprint typeset using L A TEX style emulateapj v. /6/ A SECULAR RESONANT ORIGIN FOR THE LONELINESS OF HOT JUPITERS Christopher Spalding and Konstantin Batygin Division of Geological

More information

Observations of extrasolar planets

Observations of extrasolar planets Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

More information

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Planet Formation: theory and observations Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Outline Stages of Planet Formation Solar System Formation Cores to disks (c2d) Observational

More information

Dynamical water delivery: how Earth and rocky exoplanets get wet

Dynamical water delivery: how Earth and rocky exoplanets get wet Dynamical water delivery: how Earth and rocky exoplanets get wet Sean Raymond Laboratoire d Astrophysique de Bordeaux with Andre Izidoro and Alessandro Morbidelli Is Earth dry or wet? Surface water = 1

More information

arxiv: v1 [astro-ph.ep] 3 Mar 2018

arxiv: v1 [astro-ph.ep] 3 Mar 2018 Draft version March 6, 218 Preprint typeset using L A TEX style emulateapj v. 12/16/11 THE RESILIENCE OF KEPLER SYSTEMS TO STELLAR OBLIQUITY Christopher Spalding 1, Noah W. Marx 1,2 and Konstantin Batygin

More information

Outer-planet scattering can gently tilt an inner planetary system

Outer-planet scattering can gently tilt an inner planetary system Mon. Not. R. Astron. Soc. 000, 1 10 (2016) Printed 1 August 2016 (MN LATEX style file v2.2) Outer-planet scattering can gently tilt an inner planetary system Pierre Gratia, 1 Daniel Fabrycky 2 1 Department

More information

arxiv: v4 [astro-ph.ep] 14 Oct 2015

arxiv: v4 [astro-ph.ep] 14 Oct 2015 Draft version October 15, 2015 Preprint typeset using L A TEX style emulateapj v. 5/2/11 A QUANTITATIVE CRITERION FOR DEFINING PLANETS Jean-Luc Margot University California, Los Angeles Draft version October

More information

Imprints of Formation on Exoplanets

Imprints of Formation on Exoplanets Imprints of Formation on Exoplanets The role of Stellar Mass and Metallicity ILARIA PASCUCCI Lunar and Planetary Laboratory, Department of Planetary Sciences The University of Arizona https://almascience.nrao.edu/alma-science/planet-forming-disks

More information

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley Extrasolar Planets Properties 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Finding extrasolar planets is hard quick recap Planet Detection Direct: pictures or spectra of the planets

More information

Forma&on of the Solar System

Forma&on of the Solar System Forma&on of the Solar System Overview We can explain the observed trends in our solar system through the nebular theory The laws of physics (Chapter 4) come into play here. The major dis&nc&on between

More information

Orbital Obliquities of Small Planets from CHARA Stellar Diameters

Orbital Obliquities of Small Planets from CHARA Stellar Diameters Orbital Obliquities of Small Planets from CHARA Stellar Diameters Samuel Quinn & Russel White Georgia State University CHARA Meeting March 19, 2015 Hébrard+ (2011) How do planets migrate? Giant planets

More information

ISIMA lectures on celestial mechanics. 3

ISIMA lectures on celestial mechanics. 3 ISIMA lectures on celestial mechanics. 3 Scott Tremaine, Institute for Advanced Study July 2014 1. The stability of planetary systems To understand the formation and evolution of exoplanet systems, we

More information

Observational constraints from the Solar System and from Extrasolar Planets

Observational constraints from the Solar System and from Extrasolar Planets Lecture 1 Part II Observational constraints from the Solar System and from Extrasolar Planets Lecture Universität Heidelberg WS 11/12 Dr. Christoph Mordasini mordasini@mpia.de Mentor Prof. T. Henning Lecture

More information

The Role of Precision Spectroscopy in the Search for Earth 2.0. Jacob Bean University of Chicago

The Role of Precision Spectroscopy in the Search for Earth 2.0. Jacob Bean University of Chicago The Role of Precision Spectroscopy in the Search for Earth 2.0 Jacob Bean University of Chicago Known exoplanets N 5000 radial velocity transit direct imaging microlensing The role of precision spectroscopy

More information

Data from: The Extrasolar Planet Encyclopaedia.

