ECE295, Data Assimila0on and Inverse Problems, Spring 2015

Size: px
Start display at page:

Download "ECE295, Data Assimila0on and Inverse Problems, Spring 2015"

Transcription

1 ECE295, Data Assimila0on and Inverse Problems, Spring April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 8 April, SVD (Aster ch 2 and 3) Slides 15 April, RegularizaFon (ch 4) 22 April, Sparse methods (ch ) 29 April, more on Sparse 6 May, Bayesian methods and Monte Carlo methods (ch 11) 13 May, IntroducFon to sequenfal Bayesian methods, Kalman Filter (KF) 20 May, Ensemple Kalman Filer (EnKF) 27 May, EnKF, ParFcle Filter, 3 June, Markov Chain Monte Carlo Homework: Just the code to me (I dont need anything else). Call the files LastName_ExXX. Homework is due 8am on Wednesday. 8 April: Hw 1: Download the matlab codes for the book (cd_5.3) from this website 15 April: SVD analysis: SVD homework. You can also try replacing the matrix in the Shaw problem with the beamforming sensing matrix. The sensing matrix is available here. 22 April Late April: Beamforming May: Ice- flow from GPS

2 Recap: Linear discrete inverse problems The Least squares solution minimizes the prediction error. Goodness of fit criteria tells us whether the least squares model adequately fits the data, given the level of noise. Chi-square with N-M degrees of freedom The covariance matrix describes how noise propagates from the data to the estimated model Chi-square with M degrees of freedom Gives confidence intervals The resolution matrix describes how the estimated model relates to the true model 37

3 Recap: Goodness of fit and model covariance Once a best fit solution has been obtained we test goodness of fit with a chi-square test (assuming Gaussian statistics) If the model passes the goodness of fit test we may proceed to evaluating model covariance (if not then your data errors are probably too small) Evaluate model covariance matrix Plot model or projections of it onto chosen subsets of parameters Calculate confidence intervals using projected equation Where 2 follows a 2 1 distribution 28

4 Recap: Linear discrete inverse problems The Least squares solution minimizes the prediction error. Goodness of fit criteria tells us whether the least squares model adequately fits the data, given the level of noise. Chi-square with N-M degrees of freedom The covariance matrix describes how noise propagates from the data to the estimated model Chi-square with M degrees of freedom Gives confidence intervals The resolution matrix describes how the estimated model relates to the true model 37

5 SVD

6 Data and model null spaces 112

7 Moore-Penrose inverse and data null space d = Gm G = U p S p V T p The Moore-Penrose pseudo or generalized inverse of G is written It is the unique matrix that satisfies four special properties G = V p Sp 1 Up T GG G = G (GG ) T = GG G GG = G (G G) T = G G Even when G has zero eigenvalues the Moore-Penrose inverse always exists and has desirable properties m = G d obs = V p Sp 1 Up T d obs 113

8 Properties of the Moore-Penrose inverse U_p and V_p always exist and there are FOUR possible situations to consider Case 1: No model or data null space U o and V o do not exist Case 2: Only a model null space exists U o does not exist, V o exists Case 3: Only a data null space exists U o exists, V o does not exist Case 4: Both data and model null space exists U o and V o exists 114

9 Covariance and Resolution of the pseudo inverse How does data noise propagate into the model? What is the model covariance matrix for the generalized inverse? For the case C d = 2 I C M = G C d (G ) T G = V p Sp 1 Up T C M = 2 G (G ) T = 2 V p Sp 2 Vp T Recall that S p is a diagonal matrix of singular ordered values S p = diag[s 1,s 2,...,s p ] C M = 2 p X i=1 v i v T i s 2 i As the number of singular values, p, increases the variance of the model parameters increases! 120

10 Covariance and Resolution of the pseudo inverse How is the estimated model related to the true model? Model resolution matrix R = G G = V p Sp 1 Up T U p S p Vp T = V p V T p As p increases the model null space decreases m = Rm true G = V p Sp 1 Up T p M : V T p V 1 p, R I As the number of singular values, p, increases the resolution of the model parameters increases! We see the trade-off between variance and resolution 121

