# Hadamard-Type Inequalities for s-convex Functions

Size: px
Start display at page:

Transcription

1 Interntionl Mthemtil Forum, 3, 008, no. 40, Hdmrd-Type Inequlitie or -Convex Funtion Mohmmd Alomri nd Mlin Dru Shool o Mthemtil Siene Fulty o Siene nd Tehnology Univeriti Kebngn Mlyi Bngi Selngor, Mlyi Abtrt In thi pper Hdmrd type inequlitie or onvex untion in both ene nd onvex untion on the o ordinte re given. Keyword: Hdmrd inequlity, onvex untion, o ordinted onvex untion Introdution Let : I R R be onvex mpping deined on the intervl I o rel number nd, b I, with <b. The ollowing double inequlity: ) + b b )+ b) x) dx b i known in the literture Hdmrd inequlity or onvex mpping. In [7] Drgomir nd Fitzptrik proved vrint o Hdmrd inequlity whih hold or onvex untion in the irt ene. ) Theorem. Suppoe tht :[0, ) [0, ) i n onvex untion in the irt ene, where 0, ) nd let, b [0, ), <b. I L [0, ], then the ollowing inequlitie hold: ) + b b b x) dx Firt uthor: Correponding uthor: )+ b). ) +

2 966 M. Alomri nd M. Dru The bove inequlitie re hrp. Alo, In [7], Drgomir nd Fitzptrik proved vrint o Hdmrd inequlity whih hold or onvex untion in the eond ene. Theorem. Suppoe tht :[0, ) [0, ) i n onvex untion in the eond ene, where 0, ) nd let, b [0, ), <b.i L [0, ], then the ollowing inequlitie hold: ) + b b x) dx b )+ b) + the ontnt k = i the bet poible in the eond inequlity in 3). The + bove inequlitie re hrp. Ater tht, in [8], Drgomir etblihed the ollowing imilr inequlity o Hdmrd type or o ordinted onvex mpping on retngle rom the plne R. 3) Theorem.3 Suppoe tht :Δ R i o-ordinted onvex on Δ. Then one h the inequlitie + b, + d ) The bove inequlitie re hrp. b d x, y) dydx b )d ), )+, d)+ b, )+ b, d) 4 In [], M. Alomri nd M. Dru etblihed the ollowing imilr inequlity o Hdmrd type or o ordinted onvex mpping in the eond ene on retngle rom the plne R. 4) Theorem.4 Suppoe tht :Δ=[, b] [, d] [0, ) [0, ) i onvex untion on the o ordinte on Δ. Then one h the inequlitie: + b, + d ) b d x, y) dydx 5) b )d ), )+ b, )+, d)+ b, d) +).

3 Hdmrd-type inequlitie 967 Alo, In [5], M. Alomri nd M. Dru etblihed the ollowing imilr inequlity o Hdmrd type or o ordinted onvex mpping in the irt ene on retngle rom the plne R. Theorem.5 Suppoe tht :Δ=[, b] [, d] [0, ) [0, ) i onvex untion on the o ordinte in the irt ene on Δ. Then one h the inequlitie: + b, + d ) b d x, y) dydx 6) b )d ), )+ b, )+, d)+ b, d) +). The bove inequlitie re hrp. In thi pper we will point out Hdmrd type inequlitie o onvex untion on the o ordinte in the both ene. For reinement, ounterprt, generliztion nd new Hdmrd type inequlitie ee [ 8]. Remrk On A Previou Reult In thi etion we give ome remrk on previou reult or the uthor. The ollowing lemm oited with onvex untion o eond ene) w onidered by Alomri nd Dru in [3]. Lemm. Let :[, b] R be onvex untion o eond ene). Let y x x y b with x + x = y + y. Then x )+ x ) y )+ y ). 7) Atully, the proo w given in [3] o thi property i orret or onvex untion but not or onvex untion. The orretion o thi proo i given ollow: Proo. Firtly, we how tht x )+ x ) y )+ y ). I y = y then we re done. Suppoe y y nd ine i onvex untion o eond ene, then or α, β 0 with α + β = nd or ll 0 <, we hve x = y x y y ) y + x y y y ) y, x = y x y y ) y + x y y y ) y

