Graphs and Trees: cycles detection and stream segmentation. Lorenzo Cioni Dipartimento di Informatica Largo Pontecorvo 3 Pisa

Size: px
Start display at page:

Download "Graphs and Trees: cycles detection and stream segmentation. Lorenzo Cioni Dipartimento di Informatica Largo Pontecorvo 3 Pisa"

Transcription

1 Graphs and Trees: cycles detecton and stream segmentaton Lorenzo Con Dpartmento d Informatca Largo Pontecorvo 3 Psa lcon@d.unp.t

2 Man topcs of the talk Two algorthms: segmentaton of a stream of data applcaton: syllabfcaton of wrtten Italan cycles detecton n drected (even complete) graphs applcaton: graphc edtor for graphs edtng wth cycles detecton, desgned to be used for the defnton of drected graphs used n causal loop graphs (system dynamcs)

3 Trees and segmentaton RB-tree (paper of mne, 996): syllabfcaton of wrtten Italan; bnary tree; recursve calls; vowels/consonants. m-ary tree, under development m drect descendants of each node; recursve calls; alphabet of m dstnct symbols.

4 Trees and segmentaton 2 Lexcon A alphabet, A =m S strngs on A, length n, potentally unbound S={s + s A} M, set of markers M A = Ø R, rules, fxed and fnte set, R={r,..., r k } W, weghts, fxed and fnte set, W={w,..., w k } r w one-to-one correspondence Lexcon/Syntax A={α 0,..., α m- } β=m base of the numberng scheme Ŵ={w j w j = =0,k β l } k=[0,..., K], K max number of elements of a rule W Ŵ dentfes the set of weghts to whch corresponds a rule m-ary tree dynamcally bult, no permanent data structures rules as weghts

5 Trees and segmentaton 3 nput stream n n 2 n 3...n... n k... wth n A ŵ= n β where n s a codng of each nput symbol (cf. the examples) f ŵ W then t dentfes a rule r j formally we have: we defne a runnng sum ŵ= n β and, at each step, we check f ŵ W or not. In the former case we apply the correspondng rule r j otherwse we step to the followng nput symbol and update ŵ.

6 Trees and segmentaton 4 evaluaton of ŵ check f ŵ W, cost O(), two cases: no: we ncrement k (the ponter on the nput stream) by one (k=k+) and evaluate a new value of ŵ as ŵ=ŵ+n k β k yes: we apply the correspondng rule r and reset to zero both the ponter k and the runnng sum ŵ the applcaton of a rule s equvalent to the nserton of: one marker: after, segmentaton nsde, syllabfcaton two markers, one before and one after, extracton

7 Unformty: Propertes of the rules we have unformty f every rule nvolves the same number of nput symbols otherwse we have a value max that defne the longest rule[s] Completeness: a set of rules s complete f there s a rule for every value of the runnng sum from 0 to β - There s no relaton between the two propertes Unformty and completeness translate n propertes of the structure of the m-ary tree, dynamcally bult

8 f w r then Executon of the rules else apply r reset ponter k and runnng sum k=k+ update runnng sum wth the current nput symbol apply = nsert, n the proper poston[s] one or two markers

9 Example A={a,b}, b 0, a, M={*}, S={s + s A} completeness and unformty r 0 =bb w 0 =0; r =ab w =;r 2 =ba w 2 =2; r 3 =aa w 3 =3 R={r 0,r,r 2,r 3 } W={w 0,w,w 2,w 3 } w a rule that defnes where to nsert the marker[s] r 0,r 3 marker nsde aa a*a, bb b*b r,r 2 marker after ab ab*, ba bab* abbbaaab... ab*b*ba*aab*...

10 Example contnued A={a,b}, b 0, a, M={*}, S={s + s A} no completeness but unformty r 0 =bb w 0 =0; r 3 =aa w 3 =3 r 0,r 3 marker before and after abbbaaab... ab*bb**aa*ab... no completeness and no unformty conflctng rules? used n syllabfcaton

11 Example contnued r =ab w =; r =aba w =5 conflct: the former covers the 0 0 latter no completeness no unformty (cf. fgure) r =ab w =; 0 0 r =bab w =2 r =bba w =4 2 2

12 Example 2: syllabfcaton Man features: marker nsde no unformty completeness lookahead & stepback vs. stepforward Two versons: smple verson: small alphabet, complex rules; complex verson: bg alphabet, smpler rules