11 Worked example: tomography Using rays 1-4 G = d = Gm G T G = This has eigenvalues 0, 2, 4, 6. V p = V o = Gv o = 0 s 1 2 = 6 s 2 2 = 4 s 3 2 = 2 s 42 = 0 122

12 Worked example: tomography Using rays 1-4 G = d = Gm G T G = This has eigenvalues 0, 2, 4, 6. V p = V o = Gv o = 0 s 1 2 = 6 s 2 2 = 4 s 3 2 = 2 s 42 = 0 122

13 Worked example: Eigenvectors S 12 =6 S 22 = V p = S 3 2 = V o =

14 Worked example: tomography Using eigenvalues all non zero eigenvalues s 1, s 2 and s 3 the resolution matrix becomes m = Rm true = V p V T p m true R = V p = Input model Recovered model 124

15 Worked example: tomography Using eigenvalues s 1, s 2 and s 3 the model covariance becomes C M = 2 p X i=1 v i v T i s 2 i C M = s 1 2 = 2 s 22 = 4 s 3 2 = C M =

16 Worked example: tomography Repeat using only one singular value s 3 =6 Model resolution matrix V p = R = V p V T p = Model covariance matrix Input Output C M = 2 p X i=1 v i v T i s 2 i =

17 Recap: Singular value decomposition There may exist a model null space -> models that can not be constrained by the data. There may exist a data null space -> data that can not be fit by any model. The general linear discrete inverse problem may be simultaneously under and over determined (mix-determined). Singular value decomposition is a framework for dealing with ill-posed problems. The Pseudo inverse is constructed using SVD and provides a unique model with desirable properties. Fits the data in a least squares sense Gives a minimum length model (no component in the null space) Model Resolution and Covariance can be traded off by choosing the number of eigenvalues to use in reconstruction. 127

18 Regulariza0on

19 Regularization The idea behind SVD is to limit the degree of freedom in the model and fit the data to an acceptable level. Retain only those features necessary to fit the data. A general framework for solving non-unique inverse problems is to introduce regularization. Regularization makes a non-unique problem become a unique problem. How does it do this? REGULARIZATION We want to minimize a combination of data misfit and some property of the model that measures extravagant behaviour, e.g. (m) =(dg(m)) T C 1 d (dg(m))+(mm o) T Cm 1 (mm o ) Inverse problem nonlinear optimization problem 142

20 Solutions to inverse problems Optimal data fitting model Extremal model Data acceptable models The general framework is optimization (m) =(dg(m) T Cd 1 (dg(m)+(mm o) T CM 1 (mm o) 143

21 Damped least squares We seek the model that minimizes (d, m) =(dgm) T Cd 1 (dgm)+(mm o) T CM 1 (mm o) After some algebra we get m DLS =(G T C 1 D G+C1 M )1 (G T C 1 D d+c1 M m o) This is the damped least squares solution. A special case is to minimise a weighted sum of the data misfit and the model norm. min (d Gm) m 2 2 Normal equations become (G T G + I)m = G T d this system of linear equations will have a unique solution which is called the Tikhonov solution 144

22 L-curve solution Choose that is nearest the elbow of the curve With this value of we can construct a particular Tikhonov solution (G T G + I)m = G T d Perform repeat solutions of the normal equations for different and select the one which lies near the elbow of the trade-off curve Elbow is estimated visually -> potentially subjective if elbow is not clear See example 5.1 of Aster et al. (2005) 145

23 Tikhonov: Discrepancy principle Discrepancy principle gives us a value of and consequently a value for If the N data have Gaussian errors with known variance N(0, 2 ) then we would expect that on average that each residual (d i G I,j m j ) would be approximately. Hence we have d Gm 2 = N 2 c.f.2 N (50%) = N We get an expected value of the norm of the prediction error from the number of data and the standard deviation of the data (G T G + I)m = G T d Perform repeated solutions until d Gm = 147

24 Tikhonov regularization: Shaw problem (G T G + I)m = G T d L-curve for the Shaw problem Fortunately a nice clear elbow is visible in this log-log plot, Trade off parameter is easily picked. N[0, (10 6 ) 2 ] L = = = = Tikhonov solution for L-curve solution L m =

