Interval Oscillation of Nonlinear Differential Equation with Damped Term

Size: px
Start display at page:

Download "Interval Oscillation of Nonlinear Differential Equation with Damped Term"

Transcription

1 Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Inerv Oiion of Noniner Differeni Equion wih Dmped Term Yun-Hui Zeng Deprmen of Mhemi nd Compuion Siene, Hengyng Norm Univeriy,Hunn, 4,Chin Abr- In hi pper,we udy oiion of eond-order noniner differeni equion wih dmped erm nd oninu-ou diribued rgumenby uing verging funion nd Rii ehnique, ome new uffiien ondiion re ebih-ed, whih re differen from mo known one in he ene h hey re bed on he informion ony on equene of ubinerv of,, rher hn on he whoe hf-ine Keyword- Noniner; Inerv Oiion; Coninuou Diri-bued Argumen I INTRODUCTION Thi pper i onerned he oiory of eond-order noniner differeni equion wih dmped erm nd on- inuou diribued rgumen Where ( r () ( y()) k( y())) p() k( y()) + q (, ) f( y (), yg ( (, ))) d( ), () Throughou hi pper,we wy ume h ( H ) r (), p () CIR (, ), nd p ( ), r () I [, ), R(, ) for I, d, I [, ) r () ( H ) f ( xy, ) CR ( RR, ) nd f ( xy, ) h igned x nd y if hey hve me ign, nd f ( xy, ) f( xf ) ( x), f ( y) where he funion f ( x ) nd ( ) f( x) k, xr, y k, y, where k nd k re nonnegive onn H k ( ) for y ; nd ( y) y( g(, )) k( y( )) k,, [, ], for y R, g(, ) 4 ( H 4) q (, ) CI ( [, ], R ), g (, ) C([, ) [, ], R), g (, ) for [, ], g (, ) h oninuou nd poiive pri derivive on I [, ] wih repe o he fir vribe nd nondereing wih repe o he eond vribe, repeivey im inf g (, ) [, b] ( H 5) u( ) C([, ], R) i nondereing, nd he inegr of () i in he ene of Riemunn-ieje y ():, R, i ed ouion of () if (), In he eque i wi wy be umed h ouion of () exi for ny A ouion y() of () i ed oiory if i h rbirry rge zero, oherwie i i ed nonoiory We re h funion y ifie () for When ( y), k( y( )) y( ), q (, ) f( y (), yg ( (, ))) d( ) repe q ( ) f( y ( )) g( y ( )), Equion () redue o () ( r() y()) p() y() q() f( y()) g( y()), () - 7 -

2 Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 nd when r() ndp(), Equion () redue o () y() q() f( y()) g( y()) () The oiion of () nd for i priur e uh he iner equion y() q() y()), (4) he noniner equion ( ry ( ) ( )) q ( ) f( y ( )), (5) nd he noniner equion wih dmping erm ( r() y()) p() y() q() f( y()), (6) h been diued by numerou uhor by ever differen mehod (ee Pper [-6] nd he referene herein) An imporn oo in he udy of oiory behvior of Equion () (6) i he verging ehnique whih goe bk fr he i reu of Winner nd Hrmn [9] providing uffiien ondiion for he oiion of (4) The reu of Winner w improved by Kmenev [], nd exenion of Kmenev rierion hve been obined for (4) by Phio [5], where for (5) by Li [] For (6) he reu of Phio hve been exended by Gre [8], nd Gre reu hve been refined reeny by Li [6] From he rum eprion heorem i i er h he oiion of (4) i ony n inerv propery, ie, if here exi equene of ubinerv [ i, bi] ofi, where i, uh h for eh I here exi ouion of (4) h h e wo zero in [, b] hen every ouion of (4) i oiory i i In 99 EL-Syed [5] ebihed n inereing inerv rierion for he oiion of fored eond-order equion, bu he reu i no very hrp, beue omprion wih equion of onn oeffiien i ued in he proof In997, Hung [7] preened inerv rieri for he oiion nd he nonoiion of he eond-order iner differeni Equion (5) nd Li nd Agrw [, 4] ebihed more gener reu for noniner fored Equion (5) We remrk h, Kong [], Li [7], Li nd Agrw [, 4] empoyed he ehnique in he work of Phio [5] nd obined ever inerv rieri oiion reu for he eond-order iner Equion (5) nd noniner Equion () (4), However, hey nno be ppied o he noniner differeni Equion () In hi pper by empoying generized Ri ehniqu-e [], we h preen ever new inerv rieri for he oiion of (), ie, rieri whih invove he behvior of () (or of r, p, q, f, g nd k) ony on equene of ubinerv of I our reu invove Kmenev ype ondiion nd improve nd exend he reu of Kmenev [], Li Agrw [, 4], nd Li [8] Oher reed oiion reu n refer o [,, 4, nd ] An imporn onribuion of our udy i h we h dipene wih hee ondiion We y h funion H H(, ) beong o of funion X, denoed by H X, if H C( D, R ), D (, ):, whih ifie where And h pri derivive H nd H on uh h where h, h L ( D, R) o H (,), H (, ), for, (7) H H h(, ) H (, ) h(, ) H (, ),, (8) For hor nonion we define he funion II MAIN RESULTS AND PROOF Q () q (, ) d ( ) We fir prove wo Lemm whih wi be uefu for ebihing oiion rieri for Eq() - 8 -