13 Example 2 contnued Smple verson: alphabet A: vowels V (wth/wthout stress), consonants C, separators S (spaces, tabs) and punctuaton marks P A= V C S P markers M={-} weghts W={w } rules R={r } r w Rules rules are appled wth a lookahead and a stepback wth a recursve call rules are complex snce we have to dscrmnate many cases wthn a rule

14 Example 2 contnued Some rules of smple verson: v V, v, c C, c 0 w 0 = 0 r 0 =cvcv cv-cv w 9 = 9 r 9 =vc c 2 v some cases: f c =c 2 then vc -c 2 v f c =n then vc -c 2 v f c =s then v-c c 2 v Examples (n blue substrngs analysed wth recursve calls) pallone 9 pal-lone 0 pal-lo-ne asmatco 9 a-smatco 0 a-sma-tco 0 a-sma-t-co

15 Example 2 contnued Complex verson (under development): alphabet A'=A V n C 2 C 3... alphabet A' contans old alphabet plus groups of vowels (V n ) and of two (C 2 ), three (C 3 ) consonants and all the relevant subgroups markers M={-} weghts W={w }, rules R={r },r w β= A' Rules rules are appled wth a lookahead and a stepback wth a recursve call we have more rules but each rule s smpler snce t contans a small set of sub-cases

16 Segmentaton : computatonal complexty Constant number of rules Input stream of n symbols. Two cases: n fxed (not really relevant for complexty); n not known a pror. Only stepforward complexty O(n) Wth lookahead and stepback complexty > O(n) complexty < O(n 2 ) complexty O(n log n)??

17 Cycles detecton n drected graphs Data structures G=(N,E) drected graph, N =n, E =m A alphabet A={a } =,..., n S=Â={a...a k a A k 2} a n N, (a l,a k ) (n l,n k ) E Three man steps mappng: from graphs to strngs searchng substrngs wth gven propertes (every substrng dentfes a cycle) prunng of equvalent substrngs (duplcate cycles)

18 Cycles detecton n drected graphs 2 Data structures G=(N,E) drected graph, N =n, E =m m=n(n-) at the most number of cycles (complete graph): Frst example fve cycles: ABBA, BCCB, ACCA, ABBCCA (ant clock wse), ACCBBA (clock wse) CBBAAC and ACCBBA equvalent through shft left BCCAAB and ABBCCA equvalent through shft left

19 Cycles detecton n drected graphs 3 Second example three cycles: ABBA BCCB, ABBCCA casual mappng: ABCBCABCBA lexcographc mappng (by nodes order and by forward star): ABBABCCACB

20 Cycles detecton n drected graphs 4 Second example contnued cycles detecton n ABBABCCACB (head node n blue, tal node n black, subcycles n talcs) ABBABCCACB ABBA cycle, scan ABBCCB subcycle (premature closure), dscard ABBCCA cycle, 2 scans ABBABCCACB BAAB duplcate cycle, 2 scans ABBABCCACB BCCAAB duplcate cycle, 2 scans BCCB cycle, scan ABBABCCACB CAABBA subcycle, dscard CAABBC duplcate cycle, 2 scans and so on...

21 Operatons Mappng g G=(N,E) s S = {s = aa + a A} unform vs. non unform number of symbols for each node dentfer modes of mappng: casual, lexcographc Searchng number of scans: maxmum n- wth n= N search operatons produces a lst of substrngs, one for each (duplcate) cycle Prunng (or removal of duplcate cycles) ex-ante ex-post

22 contguty_check (cc) Search Operatons fnds couple of contguous arcs (parwse underlned), returns a boolean premature_closure (pc) fnds subcycles (.e. cyclcal substrngs) to be dscarded (velvet) condton: head tal closure (cl) fnds a cycle as represented by a cyclc substrng wthout pc condton: head (blue) = tal (talc blue) Examples ABB CCACB ABB CCBCA ABB CCA

23 Prunng removes duplcate cycles. e. substrngs of equal length and equvalent under left/rght shft ex-ante durng the search phase does not nsert equvalent substrngs n the lst, usually one sngle growng vector C[] ex-post after the search phase two man cases: one sngle unordered vector C[] of k elements a set of vectors C [] =2,..., n, each of k elements, some even empty all substrngs contaned n the lst created at the end of the search phase are examned and equvalent substrngs are removed