25 SVD and Tikhonov regularization Tkihonov solution G = U p S p V T p m =(G T G + I) 1 G T d It can be shown... Page of Aster et al (2005) Look! m = that this can be written as MX s 2 Ã! i ui d i=1 s 2 i + v i s i Now we get very different behaviour m = px Ã! ui d i=1 s i SVD v i Let f i = s2 i s 2 i + Filter factors As singular values s i 0 the solution is not highly sensitive to noise Because f i 0 rather than. If s i >> then f i 1 If s i << then f i 0 SVD s i >s p f i =1 s i <s p f i =0 filters out (damps) the unstable influence of the small eigenvalues 154

ECE295, Data Assimila0on and Inverse Problems, Spring 2015

ECE295, Data Assimila0on and Inverse Problems, Spring 2015 ECE295, Data Assimila0on and Inverse Problems, Spring 2015 1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 8 April, SVD (Aster ch 2 and 3) Slides 15 April, RegularizaFon (ch

More information

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0

Singular value decomposition. If only the first p singular values are nonzero we write. U T o U p =0 Singular value decomposition If only the first p singular values are nonzero we write G =[U p U o ] " Sp 0 0 0 # [V p V o ] T U p represents the first p columns of U U o represents the last N-p columns

More information

Regularizing inverse problems. Damping and smoothing and choosing...

Regularizing inverse problems. Damping and smoothing and choosing... Regularizing inverse problems Damping and smoothing and choosing... 141 Regularization The idea behind SVD is to limit the degree of freedom in the model and fit the data to an acceptable level. Retain

More information

ECE295, Data Assimilation and Inverse Problems, Spring 2015

ECE295, Data Assimilation and Inverse Problems, Spring 2015 ECE295, Data Assimilation and Inverse Problems, Spring 2015 1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 8 April, SVD (Aster ch 2 and 3) Slides 15 April, Regularization (ch

More information

ECE295, Data Assimila0on and Inverse Problems, Spring 2015

ECE295, Data Assimila0on and Inverse Problems, Spring 2015 ECE295, Data Assimila0on and Inverse Problems, Spring 2015 Peter Gersto), 534-7768, gersto)@ucsd.edu We meet Wednesday from 5 to 6:20pm in HHS 2305A Text for first 5 classes: Parameter EsGmaGon and Inverse

More information

Numerical Methods I Singular Value Decomposition

Numerical Methods I Singular Value Decomposition Numerical Methods I Singular Value Decomposition Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 9th, 2014 A. Donev (Courant Institute)

More information

for Complex Environmental Models

for Complex Environmental Models Calibration and Uncertainty Analysis for Complex Environmental Models PEST: complete theory and what it means for modelling the real world John Doherty Calibration and Uncertainty Analysis for Complex

More information

Linearized inverse Problems

Linearized inverse Problems Linearized inverse Problems (Weakly nonlinear problems) Using a Taylor expansion then away we go... Linearized inverse problems Nonlinear inverse problem d obs,i = g i (m) Choose a reference model m o

More information

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Combinations of features Given a data matrix X n p with p fairly large, it can

More information

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR 1. Definition Existence Theorem 1. Assume that A R m n. Then there exist orthogonal matrices U R m m V R n n, values σ 1 σ 2... σ p 0 with p = min{m, n},

More information

Parameter Selection Techniques and Surrogate Models

Parameter Selection Techniques and Surrogate Models Parameter Selection Techniques and Surrogate Models Model Reduction: Will discuss two forms Parameter space reduction Surrogate models to reduce model complexity Input Representation Local Sensitivity

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition We are interested in more than just sym+def matrices. But the eigenvalue decompositions discussed in the last section of notes will play a major role in solving general

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Extended Kalman Filter Dr. Kostas Alexis (CSE) These slides relied on the lectures from C. Stachniss, J. Sturm and the book Probabilistic Robotics from Thurn et al.