3 Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Lemm Suppoe h umpion 5 y () on, b [, ) For ny funion v () ( H ) ( H ) hod, nd h y() i ouion of () uh h C (, I R ), Dfine r ( ) ( y ( )) k( y( )) w () v () yg ( (, )), () on, b hen for ny H (, ) X, we hve H (,) bkkvqd () () Hbw (,) () Proof From () nd (), we hve for b b 4kk b kp () v() rv ()() h (,) b( ) Hb (,) d (),, () ()( () ( ()) ( ())) () v () v r y k y vr () () ( y ()) k( y()) y( g (, )) g(, ) w w v () yg ( (, )) y ( g(, )) v () ()( () ( ()) () v p k y w v () yg ( (, )) q (, ) f( y ( ), yg ( (, ))) d( )) yg ( (, )) v ()( r () ( y ()) k( y()) y( g (, )) g(, ) y ( g(, )) v() p() v() k( y()) w () v () yg ( (, )) v () q (, ) f( y (), yg ( (, ))) d( ) yg ( (, )) vr () () ( y ()) k( y()) y( g (, )) g(, ) y ( g(, )) v() p() v() k( y()) w () kkvq () () v () yg ( (, )) v() p() v() k( y()) w () kkvq () () v () yg ( (, )) () () ( ()) ( ()) ( (, )) (, ) v r y k y y g g y ( g(, )) v() r() ( y()) k( y()) y( g(, )) g(, ) vr () () ( y ()) k( y()) w () In view of v() p() [ ] w () kkvq () () v () r () ( y ()) ( H ),We obin by he bove equiy y( g(, )) g(, ) vr () () ( yk () ( y()) () w (4) yied Muipying (5) by (, ) v() p() w() [ k ] w() kkv () Q () kk w (), v () r () vr () () p () v() w() kkv() Q() kk4 w () [ k ] w( ) (5) vr () () r () v () H, inegring i wih repe o from o, for b,, nd uing (7) nd (8) - 9 -

4 Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 H (, kkvqd ) ( ) ( ) kk Hwd (, ) ( ) H (, ) w( d ) vr ()() H k p () v() (, )( ) wd ( ) Hw (, ) ( ) [ h(, ) Hw (, ) ( ) kk vr ()() H (, ) w( )] d H k kkh (, ) H (, w ) ( ) [ w ( ) vr ()() vr ( ) ( ) kp () v( ) h k k r ( ) v ( ) ( (, ) ( ) (, ))] kp () v( ) 4 k k r ( ) v ( ) H (, w ) ( ) p () v() (, )( ) w ( ) H rv ()()[ h (,) ( ) H (,)] d 4kk Now, eing b, in he bove inequiy, we obin () kp () v() rv ()()[ h (,) ( ) H (,)] d Lemm Suppoe h umpion ( H ) ( H 5 ) hod And h y() be ouion of () uh h y () on, [, ), for ny funion v () C (, I R ),e w () be defined by () on, Then for ny H X, (, ) () () Hw (, ) () H kkvqd 4kk kp () v() rv ()() h (, ) ( ) H (, ) d (6) Proof Simir o he proof of Lemm, we hve (6) The foowing heorem i n immedie reu from Lem-m nd Lemm Theorem Aume h ( H) ( H5) hod nd h for ome (, b), nd for ome H X, H (, ) H (, kkvqd ) () () Hb (,) b H (,) bkkvqd ()() 4 k kh(, ) kp () v() rv ()() h (, ) ( ) H (, ) d () () ()() (,) ( ) (,) 4 kkh 4 ( b, ) b kp v rv h b Hb d (7) Then every ouion of () h e one zero inb, Proof Suppoe he onrry hen wihou o of generiy we my ume h here i ouion y of ()uh h y() for (, b) From Lemm nd, we find h boh () nd (6) hod Dividing () nd (6) by Hb (,) nd H (, ), repeivey, nd hen dding hem, we obin - -