24 Prunng 2 ex-ante to each arc (of two dstnct nodes) corresponds a strng s S so that to a chan of arcs corresponds a chan of strngs s s 2 s 3...s k C [] s ether empty (at the very begnnng) or contans the substrngs cycles defned up to a certan pont we have an terated algorthm: at step (=,..., k) we check f s C [] and defne C + []={c j C [] c j s } f the cycle contans k arcs and the correspondng strng s of 2k symbols and C k [] then the current substrng corresponds to a duplcate cycle and must be dscarded f, at any step, we have C []= then the current strng (f satsfes the aforesad propertes) corresponds to a new cycle and must be added to C []

25 Prunng 3 ex-post frst case: one sngle unordered vector C[] of k elements we have a cycle for = to k-, at each step we have: confront C[] wth all the shfted versons of C[j] for j=+ to k every matchng strng must be removed from C[] whose number of elements reduces at the end C[] contans the resdual substrngs to each of whch corresponds a cycle of the gven graph second case: a set of vectors C [] =2,..., n, each of k elements, some even empty we repeat the algorthm we have desgned for the sngle vector case for all the non empty vectors C []

26 Applcatons of the algorthm cycles detecton connectvty? more?

27 Complexty of the algorthm mappng (complete graph of n nodes): O(n 2 ) searchng (complete graph of n nodes): O(n n- )?? prunng: ex-ante, costly ex-post, very costly

28 Concludng remarks so many thngs to do and so a short tme...

29 Game Over... Thank you for your attenton Lorenzo Con Dpartmento d Informatca Largo Pontecorvo 3 Psa lcon@d.unp.t

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

Basic Regular Expressions. Introduction. Introduction to Computability. Theory. Motivation. Lecture4: Regular Expressions

Basic Regular Expressions. Introduction. Introduction to Computability. Theory. Motivation. Lecture4: Regular Expressions Introducton to Computablty Theory Lecture: egular Expressons Prof Amos Israel Motvaton If one wants to descrbe a regular language, La, she can use the a DFA, Dor an NFA N, such L ( D = La that that Ths

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Lecture 4: November 17, Part 1 Single Buffer Management

Lecture 4: November 17, Part 1 Single Buffer Management Lecturer: Ad Rosén Algorthms for the anagement of Networs Fall 2003-2004 Lecture 4: November 7, 2003 Scrbe: Guy Grebla Part Sngle Buffer anagement In the prevous lecture we taled about the Combned Input

More information

Hashing. Alexandra Stefan

Hashing. Alexandra Stefan Hashng Alexandra Stefan 1 Hash tables Tables Drect access table (or key-ndex table): key => ndex Hash table: key => hash value => ndex Man components Hash functon Collson resoluton Dfferent keys mapped

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

6.842 Randomness and Computation February 18, Lecture 4

6.842 Randomness and Computation February 18, Lecture 4 6.842 Randomness and Computaton February 18, 2014 Lecture 4 Lecturer: Rontt Rubnfeld Scrbe: Amartya Shankha Bswas Topcs 2-Pont Samplng Interactve Proofs Publc cons vs Prvate cons 1 Two Pont Samplng 1.1

More information

Turing Machines (intro)

Turing Machines (intro) CHAPTER 3 The Church-Turng Thess Contents Turng Machnes defntons, examples, Turng-recognzable and Turng-decdable languages Varants of Turng Machne Multtape Turng machnes, non-determnstc Turng Machnes,

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desgn and Analyss of Algorthms CSE 53 Lecture 4 Dynamc Programmng Junzhou Huang, Ph.D. Department of Computer Scence and Engneerng CSE53 Desgn and Analyss of Algorthms The General Dynamc Programmng Technque

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) Our focus: effcency of

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/18.401J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) What data structures

More information

CHAPTER 17 Amortized Analysis

CHAPTER 17 Amortized Analysis CHAPTER 7 Amortzed Analyss In an amortzed analyss, the tme requred to perform a sequence of data structure operatons s averaged over all the operatons performed. It can be used to show that the average

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

General theory of fuzzy connectedness segmentations: reconciliation of two tracks of FC theory

General theory of fuzzy connectedness segmentations: reconciliation of two tracks of FC theory General theory of fuzzy connectedness segmentatons: reconclaton of two tracks of FC theory Krzysztof Chrs Ceselsk Department of Mathematcs, West Vrgna Unversty and MIPG, Department of Radology, Unversty