4 968 M. Alomri nd M. Dru without lo o generlity, et k = y x y y ), k = x y y y ), k3 = y x y y ), k4 = x y y y ) uh tht, γ = k + k + k 3 + k 4 > 0;α = k +k 3 nd β = k +k 4. Thereore, γ γ α + β = nd by onvexity, we hve x )+ x ) = y x y y whih omplete the proo. + y x y y ) y + ) y + x y y y x y y y ) y ) y y x y )+ x y y ) 8) y y y y + y x y )+ x y y ) y y y y = y x + x ) y )+ x + x ) y y ) y y y y = y )+ y ). Alo, by looking deeply on Theorem.4, we ind the let ide o inequlity 5) i inorret. The orretion o Theorem.4. pointed out ollow : Theorem. Suppoe tht :Δ=[, b] [, d] [0, ) [0, ) i onvex untion on the o ordinte on Δ. Then one h the inequlitie: 4 + b, + d ) b d x, y) dydx 9) b )d ), )+ b, )+, d)+ b, d) +). Indeed, the dierene between 5) nd 9) i the let hnd ide, thereore we will give the proo o the let hnd ide only, to ee the proo o the right hnd ide ee []. Proo. Sine :Δ R i o ordinted onvex on Δ it ollow tht the mpping g x : [, d] [0, ), g x y) = x, y) i onvex on [, d] or ll

5 Hdmrd-type inequlitie 969 x [, b]. Then, by 3) one h: ) + d g x d d Tht i, x, + d ) d x, y) dy d Integrting thi inequlity on [, b], we hve b x, + d ) dx b b )d ) + b g x y) dy g x )+g x d), x [, b]. + x, )+ x, d), x [, b]. + b b d x, y) dydx 0) x, ) dx + b b x, d) dx. A imilr rgument pplied or the mpping g y :[, b] [0, ), g y x) = x, y), we get d ) d b + b d,y dy x, y) dxdy ) d )b ) + d d, y) dy + d d b, y) dy. Summing the inequlitie 0) nd ), we get the eond nd the third inequlitie in 9). Thereore, by 3), we hve 4 + b, + d ) d ) + b d,y dy ) nd + b 4, + d ) b x, + d ) dx 3) b whih give, by ddition the irt inequlity in 9). The deinition o onvex untion in both ene ) in retngle rom the plne, w deined by Alomri nd Dru in [4]. In the next etion ome Hdmrd type inequlitie re onidered.

6 970 M. Alomri nd M. Dru 3 Some Hdmrd Type Inequlitie Conider the bidimenionl intervl Δ := [, b] [, d] in[0, ) with <b nd <d. A mpping :Δ R i lled onvex o irt ene on Δ i there exit, 0, ] with = +, uh tht αx + βz,αy + βw) α x, y)+β z, w) 4) hold or ll x, y), z, w) Δ, α, β 0 with α + β = nd or ll ixed, 0, ]. We denote thi l o untion by MWO,. Let :Δ R be onvex on Δ, then i lled o ordinted onvex o irt ene on Δ i the prtil mpping y :[, b] R, y u) = u, y) nd x : [, d] R, x v) = x, v), re, onvex untion in the irt ene or ll, 0, ], y [, d] nd x [, b]; repetively, with = + 0, ]. Alo, mpping :Δ Ri lled onvex o eond ene on Δ i there exit, 0, ] with = +, uh tht 4) hold or ll x, y), z, w) Δ, α, β 0 with α + β = nd or ll ixed, 0, ]. We denote thi l o untion by MWO,. Similrly, we deine the onvex untion o eond ene on the o ordinte, i.e., untion i lled o ordinted onvex o eond ene on Δ i the prtil mpping y :[, b] R, y u) = u, y) nd x :[, d] R, x v) = x, v), re, onvex untion in the eond ene or ll, 0, ], y [, d] nd x [, b]; repetively, with = + 0, ]. The ollowing inequlitie i onidered Hdmrd type inequlitie onneted with inequlity 4) or onvex untion in the eond ene on the o ordinte. Theorem 3. Suppoe tht :Δ=[, b] [, d] [0, ) [0, ) i onvex untion o eond ene on the o ordinte on Δ. Then one h the inequlitie: 4 +4 ) b x, + d b + b, + d ) ) dx + d d ) + b,y dy b d x, y) dydx 5) b )d )