5 Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 H (, ) (, ) () () H kkvqd Hb (,) b H (,) bkkvqd () () 4 uk k H (, ) kp () v() rv ()() h (, ) ( ) H (, ) d 4 ukk4h ( b, ) b kp () v() rv ()() h (,) b ( ) Hb (,) d, whih onrdi umpion (7) Theorem Aume h ( H) ( H5) hod If nd imup H ( kkvq, ) ( ) ( ) imup H ( kkvq, ) ( ) ( ) kp rv ()() () v() [ h (, ) ( ) H(, ) d, (8) 4k k kp rv ()() () v() [ h (, ) ( ) H(, ) d (9) 4k k For ome H X, v C (, I R ), nd for eh, hen every ouion of () i oiory Proof For ny T, e T, nd in (8) we hooe, Then exi n, uh h H (, kkvq ) () () 4kk4 rv ()()( h(, ) In (9) we hooe, Then exi b, uh h b H (,) bkkvq () () 4kk4 kp () v() ( ) H(, )) d () kp rv ()()( h(, ) () v() ( ) H (, )) d () Combining () nd () we obin (7) The onuion hu ome from Theorem For he e where h( ) h ( ) The ub of X onining uh H : H( ) X, we hve h, nd denoe hem h ( ) H ( ) i denoed by X, Appying Theorem o X, we obin Theorem Aume h ( H) ( H5) hod If for eh T, here exi vc (,, R ), H X, nd, Ruh h T, nd H ( ) kk[ v( ) Q( ) v( ) Q( )] d [()() rv r( v )( )] h(, d ) 4k k 4 [ r( v ) ( ) p( v ) ( ) k k rv () () ] pvh ()()( ) H ( d ) 4 kp () v( ) kp ( ) v( ) [()()( rv ) 4 k k r( ) v( ) ( ) ] H( ) d, () 4 r ( ) v ( ) r( ) v( ) hen every ouion of () i oiory b Proof Le b Then Hb ( ) H ( ) H ( ) nd for ny w L[, b], we hve b wd () w( d ) - -

6 Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Hene b Hb ( wd ) ( ) H ( w ) ( d ) Thu () impie h (7) hod for H X, vc (,, R ), nd herefore every ouion of () i oiory by Theorem The bove oiion rieri, we n obin differen uffiien ondiion for oiion of ouion of () by hoie of H (, ) Le H (, ) ( ),, where i onn ed o he foowing Corory Corory Aume h ( H) ( H5) hod Then every ouion of () i oiory provided for eh nd (,, R ), uh h he foowing wo inequiie hod: ome, here exi funion nd Define nd e where i onn v C imup ( ) () () kp () v( ) ()()( )] d, () v Q rv 4 kk r ( ) v ( ) imup ( ) () () kp () v( ) ()()( )] d (4) k k v Q rv 4 kk r ( ) v ( ) Proof The proof i imir o h of Theorem Theorem 4 Aume h 5 for eh R() d, r (), H (, ) [ R () R ( )],, ( H ) ( H ) hod, nd im R ( ) Then, every ouion of () i oiory provided nd ome he foowing wo inequiie hod: kk imup ( R( ) R( )) kkq( ) R () p () ] d 4 kkr ( ) 4( ) (5) nd Proof Le v () Then, we hve kk imup ( R( ) R( )) kkq( ) R () p () ] d 4 kkr ( ) 4( ) (6) h(, ) [ R() R( )] r () nd h (, ) [ R() R( )] r () - -