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

On the Repeating Group Finding Problem

On the Repeating Group Finding Problem The 9th Workshop on Combnatoral Mathematcs and Computaton Theory On the Repeatng Group Fndng Problem Bo-Ren Kung, Wen-Hsen Chen, R.C.T Lee Graduate Insttute of Informaton Technology and Management Takmng

More information

A property of the elementary symmetric functions

A property of the elementary symmetric functions Calcolo manuscrpt No. (wll be nserted by the edtor) A property of the elementary symmetrc functons A. Esnberg, G. Fedele Dp. Elettronca Informatca e Sstemstca, Unverstà degl Stud della Calabra, 87036,

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

The stream cipher MICKEY

The stream cipher MICKEY The stream cpher MICKEY-128 2.0 Steve Babbage Vodafone Group R&D, Newbury, UK steve.babbage@vodafone.com Matthew Dodd Independent consultant matthew@mdodd.net www.mdodd.net 30 th June 2006 Abstract: We

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

04 - Treaps. Dr. Alexander Souza

04 - Treaps. Dr. Alexander Souza Algorths Theory 04 - Treaps Dr. Alexander Souza The dctonary proble Gven: Unverse (U,

More information

On the set of natural numbers

On the set of natural numbers On the set of natural numbers by Jalton C. Ferrera Copyrght 2001 Jalton da Costa Ferrera Introducton The natural numbers have been understood as fnte numbers, ths wor tres to show that the natural numbers

More information

Statistical Mechanics and Combinatorics : Lecture III

Statistical Mechanics and Combinatorics : Lecture III Statstcal Mechancs and Combnatorcs : Lecture III Dmer Model Dmer defntons Defnton A dmer coverng (perfect matchng) of a fnte graph s a set of edges whch covers every vertex exactly once, e every vertex

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

A CLASS OF RECURSIVE SETS. Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA

A CLASS OF RECURSIVE SETS. Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA A CLASS OF RECURSIVE SETS Florentn Smarandache Unversty of New Mexco 200 College Road Gallup, NM 87301, USA E-mal: smarand@unmedu In ths artcle one bulds a class of recursve sets, one establshes propertes

More information

Combining Constraint Programming and Integer Programming

Combining Constraint Programming and Integer Programming Combnng Constrant Programmng and Integer Programmng GLOBAL CONSTRAINT OPTIMIZATION COMPONENT Specal Purpose Algorthm mn c T x +(x- 0 ) x( + ()) =1 x( - ()) =1 FILTERING ALGORITHM COST-BASED FILTERING ALGORITHM

More information

Graph Reconstruction by Permutations

Graph Reconstruction by Permutations Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France e-mal: lle@ml.unv-mrs.fr Computer

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1]

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1] DYNAMIC SHORTEST PATH SEARCH AND SYNCHRONIZED TASK SWITCHING Jay Wagenpfel, Adran Trachte 2 Outlne Shortest Communcaton Path Searchng Bellmann Ford algorthm Algorthm for dynamc case Modfcatons to our algorthm

More information

An Experiment/Some Intuition (Fall 2006): Lecture 18 The EM Algorithm heads coin 1 tails coin 2 Overview Maximum Likelihood Estimation

An Experiment/Some Intuition (Fall 2006): Lecture 18 The EM Algorithm heads coin 1 tails coin 2 Overview Maximum Likelihood Estimation An Experment/Some Intuton I have three cons n my pocket, 6.864 (Fall 2006): Lecture 18 The EM Algorthm Con 0 has probablty λ of heads; Con 1 has probablty p 1 of heads; Con 2 has probablty p 2 of heads

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

Compilers. Spring term. Alfonso Ortega: Enrique Alfonseca: Chapter 4: Syntactic analysis

Compilers. Spring term. Alfonso Ortega: Enrique Alfonseca: Chapter 4: Syntactic analysis Complers Sprng term Alfonso Ortega: alfonso.ortega@uam.es nrque Alfonseca: enrque.alfonseca@uam.es Chapter : Syntactc analyss. Introducton. Bottom-up Analyss Syntax Analyser Concepts It analyses the context-ndependent

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS

MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS The 3 rd Internatonal Conference on Mathematcs and Statstcs (ICoMS-3) Insttut Pertanan Bogor, Indonesa, 5-6 August 28 MODELING TRAFFIC LIGHTS IN INTERSECTION USING PETRI NETS 1 Deky Adzkya and 2 Subono