More information

Basic Linear Inverse Method Theory - DRAFT NOTES

Basic Linear Inverse Method Theory - DRAFT NOTES Basic Linear Inverse Method Theory - DRAFT NOTES Peter P. Jones 1 1 Centre for Compleity Science, University of Warwick, Coventry CV4 7AL, UK (Dated: 21st June 2012) BASIC LINEAR INVERSE METHOD THEORY

More information

15 Singular Value Decomposition

15 Singular Value Decomposition 15 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice 3. Eigenvalues and Eigenvectors, Spectral Representation 3.. Eigenvalues and Eigenvectors A vector ' is eigenvector of a matrix K, if K' is parallel to ' and ' 6, i.e., K' k' k is the eigenvalue. If is

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 A cautionary tale Notes for 2016-10-05 You have been dropped on a desert island with a laptop with a magic battery of infinite life, a MATLAB license, and a complete lack of knowledge of basic geometry.

More information

Linear Subspace Models

Linear Subspace Models Linear Subspace Models Goal: Explore linear models of a data set. Motivation: A central question in vision concerns how we represent a collection of data vectors. The data vectors may be rasterized images,

More information

Inversion of Phase Data for a Phase Velocity Map 101. Summary for CIDER12 Non-Seismologists

Inversion of Phase Data for a Phase Velocity Map 101. Summary for CIDER12 Non-Seismologists Inversion of Phase Data for a Phase Velocity Map 101 Summary for CIDER12 Non-Seismologists 1. Setting up a Linear System of Equations This is a quick-and-dirty, not-peer reviewed summary of how a dataset

More information

= (G T G) 1 G T d. m L2

= (G T G) 1 G T d. m L2 The importance of the Vp/Vs ratio in determining the error propagation and the resolution in linear AVA inversion M. Aleardi, A. Mazzotti Earth Sciences Department, University of Pisa, Italy Introduction.

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

Previously Monte Carlo Integration

Previously Monte Carlo Integration Previously Simulation, sampling Monte Carlo Simulations Inverse cdf method Rejection sampling Today: sampling cont., Bayesian inference via sampling Eigenvalues and Eigenvectors Markov processes, PageRank

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1 Week 2 Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Part I Other datatypes, preprocessing 2 / 1 Other datatypes Document data You might start with a collection of

More information

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes Week 2 Based in part on slides from textbook, slides of Susan Holmes Part I Other datatypes, preprocessing October 3, 2012 1 / 1 2 / 1 Other datatypes Other datatypes Document data You might start with

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

The Inversion Problem: solving parameters inversion and assimilation problems

The Inversion Problem: solving parameters inversion and assimilation problems The Inversion Problem: solving parameters inversion and assimilation problems UE Numerical Methods Workshop Romain Brossier romain.brossier@univ-grenoble-alpes.fr ISTerre, Univ. Grenoble Alpes Master 08/09/2016

More information

Geophysical Data Analysis: Discrete Inverse Theory

Geophysical Data Analysis: Discrete Inverse Theory Geophysical Data Analysis: Discrete Inverse Theory MATLAB Edition William Menke Lamont-Doherty Earth Observatory and Department of Earth and Environmental Sciences Columbia University. ' - Palisades, New

More information

1 Linearity and Linear Systems

1 Linearity and Linear Systems Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 26 Jonathan Pillow Lecture 7-8 notes: Linear systems & SVD Linearity and Linear Systems Linear system is a kind of mapping f( x)

More information

Linear Regression and Its Applications

Linear Regression and Its Applications Linear Regression and Its Applications Predrag Radivojac October 13, 2014 Given a data set D = {(x i, y i )} n the objective is to learn the relationship between features and the target. We usually start

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution

Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution Regularization Parameter Estimation for Least Squares: A Newton method using the χ 2 -distribution Rosemary Renaut, Jodi Mead Arizona State and Boise State September 2007 Renaut and Mead (ASU/Boise) Scalar

More information

Cross Directional Control

Cross Directional Control Cross Directional Control Graham C. Goodwin Day 4: Lecture 4 16th September 2004 International Summer School Grenoble, France 1. Introduction In this lecture we describe a practical application of receding

More information

Jeffrey D. Ullman Stanford University

Jeffrey D. Ullman Stanford University Jeffrey D. Ullman Stanford University 2 Often, our data can be represented by an m-by-n matrix. And this matrix can be closely approximated by the product of two matrices that share a small common dimension

More information

Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors

Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors Eugenia Kalnay Lecture 2 Alghero, May 2008 Elements of Ensemble Forecasting

More information

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works CS68: The Modern Algorithmic Toolbox Lecture #8: How PCA Works Tim Roughgarden & Gregory Valiant April 20, 206 Introduction Last lecture introduced the idea of principal components analysis (PCA). The

More information

Independent Component Analysis

Independent Component Analysis Independent Component Analysis Philippe B. Laval KSU Fall 2017 Philippe B. Laval (KSU) ICA Fall 2017 1 / 18 Introduction Independent Component Analysis (ICA) falls under the broader topic of Blind Source

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course.