7 Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Sine nd rh () (,) d rh () (,) d In view of im R ( ) I foow h r () r () [ R () R ()] d r () r () [ R () R ()] d Now, from (5) nd (7), we hve imup ( R( ) R( )) k k Q( ) R () rh d [ ( ) ( )] R R im ( ) (, ) 4 kkr ( ) 4 kk( ) [ ( ) ( )] R R (7) im ( ) (, ) 4 kkr ( ) 4 kk( ) rh d (8) r () p () [ (, ) (, )] 4 k kr ( ) r ( ), h H d r ( ) imup ( R( ) R( )) k kq( ) d R () imup [ h (, ) R () 4 k k r() r () h (, ) p( ) 4 k kr ( ) r ( ) H(, )] r ( ) p( ) d imup [ (, )] H d R () 4 k k r() r () imup [( R ( ) R ( )) R () p () p () [ kkq ( ) ] d ( ( ) ( )) R R ] d 4 k kr ( ) kk r ( ) imup h (, ) d () 4 () R kk4r imup ( R( ) R( )) ( kkq( ) R () p () ) 4 k kr ( ) p () ( ( ) ( )) kkr ( ) R R d 4 kk( ) ie, (8) hod Simiry (6) nd (8) impy h (9) hod Thu by Theorem every ouion of () i oiory ACKNOWLRDGEMENT Thi rerh w uppored by eduion foundion of Hunn Provine(C54), Cuivion of young eher of Hengyng Norm Univeriy of Chin nd Conru progrm of he key diipine in Hunn Provine[()76] REFERENCES [] J W Bker, Oiion heorem for eond order dmped noniner differeni equion, SIAM J Mh An 97,5, 7-4 [] G J Buer, The oiory behvior of eond order noniner differeni equion wih dmping, J Mh An App 977,57, 7-89 [] T A Buron nd R C Grimmer, Sbiiy of ( ru ) f ( u) g( u), Monh Mh 97,74, - [4] R Byer, B J Hrri nd M K Kwong, Weighed men nd Oiion ondiion for eond order mrix differeni equion, J - -

8 Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Differeni Equion 986,6, [5] M A E-Syed, An oiion rierion for fored eond order iner differeni equion Pro Amer Mh So 99,8, 8-87 [6] S R Gre, Oiion heorem for noniner differ-eni equion of eond order, JMh An App 99,7, -4 [7] S R Gre nd B S Li, Inegr verging ehni-que for he oiion of eond order noniner differeni equion, J Mh An App 99,49, 77- [8] S R Gre nd B S Lind C C Yeh, Oiion heorem for noniner eond order differeni equion wih noniner dmping erm, SLAM J Mh An984,5, 8-9 [9] P Hrmn, On nonoiory iner differeni equion of eond order, Amer J Mh 95,74,89-4 [] I V Kmenev, Oiion rieri reed o verging of ouion of eond order differeni equion,(n Ruin), Differeni nye Urvnenyi 974,,46-5 [] Q Kong, Inerv rieri for oiion of eond order iner ordinry differeni equion, J MhAn App 999,9, 58-7 [] W T Li, Oiion of erin eond-order noniner differeni equion, J Mh An App 998,7, -4 [] W T Li nd R P Agrw, Inerv oiion rieri for eond order noniner differeni equion wih dmping, Compuer Mh Appi,4(/), 7- [4] W T Li nd R P Agrw, Inerv oiion rieri reed o inergr verging ehnique for erin noniner differeni equion, J Mh An App,45, 7-88 [5] Ch G Phio, Oiion heorem for iner differen-i equion of eond order, Arh Mh (Be)989,5, [6] W T Li nd M Y Zhng nd X L Fei, Oiion rieri for eond order noniner differeni equion wih dmping erm, Indin J Pure App Mh999, (), 7-9 [7] C C Hung, Oiion nd nonoiion for eond order iner differeni equion, J Mh An App,997,, 7-7 [8] W T Li, Inerv oiion rieri for eond order noniner differeni equion wih dmping, Tiwnee Joun of Mhmi,,Vo 7\, [9] W T Li nd R P Agrw, Inerv rieri for eond-order noniner perurbed differeni equion, Compuer Mh Appi, 4,47, Yun Hui Zeng(978), me, nive of Hengyng, Hunn, P R Chin Curreny,he i n oie profeor wih Hengyng Norm Univeriy Hi min reerh inere inude biiy nd oiion heory of differeni equion - 4 -

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER Mh. Appl. 1 (2012, 91 116 ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER JIŘÍ ŠREMR Abr. The im of hi pper i o diu he bolue oninuiy of erin ompoie funion nd differeniion of Lebegue

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

New Oscillation Criteria For Second Order Nonlinear Differential Equations

New Oscillation Criteria For Second Order Nonlinear Differential Equations Researh Inveny: Inernaional Journal Of Engineering And Siene Issn: 78-47, Vol, Issue 4 (Feruary 03), Pp 36-4 WwwResearhinvenyCom New Osillaion Crieria For Seond Order Nonlinear Differenial Equaions Xhevair

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

Bisimulation, Games & Hennessy Milner logic p.1/32

Bisimulation, Games & Hennessy Milner logic p.1/32 Clil lnguge heory Biimulion, Gme & Henney Milner logi Leure 1 of Modelli Memii dei Proei Conorreni Pweł Sooińki Univeriy of Souhmon, UK I onerned rimrily wih lnguge, eg finie uom regulr lnguge; uhdown

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a Boye/DiPrima 9 h ed, Ch 6.: Definiion of Laplae Transform Elemenary Differenial Equaions and Boundary Value Problems, 9 h ediion, by William E. Boye and Rihard C. DiPrima, 2009 by John Wiley & Sons, In.