7 Hdmrd-type inequlitie 97 b [ x, )+ x, d)] dx +)b ) d + [, y)+ b, y)] dy +)d ) ) +) + +) [, )+, d)+ b, )+ b, d)] The bove inequlitie re hrp. Proo. Sine :Δ R i o ordinted onvex on Δ it ollow tht the mpping g x :[, d] [0, ), g x y) = x, y) i onvex on [, d] or ll x [, b] with 0, ]. Then by Hdmrd inequlity 3) one h: ) + d g x d d Tht i, x, + d ) d x, y) dy d Integrting thi inequlity on [, b], we hve b x, + d ) dx b b )d ) + b g x y) dy g x )+g x d), x [, b]. + x, )+ x, d), x [, b]. + b d b x, y) dydx 6) x, ) dx + b b x, d) dx. A imilr rgument pplied or the mpping g y :[, b] [0, ), g y x) = x, y), where, g y i onvex on [, b] or ll y [, d] with 0, ] d ) + b d,y d b dy x, y) dxdy 7) d )b ) + d d, y) dy + d d b, y) dy. Summing the inequlitie 6) nd 7), we get the eond nd the third inequlitie in 5).

8 97 M. Alomri nd M. Dru nd Thereore, by 3), we hve 4 + b, + d ) d ) + b d,y dy 8) 4 + b, + d ) b x, + d ) dx 9) b whih give, by ddition the irt inequlity in 5). nd Finlly, by the me inequlity we n lo tte: b, )+ b, ) x, ) dx b + b, d)+ b, d) x, d) dx b + d, )+, d), y) dy d + d b, )+ b, d) b, y) dy d + whih give, by ddition the lt inequlity in 5). Remrk 3. In 5), i = =, then 5) redued to inequlity 4). Alo, in 5), i =, then 5) redued to inequlity 9). The ollowing inequlitie i onidered Hdmrd type inequlitie onneted with inequlity 4) or onvex untion in the irt ene on the o ordinte. Theorem 3.3 Suppoe tht :Δ=[, b] [, d] [0, ) [0, ) i onvex untion on the o ordinte in the irt ene on Δ. Then one h the inequlitie: + b, + d )

9 Hdmrd-type inequlitie 973 b x, + d b ) dx + d ) + b d,y dy b d x, y) dydx 0) b )d ) +)b ) b + +)d ) d [ x, )+ x, d)] dx [, y)+ b, y)] dy, )+, d)+ b, )+ b, d) +) +, )+, d)+ b, )+ b, d) +) The bove inequlitie re hrp. Proo. Sine :Δ R i o ordinted onvex in irt ene on Δ it ollow tht the mpping g x :[, d] [0, ), g x y) = x, y) i onvex on [, d] or ll x [, b]. Then by Hdmrd inequlity ) one h: ) + d g x d d Tht i, x, + d ) d d Integrting thi inequlity on [, b], we hve b x, + d ) dx b b )d ) + b g x y) dy g x )+ g x d), x [, b]. + x, y) dy x, )+ x, d), x [, b]. + b d b x, y) dydx ) x, ) dx + b b x, d) dx. A imilr rgument pplied or the mpping g y :[, b] [0, ), g y x) = x, y), we get d ) + b d,y dy d b x, y) dxdy ) d )b )