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Exercises. 18 Algorithms

Exercises. 18 Algorithms 18 Algorthms Exercses 0.1. In each of the followng stuatons, ndcate whether f = O(g), or f = Ω(g), or both (n whch case f = Θ(g)). f(n) g(n) (a) n 100 n 200 (b) n 1/2 n 2/3 (c) 100n + log n n + (log n)

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014 COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #16 Scrbe: Yannan Wang Aprl 3, 014 1 Introducton The goal of our onlne learnng scenaro from last class s C comparng wth best expert and

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Changing Topology and Communication Delays

Changing Topology and Communication Delays Prepared by F.L. Lews Updated: Saturday, February 3, 00 Changng Topology and Communcaton Delays Changng Topology The graph connectvty or topology may change over tme. Let G { G, G,, G M } wth M fnte be

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1 MATH 5707 HOMEWORK 4 SOLUTIONS CİHAN BAHRAN 1. Let v 1,..., v n R m, all lengths v are not larger than 1. Let p 1,..., p n [0, 1] be arbtrary and set w = p 1 v 1 + + p n v n. Then there exst ε 1,..., ε

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

Sequential Processes. In the case of sequential processes, this information indicates explicitly the possible transactions from a state.

Sequential Processes. In the case of sequential processes, this information indicates explicitly the possible transactions from a state. Sequental Processes Each state of a system can be represented by a process expresson that carres nformaton ab both the behavor and the structure of the system. In the case of sequental processes, ths nformaton

More information

Dynamic Systems on Graphs

Dynamic Systems on Graphs Prepared by F.L. Lews Updated: Saturday, February 06, 200 Dynamc Systems on Graphs Control Graphs and Consensus A network s a set of nodes that collaborates to acheve what each cannot acheve alone. A network,

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Maximal Margin Classifier

Maximal Margin Classifier CS81B/Stat41B: Advanced Topcs n Learnng & Decson Makng Mamal Margn Classfer Lecturer: Mchael Jordan Scrbes: Jana van Greunen Corrected verson - /1/004 1 References/Recommended Readng 1.1 Webstes www.kernel-machnes.org

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Two Methods to Release a New Real-time Task

Two Methods to Release a New Real-time Task Two Methods to Release a New Real-tme Task Abstract Guangmng Qan 1, Xanghua Chen 2 College of Mathematcs and Computer Scence Hunan Normal Unversty Changsha, 410081, Chna qqyy@hunnu.edu.cn Gang Yao 3 Sebel

More information

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Beyond Zudilin s Conjectured q-analog of Schmidt s problem Beyond Zudln s Conectured q-analog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs

More information

Spectral Graph Theory and its Applications September 16, Lecture 5

Spectral Graph Theory and its Applications September 16, Lecture 5 Spectral Graph Theory and ts Applcatons September 16, 2004 Lecturer: Danel A. Spelman Lecture 5 5.1 Introducton In ths lecture, we wll prove the followng theorem: Theorem 5.1.1. Let G be a planar graph

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Dynamic Programming 4/5/12. Dynamic programming. Fibonacci numbers. Fibonacci: a first attempt. David Kauchak cs302 Spring 2012

Dynamic Programming 4/5/12. Dynamic programming. Fibonacci numbers. Fibonacci: a first attempt. David Kauchak cs302 Spring 2012 Dynamc Programmng Davd Kauchak cs32 Sprng 212 Dynamc programmng l One of the most mportant algorthm tools! l Very common ntervew queston l Method for solvng problems where optmal solutons can be defned

More information

Lecture Space-Bounded Derandomization

Lecture Space-Bounded Derandomization Notes on Complexty Theory Last updated: October, 2008 Jonathan Katz Lecture Space-Bounded Derandomzaton 1 Space-Bounded Derandomzaton We now dscuss derandomzaton of space-bounded algorthms. Here non-trval

More information

Finding Primitive Roots Pseudo-Deterministically

Finding Primitive Roots Pseudo-Deterministically Electronc Colloquum on Computatonal Complexty, Report No 207 (205) Fndng Prmtve Roots Pseudo-Determnstcally Ofer Grossman December 22, 205 Abstract Pseudo-determnstc algorthms are randomzed search algorthms