More information

Linear Quadratic Regulator (LQR) - State Feedback Design

Linear Quadratic Regulator (LQR) - State Feedback Design Linear Quadrai Regulaor (LQR) - Sae Feedbak Design A sysem is expressed in sae variable form as x = Ax + Bu n m wih x( ) R, u( ) R and he iniial ondiion x() = x A he sabilizaion problem using sae variable

More information

Communications inmathematicalanalysis

Communications inmathematicalanalysis Communicions inmhemicanysis Voume 11, Number 2,. 23 35 (211) ISSN 1938-9787 www.mh-res-ub.org/cm GRONWALL-LIKE INEQUALITIES ON TIME SCALES WITH APPLICATIONS ELVAN AKIN-BOHNER Dermen of Mhemics nd Sisics

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 36 3 1!!!!!!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" 1 1 3 3 1. 401331. 610000 3. 610000!!!!!!", ( ),,,,,,, ; ; ; ; ; TE973.6 A 100106 (010) 0300104 0 D /m; β

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1 8. a For ep repone, inpu i u, U Y a U α α Y a α α Taking invere Laplae ranform a α e e / α / α A α 0 a δ 0 e / α a δ deal repone, α d Y i Gi U i δ Hene a α 0 a i For ramp repone, inpu i u, U Soluion anual

More information

International ejournals

International ejournals Avilble online ww.inernionlejournl.om Inernionl ejournl Inernionl Journl of Mhemil Siene, Tehnology nd Humniie 7 (0 8-8 The Mellin Type Inegrl Trnform (MTIT in he rnge (, Rmhndr M. Pie Deprmen of Mhemi,

More information

1 The Network Flow Problem

1 The Network Flow Problem 5-5/65: Deign & Anlyi of Algorihm Ooer 5, 05 Leure #0: Nework Flow I l hnged: Ooer 5, 05 In hee nex wo leure we re going o lk ou n imporn lgorihmi prolem lled he Nework Flow Prolem. Nework flow i imporn

More information

Control Systems -- Final Exam (Spring 2006)

Control Systems -- Final Exam (Spring 2006) 6.5 Conrol Syem -- Final Eam (Spring 6 There are 5 prolem (inluding onu prolem oal poin. (p Given wo marie: (6 Compue A A e e. (6 For he differenial equaion [ ] ; y u A wih ( u( wha i y( for >? (8 For

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS Hceepe Journl of Mhemics nd Sisics Volume 45) 0), 65 655 ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS M Emin Özdemir, Ahme Ock Akdemir nd Erhn Se Received 6:06:0 : Acceped

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant). THE WAVE EQUATION 43. (S) Le u(x, ) be a soluion of he wave equaion u u xx = 0. Show ha Q43(a) (c) is a. Any ranslaion v(x, ) = u(x + x 0, + 0 ) of u(x, ) is also a soluion (where x 0, 0 are consans).

More information

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples CS 7 Algorihm Fll 24 Dvid Wgner /3 Noe The min-u problem Le G = (V,E) be direed grph, wih oure verex V nd ink verex V. Aume h edge re lbelled wih o, whih n be modelled o funion : E N h oie non-negive inegrl

More information

Problem Set 9 Due December, 7

Problem Set 9 Due December, 7 EE226: Random Proesses in Sysems Leurer: Jean C. Walrand Problem Se 9 Due Deember, 7 Fall 6 GSI: Assane Gueye his problem se essenially reviews Convergene and Renewal proesses. No all exerises are o be

More information

Example on p. 157

Example on p. 157 Example 2.5.3. Le where BV [, 1] = Example 2.5.3. on p. 157 { g : [, 1] C g() =, g() = g( + ) [, 1), var (g) = sup g( j+1 ) g( j ) he supremum is aken over all he pariions of [, 1] (1) : = < 1 < < n =

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

Matching. Slides designed by Kevin Wayne.