10 974 M. Alomri nd M. Dru d, y) dy + d + d d b, y) dy. Summing the inequlitie ) nd ), we get the eond nd the third inequlitie in 0). nd Thereore, by Hdmrd inequlity ), we lo hve: + b, + d ) d ) + b d,y dy 3) + b, + d ) b x, + d ) dx 4) b whih give, by ddition the irt inequlity in 0). nd Finlly, by the me inequlity we n lo tte: b x, ) dx, )+ b, ) b + b x, d) dx, d)+ b, d) b + d, y) dy, )+, d) d + d b, y) dy b, )+ b, d) d + whih give, by ddition the lt inequlity in 0). Remrk 3.4 In 0), i = =, then 0) redued to inequlity 4). Alo, in 0), i =, then 0) redued to inequlity 6). ACKNOWLEDGEMENT. The work here i upported by the Grnt: UKM GUP TMK

11 Hdmrd-type inequlitie 975 Reerene [] M. Alomri nd M. Dru, A mpping onneted with Hdmrd type inequltie in 4 vrible, Int. Journl o Mth. Anlyi, 3) 008), [] M. Alomri nd M. Dru, The Hdmrd inequlity or onvex untion o vrible On The o ordinte, Int. Journl o Mth. Anlyi, 3) 008), [3] M. Alomri nd M. Dru, The Hdmrd inequlity or onvex untion, Int. Journl o Mth. Anlyi, 3) 008), [4] M. Alomri nd M. Dru, On o ordinted onvex untion, Interntionl Mthemtil Forum, ubmitted. [5] M. Alomri nd M. Dru, Co ordinte onvex untion in the irt ene with ome Hdmrd type inequlitie, Int. J. Contemp. Mth. Si., ubmitted. [6] H. Hudzik, L. Mligrnd, Some remrk on onvex untion, Aequtione Mth., ), 00. [7] S.S. Drgomir, S. Fitzptrik, The Hdmrd inequlity or -onvex untion in the eond ene, Demontrtio Mth., 3 4) 999), [8] S. S. Drgomir, On Hdmrd inequlity or onvex untion on the o ordinte in retngle rom the plne, Tiwnee Journl o Mthemti, 5 00), Reeived: My, 008

### Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

### The Hadamard s Inequality for s-convex Function

Int. Journl o Mth. Anlysis, Vol., 008, no. 3, 639-646 The Hdmrd s Inequlity or s-conve Function M. Alomri nd M. Drus School o Mthemticl Sciences Fculty o Science nd Technology Universiti Kebngsn Mlysi

### On the Co-Ordinated Convex Functions

Appl. Mth. In. Si. 8, No. 3, 085-0 0 085 Applied Mthemtis & Inormtion Sienes An Interntionl Journl http://.doi.org/0.785/mis/08038 On the Co-Ordinted Convex Funtions M. Emin Özdemir, Çetin Yıldız, nd Ahmet

### Some integral inequalities of the Hermite Hadamard type for log-convex functions on co-ordinates

Avilble online t www.tjns.om J. Nonliner Si. Appl. 9 06), 5900 5908 Reserh Artile Some integrl inequlities o the Hermite Hdmrd type or log-onvex untions on o-ordintes Yu-Mei Bi, Feng Qi b,, College o Mthemtis,

### ON CO-ORDINATED OSTROWSKI AND HADAMARD S TYPE INEQUALITIES FOR CONVEX FUNCTIONS II

TJMM 9 (7), No., 35-4 ON CO-ORDINATED OSTROWSKI AND HADAMARD S TYPE INEQUALITIES FOR CONVEX FUNCTIONS II MUHAMMAD MUDDASSAR, NASIR SIDDIQUI, AND MUHAMMAD IQBAL Abstrt. In this rtile, we estblish vrious

### Inequalities for convex and s-convex functions on Δ =[a, b] [c, d]

Özdemir et l. Journl o Ineulities nd Applitions, : http://www.journloineulitiesndpplitions.om/ontent/// RESEARCH Open Aess Ineulities or onvex nd s-onvex untions on Δ =, b], d] Muhmet Emin Özdemir, Hvv

### NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS MOHAMMAD ALOMARI A MASLINA DARUS A AND SEVER S DRAGOMIR B Abstrct In terms of the first derivtive some ineulities of Simpson

### Hermite-Hadamard type inequalities for harmonically convex functions

Hcettepe Journl o Mthemtics nd Sttistics Volume 43 6 4 935 94 Hermite-Hdmrd type ineulities or hrmoniclly convex unctions İmdt İşcn Abstrct The uthor introduces the concept o hrmoniclly convex unctions

### f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

TAMKANG JOURNAL OF MATHEMATICS Volume 41, Number 4, 353-359, Winter 1 NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX M. ALOMARI, M. DARUS

### Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

Int. J. Nonliner Anl. Appl. 8 27 No. 47-6 ISSN: 28-6822 eletroni http://dx.doi.org/.2275/ijn.26.483 Hermite-Hdmrd ineulity for geometrilly usionvex funtions on o-ordintes Ali Brni Ftemeh Mlmir Deprtment

### Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

Hindwi Publishing Corportion Journl of Inequlities nd Applictions Volume 29, Article ID 28347, 3 pges doi:.55/29/28347 Reserch Article On The Hdmrd s Inequlity for Log-Convex Functions on the Coordintes

### ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS. 1. Introduction. f(a) + f(b) f(x)dx b a. 2 a

Act Mth. Univ. Comenine Vol. LXXIX, (00, pp. 65 7 65 ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS M. Z. SARIKAYA, E. SET nd M. E. ÖZDEMIR Abstrct. In this pper, we estblish some

### SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED CONVEX

FACTA UNIVERSITATIS (NIŠ) Ser. Mth. Inor. Vol. 7 No 3 (), 3 336 SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED CONVEX Muhd Aer Lti nd

### arxiv: v1 [math.ca] 28 Jan 2013

ON NEW APPROACH HADAMARD-TYPE INEQUALITIES FOR s-geometrically CONVEX FUNCTIONS rxiv:3.9v [mth.ca 8 Jn 3 MEVLÜT TUNÇ AND İBRAHİM KARABAYIR Astrct. In this pper we chieve some new Hdmrd type ineulities

### New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

Punjb University Journl of Mthemtics (ISSN 116-56) Vol. 45 (13) pp. 33-38 New Integrl Inequlities of the Type of Hermite-Hdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,

### On some refinements of companions of Fejér s inequality via superquadratic functions

Proyecciones Journl o Mthemtics Vol. 3, N o, pp. 39-33, December. Universidd Ctólic del Norte Antogst - Chile On some reinements o compnions o Fejér s inequlity vi superqudrtic unctions Muhmmd Amer Lti

### Bulletin of the. Iranian Mathematical Society

ISSN: 07-060X Print ISSN: 735-855 Online Bulletin of the Irnin Mthemticl Society Vol 3 07, No, pp 09 5 Title: Some extended Simpson-type ineulities nd pplictions Authors: K-C Hsu, S-R Hwng nd K-L Tseng

### DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

Krgujev Journl of Mthemtis Volume 38() (204), Pges 35 49. DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS MOHAMMAD W. ALOMARI Abstrt. In this pper, severl bouns for the ifferene between two Riemn-

### Hadamard-Type Inequalities for s Convex Functions I

Punjb University Journl of Mthemtics ISSN 6-56) Vol. ). 5-6 Hdmrd-Tye Ineulities for s Convex Functions I S. Hussin Dertment of Mthemtics Institute Of Sce Technology, Ner Rwt Toll Plz Islmbd Highwy, Islmbd

### NEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED s-convex FUNCTIONS VIA FRACTIONAL INTEGRALS

Journl of Frtionl Clulus nd Applitions, Vol. 4() Jn. 3, pp. -36. ISSN: 9-5858. http://www.fj.webs.om/ NEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED s-convex FUNCTIONS VIA FRACTIONAL INTEGRALS M.

### MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES CHARLIE COLLIER UNIVERSITY OF BATH These notes hve been typeset by Chrlie Collier nd re bsed on the leture notes by Adrin Hill nd Thoms Cottrell. These

### Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 6, Number, 0 Avilble online t www.mth.ut.ee/ct/ Bounds for the Riemnn Stieltjes integrl vi s-convex integrnd or integrtor Mohmmd Wjeeh

### The Hadamard s inequality for quasi-convex functions via fractional integrals

Annls of the University of Criov, Mthemtics nd Computer Science Series Volume (), 3, Pges 67 73 ISSN: 5-563 The Hdmrd s ineulity for usi-convex functions vi frctionl integrls M E Özdemir nd Çetin Yildiz

### Integral inequalities for n times differentiable mappings

JACM 3, No, 36-45 8 36 Journl of Abstrct nd Computtionl Mthemtics http://wwwntmscicom/jcm Integrl ineulities for n times differentible mppings Cetin Yildiz, Sever S Drgomir Attur University, K K Eduction

### Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

ISRN Applied Mthemtics, Article ID 8958, 4 pges http://dx.doi.org/.55/4/8958 Reserch Article On Hermite-Hdmrd Type Inequlities for Functions Whose Second Derivtives Absolute Vlues Are s-convex Feixing

### SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED s-convex

Krgujev Journl of Mthetis Volue 38 4, Pges 5 46 SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED s-convex MUHAMMAD AMER LATIF Abstrt In

### New general integral inequalities for quasiconvex functions

NTMSCI 6, No 1, 1-7 18 1 New Trends in Mthemticl Sciences http://dxdoiorg/185/ntmsci1739 New generl integrl ineulities for usiconvex functions Cetin Yildiz Atturk University, K K Eduction Fculty, Deprtment

### Generalized Hermite-Hadamard Type Inequalities for p -Quasi- Convex Functions

Ordu Üniv. Bil. Tek. Derg. Cilt:6 Syı: 683-93/Ordu Univ. J. Sci. Tech. Vol:6 No:683-93 -QUASİ-KONVEKS FONKSİYONLAR İÇİN GENELLEŞTİRİLMİŞ HERMİTE-HADAMARD TİPLİ EŞİTSİZLİKLER Özet İm İŞCAN* Giresun Üniversitesi

### On some inequalities for s-convex functions and applications

Özdemir et l Journl of Ineulities nd Alictions 3, 3:333 htt://wwwjournlofineulitiesndlictionscom/content/3//333 R E S E A R C H Oen Access On some ineulities for s-convex functions nd lictions Muhmet Emin

### The Intouch Triangle and the OI-line

Forum Geometriorum Volume 4 004 15 134. FORUM GEOM ISSN 1534-1178 The Intouh Tringle nd the OI-line Eri Dnneel Abtrt. We prove ome intereting reult relting the intouh tringle nd the OI line of tringle.

### ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs A.I. KECHRINIOTIS AND N.D. ASSIMAKIS Deprtment of Eletronis Tehnologil Edutionl Institute of Lmi, Greee EMil: {kehrin,

### Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

Wu et l. SpringerPlus (5) 4:83 DOI.8/s44-5-33-z RESEARCH Prmetrized inequlity of Hermite Hdmrd type for functions whose third derivtive bsolute vlues re qusi convex Shn He Wu, Bnyt Sroysng, Jin Shn Xie

### n-points Inequalities of Hermite-Hadamard Type for h-convex Functions on Linear Spaces

Armenin Journl o Mthemtics Volume 8, Number, 6, 38 57 n-points Inequlities o Hermite-Hdmrd Tpe or h-convex Functions on Liner Spces S. S. Drgomir Victori Universit, Universit o the Witwtersrnd Abstrct.

### The Riemann and the Generalised Riemann Integral

The Riemnn nd the Generlised Riemnn Integrl Clvin 17 July 14 Contents 1 The Riemnn Integrl 1.1 Riemnn Integrl............................................ 1. Properties o Riemnn Integrble Funtions.............................

### EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl:

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Syı: 3- Yıl: 9-9 NEW INEQUALITIES FOR CONVEX FUNCTIONS KONVEKS FONKSİYONLAR İÇİN YENİ EŞİTSİZLİKLER Mevlüt TUNÇ * ve S. Uğur KIRMACI Kilis 7 Arlık Üniversitesi,

### CERTAIN NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA FRACTIONAL INTAGRALS

Aville online: Ferury 4, 8 Commun. Fc. Sci. Univ. Ank. Ser. A Mth. Stt. Volume 68, Numer, Pge 6 69 9 DOI:.5/Commu_89 ISSN 33 599 http://communiction.cience.nkr.edu.tr/index.php?eriea CERTAIN NEW HERMITE-HADAMARD

### SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

Avne Mth Moels & Applitions Vol3 No 8 pp63-75 SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVE STOCHASTIC PROCESSES ON THE CO-ORDINATES Nurgül Okur * Imt Işn Yusuf Ust 3 3 Giresun University Deprtment

### Hyers-Ulam stability of Pielou logistic difference equation

vilble online t wwwisr-publitionsom/jns J Nonliner Si ppl, 0 (207, 35 322 Reserh rtile Journl Homepge: wwwtjnsom - wwwisr-publitionsom/jns Hyers-Ulm stbility of Pielou logisti differene eqution Soon-Mo

### 6.1 Definition of the Riemann Integral

6 The Riemnn Integrl 6. Deinition o the Riemnn Integrl Deinition 6.. Given n intervl [, b] with < b, prtition P o [, b] is inite set o points {x, x,..., x n } [, b], lled grid points, suh tht x =, x n

### Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

### Lecture 1 - Introduction and Basic Facts about PDEs

* 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

### INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX M. ALOMARI A, M. DARUS A, AND S.S. DRAGOMIR B Astrct. In this er, some ineulities of Hermite-Hdmrd

### On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey On New Ineulities of Hermite-Hdmrd-Fejer Type for Hrmoniclly Qusi-Convex Functions Vi Frctionl Integrls Mehmet Kunt * nd İmdt İşcn Deprtment

### A NEW COMBINED BRACKETING METHOD FOR SOLVING NONLINEAR EQUATIONS

Aville online t htt://ik.org J. Mth. Comut. Si. 3 (013), No. 1, 87-93 ISSN: 197-5307 A NEW COMBINED BRACKETING METHOD FOR SOLVING NONLINEAR EQUATIONS M.A. HAFIZ Dertment of mthemti, Fulty of Siene nd rt,

### Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Stud. Univ. Beş-Bolyi Mth. 6005, No. 4, 57 534 Some Hermite-Hdmrd type inequlities for functions whose exponentils re convex Silvestru Sever Drgomir nd In Gomm Astrct. Some inequlities of Hermite-Hdmrd

### Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a; b]; (1 6 a < b)

Lypunov-type inequlity for the Hdmrd frctionl boundry vlue problem on generl intervl [; b]; ( 6 < b) Zid Ldjl Deprtement of Mthemtic nd Computer Science, ICOSI Lbortory, Univerity of Khenchel, 40000, Algeri.

### An inequality related to η-convex functions (II)

Int. J. Nonliner Anl. Appl. 6 (15) No., 7-33 ISSN: 8-68 (electronic) http://d.doi.org/1.75/ijn.15.51 An inequlity relted to η-conve functions (II) M. Eshghi Gordji, S. S. Drgomir b, M. Rostmin Delvr, Deprtment

### Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. Lmi-Athens Lmi 3500 Greece Abstrct Using

### Journal of Inequalities in Pure and Applied Mathematics

Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006.