More information

On cyclic of Steiner system (v); V=2,3,5,7,11,13

On cyclic of Steiner system (v); V=2,3,5,7,11,13 On cyclc of Stener system (v); V=,3,5,7,,3 Prof. Dr. Adl M. Ahmed Rana A. Ibraham Abstract: A stener system can be defned by the trple S(t,k,v), where every block B, (=,,,b) contans exactly K-elementes

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

Lecture 3 January 31, 2017

Lecture 3 January 31, 2017 CS 224: Advanced Algorthms Sprng 207 Prof. Jelan Nelson Lecture 3 January 3, 207 Scrbe: Saketh Rama Overvew In the last lecture we covered Y-fast tres and Fuson Trees. In ths lecture we start our dscusson

More information

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product 12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA Here s an outlne of what I dd: (1) categorcal defnton (2) constructon (3) lst of basc propertes (4) dstrbutve property (5) rght exactness (6) localzaton

More information

An efficient algorithm for multivariate Maclaurin Newton transformation

An efficient algorithm for multivariate Maclaurin Newton transformation Annales UMCS Informatca AI VIII, 2 2008) 5 14 DOI: 10.2478/v10065-008-0020-6 An effcent algorthm for multvarate Maclaurn Newton transformaton Joanna Kapusta Insttute of Mathematcs and Computer Scence,

More information

Message modification, neutral bits and boomerangs

Message modification, neutral bits and boomerangs Message modfcaton, neutral bts and boomerangs From whch round should we start countng n SHA? Antone Joux DGA and Unversty of Versalles St-Quentn-en-Yvelnes France Jont work wth Thomas Peyrn 1 Dfferental

More information

Valuated Binary Tree: A New Approach in Study of Integers

Valuated Binary Tree: A New Approach in Study of Integers Internatonal Journal of Scentfc Innovatve Mathematcal Research (IJSIMR) Volume 4, Issue 3, March 6, PP 63-67 ISS 347-37X (Prnt) & ISS 347-34 (Onlne) wwwarcournalsorg Valuated Bnary Tree: A ew Approach

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Problem Set 6: Trees Spring 2018

Problem Set 6: Trees Spring 2018 Problem Set 6: Trees 1-29 Sprng 2018 A Average dstance Gven a tree, calculate the average dstance between two vertces n the tree. For example, the average dstance between two vertces n the followng tree

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Math Review. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

Math Review. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University Math Revew CptS 223 dvanced Data Structures Larry Holder School of Electrcal Engneerng and Computer Scence Washngton State Unversty 1 Why do we need math n a data structures course? nalyzng data structures

More information

Amusing Properties of Odd Numbers Derived From Valuated Binary Tree

Amusing Properties of Odd Numbers Derived From Valuated Binary Tree IOSR Journal of Mathematcs (IOSR-JM) e-iss: 78-578, p-iss: 19-765X. Volume 1, Issue 6 Ver. V (ov. - Dec.016), PP 5-57 www.osrjournals.org Amusng Propertes of Odd umbers Derved From Valuated Bnary Tree

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Clustering gene expression data & the EM algorithm

Clustering gene expression data & the EM algorithm CG, Fall 2011-12 Clusterng gene expresson data & the EM algorthm CG 08 Ron Shamr 1 How Gene Expresson Data Looks Entres of the Raw Data matrx: Rato values Absolute values Row = gene s expresson pattern

More information

CSE4210 Architecture and Hardware for DSP

CSE4210 Architecture and Hardware for DSP 4210 Archtecture and Hardware for DSP Lecture 1 Introducton & Number systems Admnstratve Stuff 4210 Archtecture and Hardware for DSP Text: VLSI Dgtal Sgnal Processng Systems: Desgn and Implementaton. K.

More information

arxiv: v1 [math.co] 1 Mar 2014

arxiv: v1 [math.co] 1 Mar 2014 Unon-ntersectng set systems Gyula O.H. Katona and Dánel T. Nagy March 4, 014 arxv:1403.0088v1 [math.co] 1 Mar 014 Abstract Three ntersecton theorems are proved. Frst, we determne the sze of the largest

More information

Chapter 4: Root Finding

Chapter 4: Root Finding Chapter 4: Root Fndng Startng values Closed nterval methods (roots are search wthn an nterval o Bsecton Open methods (no nterval o Fxed Pont o Newton-Raphson o Secant Method Repeated roots Zeros of Hgher-Dmensonal

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information