Matching. Slides designed by Kevin Wayne. Maching Maching. Inpu: undireced graph G = (V, E). M E i a maching if each node appear in a mo edge in M. Max maching: find a max cardinaliy maching. Slide deigned by Kevin Wayne. Biparie Maching Biparie

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX Journl of Applied Mhemics, Sisics nd Informics JAMSI), 9 ), No. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX MEHMET ZEKI SARIKAYA, ERHAN. SET

More information

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee RESEARCH ARTICLE HUMAN CAPITAL DEVELOPMENT FOR PROGRAMMERS USING OPEN SOURCE SOFTWARE Ami Mehra Indian Shool of Business, Hyderabad, INDIA {Ami_Mehra@isb.edu} Vijay Mookerjee Shool of Managemen, Uniersiy

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017 Uer ID (NOT he 9 igi numer): gurell4 CS351 Deign & Anlyi of Algorihm Fll 17 Seion A Te 3 Soluion Inruor: Rihr Peng In l, Weney, Nov 15, 17 Do no open hi quiz ookle unil you re iree o o o. Re ll he inruion

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

FUZZY n-inner PRODUCT SPACE

FUZZY n-inner PRODUCT SPACE Bull. Korean Mah. Soc. 43 (2007), No. 3, pp. 447 459 FUZZY n-inner PRODUCT SPACE Srinivaan Vijayabalaji and Naean Thillaigovindan Reprined from he Bullein of he Korean Mahemaical Sociey Vol. 43, No. 3,

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Notes on cointegration of real interest rates and real exchange rates. ρ (2) Noe on coinegraion of real inere rae and real exchange rae Charle ngel, Univeriy of Wiconin Le me ar wih he obervaion ha while he lieraure (mo prominenly Meee and Rogoff (988) and dion and Paul (993))

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY Ian Crawford THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap working paper CWP02/04 Neceary and Sufficien Condiion for Laen

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

Vidyalankar. 1. (a) Y = a cos dy d = a 3 cos2 ( sin ) x = a sin dx d = a 3 sin2 cos slope = dy dx. dx = y. cos. sin. 3a sin cos = cot at = 4 = 1

Vidyalankar. 1. (a) Y = a cos dy d = a 3 cos2 ( sin ) x = a sin dx d = a 3 sin2 cos slope = dy dx. dx = y. cos. sin. 3a sin cos = cot at = 4 = 1 . (). (b) Vilnkr S.Y. Diplom : Sem. III [AE/CE/CH/CM/CO/CR/CS/CW/DE/EE/EP/IF/EJ/EN/ET/EV/EX/IC/IE/IS/ ME/MU/PG/PT/PS/CD/CV/ED/EI/FE/IU/MH/MI] Applied Mhemics Prelim Quesion Pper Soluion Y cos d cos ( sin

More information

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations Irih Mh. Soc. Bullein 63 (2009), 11 31 11 Applicion of Prüfer Trnformion in he Theory of Ordinry Differenil Equion GEORGE CHAILOS Abrc. Thi ricle i review ricle on he ue of Prüfer Trnformion echnique in

More information

Direct Sequence Spread Spectrum II

Direct Sequence Spread Spectrum II DS-SS II 7. Dire Sequene Spread Speru II ER One igh hink ha DS-SS would have he following drawak. Sine he RF andwidh i ie ha needed for a narrowand PSK ignal a he ae daa rae R, here will e ie a uh noie

More information

The Contradiction within Equations of Motion with Constant Acceleration

The Contradiction within Equations of Motion with Constant Acceleration The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales

Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales Inernaional Conference on Image, Viion and Comuing (ICIVC ) IPCSIT vol. 5 () () IACSIT Pre, Singaore DOI:.7763/IPCSIT..V5.45 Anali of Boundedne for Unknown Funcion b a Dela Inegral Ineuali on Time Scale

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Hadamard-Type Inequalities for s-convex Functions

Hadamard-Type Inequalities for s-convex Functions Interntionl Mthemtil Forum, 3, 008, no. 40, 965-975 Hdmrd-Type Inequlitie or -Convex Funtion Mohmmd Alomri nd Mlin Dru Shool o Mthemtil Siene Fulty o Siene nd Tehnology Univeriti Kebngn Mlyi Bngi 43600

More information

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence Supplemen for Sochasic Convex Opimizaion: Faser Local Growh Implies Faser Global Convergence Yi Xu Qihang Lin ianbao Yang Proof of heorem heorem Suppose Assumpion holds and F (w) obeys he LGC (6) Given

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

Cylindrically Symmetric Marder Universe and Its Proper Teleparallel Homothetic Motions

Cylindrically Symmetric Marder Universe and Its Proper Teleparallel Homothetic Motions J. Bsi. Appl. i. Res. 4-5 4 4 TeRod Publiion IN 9-44 Journl of Bsi nd Applied ienifi Reserh www.erod.om Clindrill mmeri Mrder Universe nd Is Proper Teleprllel Homohei Moions Amjd Ali * Anwr Ali uhil Khn