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course. Name of the course Statistical methods and data analysis Audience The course is intended for students of the first or second year of the Graduate School in Materials Engineering. The aim of the course

More information

Statistically-Based Regularization Parameter Estimation for Large Scale Problems

Statistically-Based Regularization Parameter Estimation for Large Scale Problems Statistically-Based Regularization Parameter Estimation for Large Scale Problems Rosemary Renaut Joint work with Jodi Mead and Iveta Hnetynkova March 1, 2010 National Science Foundation: Division of Computational

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

Singular Value Decompsition

Singular Value Decompsition Singular Value Decompsition Massoud Malek One of the most useful results from linear algebra, is a matrix decomposition known as the singular value decomposition It has many useful applications in almost

More information

Notes on Eigenvalues, Singular Values and QR

Notes on Eigenvalues, Singular Values and QR Notes on Eigenvalues, Singular Values and QR Michael Overton, Numerical Computing, Spring 2017 March 30, 2017 1 Eigenvalues Everyone who has studied linear algebra knows the definition: given a square

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Inverse Theory. COST WaVaCS Winterschool Venice, February Stefan Buehler Luleå University of Technology Kiruna

Inverse Theory. COST WaVaCS Winterschool Venice, February Stefan Buehler Luleå University of Technology Kiruna Inverse Theory COST WaVaCS Winterschool Venice, February 2011 Stefan Buehler Luleå University of Technology Kiruna Overview Inversion 1 The Inverse Problem 2 Simple Minded Approach (Matrix Inversion) 3

More information

Fitting functions to data

Fitting functions to data 1 Fitting functions to data 1.1 Exact fitting 1.1.1 Introduction Suppose we have a set of real-number data pairs x i, y i, i = 1, 2,, N. These can be considered to be a set of points in the xy-plane. They

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

Application of Principal Component Analysis to TES data

Application of Principal Component Analysis to TES data Application of Principal Component Analysis to TES data Clive D Rodgers Clarendon Laboratory University of Oxford Madison, Wisconsin, 27th April 2006 1 My take on the PCA business 2/41 What is the best

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 6 1 / 22 Overview

More information

1 Cricket chirps: an example

1 Cricket chirps: an example Notes for 2016-09-26 1 Cricket chirps: an example Did you know that you can estimate the temperature by listening to the rate of chirps? The data set in Table 1 1. represents measurements of the number

More information

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis Massimiliano Pontil 1 Today s plan SVD and principal component analysis (PCA) Connection

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Localization and Correlation in Ensemble Kalman Filters

Localization and Correlation in Ensemble Kalman Filters Localization and Correlation in Ensemble Kalman Filters Jeff Anderson NCAR Data Assimilation Research Section The National Center for Atmospheric Research is sponsored by the National Science Foundation.

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

CHAPTER 11. A Revision. 1. The Computers and Numbers therein

CHAPTER 11. A Revision. 1. The Computers and Numbers therein CHAPTER A Revision. The Computers and Numbers therein Traditional computer science begins with a finite alphabet. By stringing elements of the alphabet one after another, one obtains strings. A set of

More information

DATA ASSIMILATION FOR FLOOD FORECASTING

DATA ASSIMILATION FOR FLOOD FORECASTING DATA ASSIMILATION FOR FLOOD FORECASTING Arnold Heemin Delft University of Technology 09/16/14 1 Data assimilation is the incorporation of measurement into a numerical model to improve the model results

More information

4. DATA ASSIMILATION FUNDAMENTALS

4. DATA ASSIMILATION FUNDAMENTALS 4. DATA ASSIMILATION FUNDAMENTALS... [the atmosphere] "is a chaotic system in which errors introduced into the system can grow with time... As a consequence, data assimilation is a struggle between chaotic