Data from: The Extrasolar Planet Encyclopaedia. Data from: The Extrasolar Planet Encyclopaedia http://exoplanet.eu/ 2009->10 Status of Exoplanet Searches Direct Detection: 5->9 planets detected Sensitive to large planets in large orbits around faint

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

Chapter 2 Evolution History of Extrasolar Planetary Systems

Chapter 2 Evolution History of Extrasolar Planetary Systems Chapter 2 Evolution History of Extrasolar Planetary Systems Abstract In this chapter, we review the basics on the detection and characterization of exoplanetary systems. We first focus on the two leading

More information

Observations of Extrasolar Planets

Observations of Extrasolar Planets Observations of Extrasolar Planets Hamilton 2005 Shay Zucker Observations of Extrasolar Planets Spectroscopic detection of exoplanets Emerging properties of the sample Transiting planets Future prospects

More information

Effect of sun s mass loss in the dynamical evolution of the Solar System

Effect of sun s mass loss in the dynamical evolution of the Solar System Effect of sun s mass loss in the dynamical evolution of the Solar System Despoina K. Skoulidou Harry Varvoglis & Kleomenis Tsiganis Aristotle University of Thessaloniki 12 th Hellenic Astronomical Conference

More information

III The properties of extrasolar planets

III The properties of extrasolar planets III The properties of extrasolar planets (as of early 2016) http://sgoodwin.staff.shef.ac.uk/phy229.html 3.0 Introduction This lecture will discuss what we have found so far. It is important to remember

More information

Debris disk structure arising from planetary perturbations

Debris disk structure arising from planetary perturbations Debris disk structure arising from planetary perturbations Mark Wyatt Institute of Astronomy, Cambridge Debris disk structure arising from planetary perturbations Disk dynamical theory and the observables

More information

arxiv: v1 [astro-ph.ep] 3 Apr 2018

arxiv: v1 [astro-ph.ep] 3 Apr 2018 Astronomy& Astrophysics manuscript no. zanardi_ c ESO 28 September 2, 28 The role of the general relativity on icy body reservoirs under the effects of an inner eccentric Jupiter M. Zanardi, 2, G. C. de

More information

Recent Results on Circumbinary Planets

Recent Results on Circumbinary Planets Recent Results on Circumbinary Planets Jerome A. Orosz with thanks to Bill Welsh, Don Short, Gur Windmiller, Dan Fabrycky, Josh Carter, Laurance Doyle, The Kepler EB and TTV Working Groups Importance of

More information

Exoplanet Pursuit. PLANet B. Kalpaxis Georgios Vasilainas Athanasios Vatistas Andreas

Exoplanet Pursuit. PLANet B. Kalpaxis Georgios Vasilainas Athanasios Vatistas Andreas Exoplanet Pursuit PLANet B Kalpaxis Georgios Vasilainas Athanasios Vatistas Andreas We must continue to go into space for the future of humanity. I do not think we will survive another 1,000 years without

More information

The Physics of Exoplanets

The Physics of Exoplanets The Physics of Exoplanets Heike Rauer Institut für Planetenforschung, DLR, Berlin-Adlershof, Zentrum für Astronomie und Astrophysik, TU Berlin Formation in protoplanetary disk, migration Loss of primary,

More information

The eccentric behavior of planets

The eccentric behavior of planets The eccentric behavior of planets (and their eccentric companions) Smadar Naoz UCLA! ExSoCal2015 September 2015 Collaborators: (current students:) Alexander Stephan, Bao-Minh Hoang, Cicero Lu, (former

More information

arxiv: v2 [astro-ph.ep] 22 Jul 2013

arxiv: v2 [astro-ph.ep] 22 Jul 2013 Are the Kepler Near-Resonance Planet Pairs due to Tidal Dissipation? Man Hoi Lee 1, D. Fabrycky 2,3,4, and D. N. C. Lin 3,5 arxiv:1307.4874v2 [astro-ph.ep] 22 Jul 2013 1 Department of Earth Sciences and

More information

LIGO Results/Surprises? Dong Lai

LIGO Results/Surprises? Dong Lai LIGO Results/Surprises? Dong Lai Cornell University Exploding Universe Workshop, TDLI, 5/28/2018 GW170817 / AT2017gfo Metzger 2017 LIGO Surprises? 1. Tidal Resonances! NS EOS 2. Dynamical Formation of

More information

Astronomy 1140 Quiz 4 Review

Astronomy 1140 Quiz 4 Review Astronomy 1140 Quiz 4 Review Anil Pradhan December 6, 2016 I The Outer Planets in General 1. How do the sizes, masses and densities of the outer planets compare with the inner planets? The outer planets

More information

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow EXOPLANET LECTURE PLANET FORMATION Dr. Judit Szulagyi - ETH Fellow (judits@ethz.ch) I. YOUNG STELLAR OBJECTS AND THEIR DISKS (YSOs) Star Formation Young stars born in 10 4 10 6 M Sun Giant Molecular Clouds.

More information

Forming habitable planets on the computer

Forming habitable planets on the computer Forming habitable planets on the computer Anders Johansen Lund University, Department of Astronomy and Theoretical Physics 1/9 Two protoplanetary discs (Andrews et al., 2016) (ALMA Partnership, 2015) Two

More information

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France What is to expect from the transit method M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France Transit - method Occurrence: only if the planet orbital plane is close to

More information