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

GENESIS. God makes the world

GENESIS. God makes the world GENESIS 1 Go me he or 1 I he be Go me he b heve he erh everyh hh p he y. 2 There oh o he e erh. Noh ve here, oh *o ve here. There oy e eep er over he erh. There o h. I very r. The f Spr of Go move over

More information

OSCILLATORY BEHAVIOR OF A FRACTIONAL PARTIAL DIFFERENTIAL EQUATION

OSCILLATORY BEHAVIOR OF A FRACTIONAL PARTIAL DIFFERENTIAL EQUATION Journa of Appied Anaysis Compuaion Voume 8, Number 3, June 28, 2 Websie:hp://jaa-onine.om/ DOI:.948/28. OSCILLATORY BEHAVIOR OF A FRACTIONAL PARTIAL DIFFERENTIAL EQUATION Jiangfeng Wang,2, Fanwei Meng,

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

Maximum Flow. Flow Graph

Maximum Flow. Flow Graph Mximum Flow Chper 26 Flow Grph A ommon enrio i o ue grph o repreen flow nework nd ue i o nwer queion ou meril flow Flow i he re h meril move hrough he nework Eh direed edge i ondui for he meril wih ome

More information

Math 124B January 24, 2012

Math 124B January 24, 2012 Mth 24B Jnury 24, 22 Viktor Grigoryn 5 Convergence of Fourier series Strting from the method of seprtion of vribes for the homogeneous Dirichet nd Neumnn boundry vue probems, we studied the eigenvue probem

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS - TAMKANG JOURNAL OF MATHEMATICS Volume 5, Number, 7-5, June doi:5556/jkjm555 Avilble online hp://journlsmhkueduw/ - - - GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS MARCELA

More information

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network // Applicaion of he Maxflow Problem. Biparie Maching Biparie Maching Biparie maching. Inpu: undireced, biparie graph = (, E). M E i a maching if each node appear in a mo one edge in M. Max maching: find

More information

Released Assessment Questions, 2017 QUESTIONS

Released Assessment Questions, 2017 QUESTIONS Relese Assessmen Quesions, 17 QUESTIONS Gre 9 Assessmen of Mhemis Aemi Re he insruions elow. Along wih his ookle, mke sure ou hve he Answer Bookle n he Formul Shee. You m use n spe in his ook for rough

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 he Complee Response of R and RC Ciruis Exerises Ex 8.3-1 Before he swih loses: Afer he swih loses: 2 = = 8 Ω so = 8 0.05 = 0.4 s. 0.25 herefore R ( ) Finally, 2.5 ( ) = o + ( (0) o ) = 2 + V for

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

AN IMPROVED CREEP AND SHRINKAGE BASED MODEL FOR DEFLECTIONS OF COMPOSITE MEMBERS REINFORCED WITH CARBON FIBER REINFORCED BARS

AN IMPROVED CREEP AND SHRINKAGE BASED MODEL FOR DEFLECTIONS OF COMPOSITE MEMBERS REINFORCED WITH CARBON FIBER REINFORCED BARS N MPROVED CREEP ND SHRNKGE BSED MODEL FOR DEFLECTONS OF COMPOSTE MEMBERS RENFORCED WTH CRBON FBER RENFORCED BRS M.. Fruqi, S. Bhdr D. Sun, nd J. Si Deprmen o Civil nd rhieurl Engineering, Tex & M Univeriy,

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Endpoint Strichartz estimates

Endpoint Strichartz estimates Endpoin Sricharz esimaes Markus Keel and Terence Tao (Amer. J. Mah. 10 (1998) 955 980) Presener : Nobu Kishimoo (Kyoo Universiy) 013 Paricipaing School in Analysis of PDE 013/8/6 30, Jeju 1 Absrac of he

More information

Operators related to the Jacobi setting, for all admissible parameter values

Operators related to the Jacobi setting, for all admissible parameter values Operaors relaed o he Jacobi seing, for all admissible parameer values Peer Sjögren Universiy of Gohenburg Join work wih A. Nowak and T. Szarek Alba, June 2013 () 1 / 18 Le Pn α,β be he classical Jacobi

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

B Signals and Systems I Solutions to Midterm Test 2. xt ()

B Signals and Systems I Solutions to Midterm Test 2. xt () 34-33B Signals and Sysems I Soluions o Miderm es 34-33B Signals and Sysems I Soluions o Miderm es ednesday Marh 7, 7:PM-9:PM Examiner: Prof. Benoi Boule Deparmen of Elerial and Compuer Engineering MGill