More information

LECTURE 16: PCA AND SVD

LECTURE 16: PCA AND SVD Instructor: Sael Lee CS549 Computational Biology LECTURE 16: PCA AND SVD Resource: PCA Slide by Iyad Batal Chapter 12 of PRML Shlens, J. (2003). A tutorial on principal component analysis. CONTENT Principal

More information

Name: INSERT YOUR NAME HERE. Due to dropbox by 6pm PDT, Wednesday, December 14, 2011

Name: INSERT YOUR NAME HERE. Due to dropbox by 6pm PDT, Wednesday, December 14, 2011 AMath 584 Name: INSERT YOUR NAME HERE Take-home Final UWNetID: INSERT YOUR NETID Due to dropbox by 6pm PDT, Wednesday, December 14, 2011 The main part of the assignment (Problems 1 3) is worth 80 points.

More information

Regularization and Inverse Problems

Regularization and Inverse Problems Regularization and Inverse Problems Caroline Sieger Host Institution: Universität Bremen Home Institution: Clemson University August 5, 2009 Caroline Sieger (Bremen and Clemson) Regularization and Inverse

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Statistical Estimation of the Parameters of a PDE

Statistical Estimation of the Parameters of a PDE PIMS-MITACS 2001 1 Statistical Estimation of the Parameters of a PDE Colin Fox, Geoff Nicholls (University of Auckland) Nomenclature for image recovery Statistical model for inverse problems Traditional

More information

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A =

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = 30 MATHEMATICS REVIEW G A.1.1 Matrices and Vectors Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = a 11 a 12... a 1N a 21 a 22... a 2N...... a M1 a M2... a MN A matrix can

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve

Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve Rosemary Renaut, Jodi Mead Arizona State and Boise State Copper Mountain Conference on Iterative Methods

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information

CS540 Machine learning Lecture 5

CS540 Machine learning Lecture 5 CS540 Machine learning Lecture 5 1 Last time Basis functions for linear regression Normal equations QR SVD - briefly 2 This time Geometry of least squares (again) SVD more slowly LMS Ridge regression 3

More information

The Application of Discrete Tikhonov Regularization Inverse Problem in Seismic Tomography

The Application of Discrete Tikhonov Regularization Inverse Problem in Seismic Tomography The Application of Discrete Tikhonov Regularization Inverse Problem in Seismic Tomography KAMBIZ TEIMOORNEGAD, NEDA POROOHAN 2, Geology Department Islamic Azad University, Lahijan Branch 2 Islamic Azad

More information

CS 322 Homework 8 Solutions

CS 322 Homework 8 Solutions CS 322 Homework 8 Solutions out: Thursday 26 April 2007 due: Fri 4 May 2007 In this homework we ll look at propagation of error in systems with n n Hilbert matrices H n, which look like this: H 4 = 2 2

More information

SIGNAL AND IMAGE RESTORATION: SOLVING

SIGNAL AND IMAGE RESTORATION: SOLVING 1 / 55 SIGNAL AND IMAGE RESTORATION: SOLVING ILL-POSED INVERSE PROBLEMS - ESTIMATING PARAMETERS Rosemary Renaut http://math.asu.edu/ rosie CORNELL MAY 10, 2013 2 / 55 Outline Background Parameter Estimation

More information

5 Linear Algebra and Inverse Problem

5 Linear Algebra and Inverse Problem 5 Linear Algebra and Inverse Problem 5.1 Introduction Direct problem ( Forward problem) is to find field quantities satisfying Governing equations, Boundary conditions, Initial conditions. The direct problem

More information

1 Singular Value Decomposition and Principal Component

1 Singular Value Decomposition and Principal Component Singular Value Decomposition and Principal Component Analysis In these lectures we discuss the SVD and the PCA, two of the most widely used tools in machine learning. Principal Component Analysis (PCA)

More information

Homework #2 Due Monday, April 18, 2012

Homework #2 Due Monday, April 18, 2012 12.540 Homework #2 Due Monday, April 18, 2012 Matlab solution codes are given in HW02_2012.m This code uses cells and contains the solutions to all the questions. Question 1: Non-linear estimation problem

More information

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6)

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement to the material discussed in

More information

Lecture 02 Linear Algebra Basics

Lecture 02 Linear Algebra Basics Introduction to Computational Data Analysis CX4240, 2019 Spring Lecture 02 Linear Algebra Basics Chao Zhang College of Computing Georgia Tech These slides are based on slides from Le Song and Andres Mendez-Vazquez.