More information

e 2t u(t) e 2t u(t) =?

e 2t u(t) e 2t u(t) =? EE : Signals, Sysems, and Transforms Fall 7. Skech he convoluion of he following wo signals. Tes No noes, closed book. f() Show your work. Simplify your answers. g(). Using he convoluion inegral, find

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

CHAPTER 7. Definition and Properties. of Laplace Transforms

CHAPTER 7. Definition and Properties. of Laplace Transforms SERIES OF CLSS NOTES FOR 5-6 TO INTRODUCE LINER ND NONLINER PROBLEMS TO ENGINEERS, SCIENTISTS, ND PPLIED MTHEMTICINS DE CLSS NOTES COLLECTION OF HNDOUTS ON SCLR LINER ORDINRY DIFFERENTIL EQUTIONS (ODE")

More information

Today: Max Flow Proofs

Today: Max Flow Proofs Today: Max Flow Proof COSC 58, Algorihm March 4, 04 Many of hee lide are adaped from everal online ource Reading Aignmen Today cla: Chaper 6 Reading aignmen for nex cla: Chaper 7 (Amorized analyi) In-Cla

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

And I Saw a New Heaven

And I Saw a New Heaven n Sw New Heven NTHEM For Choir (STB) n Orgn John Kilprik (VERSON FOR KEYBORD) 2008 John Kilprik This work my freely uplie, performe n reore. Copies shoul sol exep o over prining oss. rev: 23/08/2010 prin:

More information

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses Hindwi Advnce in Mhemicl Phyic Volume 207, Aricle ID 309473, pge hp://doi.org/0.55/207/309473 Reerch Aricle The Generl Soluion of Differenil Equion wih Cpuo-Hdmrd Frcionl Derivive nd Noninnneou Impule

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

SOME USEFUL MATHEMATICS

SOME USEFUL MATHEMATICS SOME USEFU MAHEMAICS SOME USEFU MAHEMAICS I is esy o mesure n preic he behvior of n elecricl circui h conins only c volges n currens. However, mos useful elecricl signls h crry informion vry wih ime. Since

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

T-Rough Fuzzy Subgroups of Groups

T-Rough Fuzzy Subgroups of Groups Journal of mahemaic and compuer cience 12 (2014), 186-195 T-Rough Fuzzy Subgroup of Group Ehagh Hoeinpour Deparmen of Mahemaic, Sari Branch, Ilamic Azad Univeriy, Sari, Iran. hoienpor_a51@yahoo.com Aricle

More information

Weighted Inequalities for Riemann-Stieltjes Integrals

Weighted Inequalities for Riemann-Stieltjes Integrals Aville hp://pvm.e/m Appl. Appl. Mh. ISSN: 93-9466 ol. Ie Decemer 06 pp. 856-874 Applicion n Applie Mhemic: An Inernionl Jornl AAM Weighe Ineqliie or Riemnn-Sielje Inegrl Hüeyin Bk n Mehme Zeki Sriky Deprmen

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

The realization of low order FSM method and its application Jiai He1,a, Xiangyang Liu1,b, Chengquan Pei2,3,c

The realization of low order FSM method and its application Jiai He1,a, Xiangyang Liu1,b, Chengquan Pei2,3,c 3rd Inernionl Conferene on Mhinery, Meril nd Informion ehnology ppliion (ICMMI 05 he relizion of low order FSM mehod nd i ppliion Jii He,, Xingyng Liu,b, Chengqun Pei,3, Shool of Compuer nd Communiion,

More information

B E E R W I N E M E N U

B E E R W I N E M E N U EER INE ENU LE O ONEN y. y. b I 9 I I I R, K Lb Lw O L w, b Q bb R 1 wz R I 1 E Ry I 1 E 1 wzb 1 1,1 1 1 Hfwz 1 H 1,1 I R w 1 I I,9 1 I 9 1 LENE R. 1 EER HO. 1 LOYLY ROR. 1 INE. 1 OLE + N ER LE O z V

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. MEHMET ZEKI SARIKAYA?, ERHAN. SET, AND M. EMIN OZDEMIR Asrc. In his noe, we oin new some ineuliies

More information

Mahgoub Transform Method for Solving Linear Fractional Differential Equations

Mahgoub Transform Method for Solving Linear Fractional Differential Equations Mahgoub Transform Mehod for Solving Linear Fraional Differenial Equaions A. Emimal Kanaga Puhpam 1,* and S. Karin Lydia 2 1* Assoiae Professor&Deparmen of Mahemais, Bishop Heber College Tiruhirappalli,

More information