More information

Dimensionality Reduction Using the Sparse Linear Model: Supplementary Material

Dimensionality Reduction Using the Sparse Linear Model: Supplementary Material Dimensionality Reduction Using the Sparse Linear Model: Supplementary Material Ioannis Gkioulekas arvard SEAS Cambridge, MA 038 igkiou@seas.harvard.edu Todd Zickler arvard SEAS Cambridge, MA 038 zickler@seas.harvard.edu

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

Vector and Matrix Norms. Vector and Matrix Norms

Vector and Matrix Norms. Vector and Matrix Norms Vector and Matrix Norms Vector Space Algebra Matrix Algebra: We let x x and A A, where, if x is an element of an abstract vector space n, and A = A: n m, then x is a complex column vector of length n whose

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

Signal Analysis. Principal Component Analysis

Signal Analysis. Principal Component Analysis Multi dimensional Signal Analysis Lecture 2E Principal Component Analysis Subspace representation Note! Given avector space V of dimension N a scalar product defined by G 0 a subspace U of dimension M

More information

Sample ECE275A Midterm Exam Questions

Sample ECE275A Midterm Exam Questions Sample ECE275A Midterm Exam Questions The questions given below are actual problems taken from exams given in in the past few years. Solutions to these problems will NOT be provided. These problems and

More information

nonlinear simultaneous equations of type (1)

nonlinear simultaneous equations of type (1) Module 5 : Solving Nonlinear Algebraic Equations Section 1 : Introduction 1 Introduction Consider set of nonlinear simultaneous equations of type -------(1) -------(2) where and represents a function vector.

More information

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti Mobile Robotics 1 A Compact Course on Linear Algebra Giorgio Grisetti SA-1 Vectors Arrays of numbers They represent a point in a n dimensional space 2 Vectors: Scalar Product Scalar-Vector Product Changes

More information

Intro to Linear & Nonlinear Optimization

Intro to Linear & Nonlinear Optimization ECE 174 Intro to Linear & Nonlinear Optimization i Ken Kreutz-Delgado ECE Department, UCSD Contact Information Course Website Accessible from http://dsp.ucsd.edu/~kreutz Instructor Ken Kreutz-Delgado kreutz@ece.ucsd.eduucsd

More information

Mathematical Methods in Engineering and Science Prof. Bhaskar Dasgupta Department of Mechanical Engineering Indian Institute of Technology, Kanpur

Mathematical Methods in Engineering and Science Prof. Bhaskar Dasgupta Department of Mechanical Engineering Indian Institute of Technology, Kanpur Mathematical Methods in Engineering and Science Prof. Bhaskar Dasgupta Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module - I Solution of Linear Systems Lecture - 05 Ill-Conditioned

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Bayesian System Identification based on Hierarchical Sparse Bayesian Learning and Gibbs Sampling with Application to Structural Damage Assessment

Bayesian System Identification based on Hierarchical Sparse Bayesian Learning and Gibbs Sampling with Application to Structural Damage Assessment Bayesian System Identification based on Hierarchical Sparse Bayesian Learning and Gibbs Sampling with Application to Structural Damage Assessment Yong Huang a,b, James L. Beck b,* and Hui Li a a Key Lab

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Linear Least-Squares Data Fitting

Linear Least-Squares Data Fitting CHAPTER 6 Linear Least-Squares Data Fitting 61 Introduction Recall that in chapter 3 we were discussing linear systems of equations, written in shorthand in the form Ax = b In chapter 3, we just considered

More information

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation Rosemary Renaut Collaborators: Jodi Mead and Iveta Hnetynkova DEPARTMENT OF MATHEMATICS

More information

A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS

A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS SILVIA NOSCHESE AND LOTHAR REICHEL Abstract. Truncated singular value decomposition (TSVD) is a popular method for solving linear discrete ill-posed

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information