### Review: The Riemann Integral Review: The definition of R b

eview: The iemnn Integrl eview: The definition of b f (x)dx. For ontinuous funtion f on the intervl [, b], Z b f (x) dx lim mx x i!0 nx i1 f (x i ) x i. This limit omputes the net (signed) re under the

### On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

Mly J Mt 34 93 3 On Hermite-Hdmrd tye integrl ineulities for functions whose second derivtive re nonconvex Mehmet Zeki SARIKAYA, Hkn Bozkurt nd Mehmet Eyü KİRİŞ b Dertment of Mthemtics, Fculty of Science

### More Properties of the Riemann Integral

More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

### Some new integral inequalities for n-times differentiable convex and concave functions

Avilble online t wwwisr-ublictionscom/jns J Nonliner Sci Al, 10 017, 6141 6148 Reserch Article Journl Homege: wwwtjnscom - wwwisr-ublictionscom/jns Some new integrl ineulities for n-times differentible

### Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx

Tutoril 2 Euler Lgrnge In one entene: d Fy = F d Importnt ft: ) The olution of EL eqution i lled eterml. 2) Minmum / Mimum of the "Mot Simple prolem" i lo n eterml. 3) It i eier to olve EL nd hek if we

### A NOTE ON THE HERMITE HADAMARD INEQUALITY FOR CONVEX FUNCTIONS ON THE CO ORDINATES FEIXIANG CHEN. 1. Introduction. f (t)dt. b a a

Journal o Mathematial Inequalities Volume 8 Number ( 95 93 doi:.753/jmi-8-69 A NOTE ON THE HERMITE HADAMARD INEQUALITY FOR CONVEX FUNCTIONS ON THE CO ORDINATES FEIXIANG CHEN (Communiated by S. Abramovih

### LYAPUNOV-TYPE INEQUALITIES FOR α-th ORDER FRACTIONAL DIFFERENTIAL EQUATIONS WITH 2 < α 3 AND FRACTIONAL BOUNDARY CONDITIONS

Eletroni Journl of ifferentil Eqution, Vol. 2017 2017, No. 203, pp. 1 15. ISSN: 1072-6691. URL: http://ejde.mth.txtte.edu or http://ejde.mth.unt.edu LYAPUNOV-TYPE INEQUALITIES FOR α-th ORER FRACTIONAL

### ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

Miskolc Mthemticl Notes HU ISSN 787-5 Vol. 3 (), No., pp. 33 8 ON OMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE ONVEX WITH APPLIATIONS MOHAMMAD W. ALOMARI, M.

### On new Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals

CMMA, No., -5 7 Communiction in Mthemticl Modeling nd Applictions http://ntmsci.com/cmm On new Hermite-Hdmrd-Fejer type ineulities or p-convex unctions vi rctionl integrls Mehmet Kunt nd Imdt Iscn Deprtment

### On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

Glol Journl of Mthemtil Sienes: Theory nd Prtil. ISSN 974-32 Volume 9, Numer 3 (27), pp. 387-397 Interntionl Reserh Pulition House http://www.irphouse.om On Implitive nd Strong Implitive Filters of Lttie

### Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Hindwi Pulishing Corportion Journl of Applied Mthemtics Volume 4, Article ID 38686, 6 pges http://dx.doi.org/.55/4/38686 Reserch Article Fejér nd Hermite-Hdmrd Type Inequlities for Hrmoniclly Convex Functions

### Double integrals on regions (Sect. 15.2) Review: Fubini s Theorem on rectangular domains

ouble integrls on regions (Set. 5.) Review: Fubini s on retngulr domins. Fubini s on non-retngulr domins. Tpe I: omin funtions (). Tpe II: omin funtions (). Finding the limits of integrtion. Review: Fubini

### f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

Green s Theorem If f is funtion of one vrible x with derivtive f x) or df dx to the Fundmentl Theorem of lulus, nd [, b] is given intervl then, ording This is not trivil result, onsidering tht b b f x)dx

### New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

Applied Mthemticl Sciences, Vol. 2, 2008, no. 8, 353-362 New Integrl Inequlities for n-time Differentible Functions with Applictions for pdfs Aristides I. Kechriniotis Technologicl Eductionl Institute

### Journal of Inequalities in Pure and Applied Mathematics

Journl of Inequlities in Pure nd Applied Mthemtics SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARI- ABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL NEIL S. BARNETT, PIETRO CERONE, SEVER S. DRAGOMIR

### MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

MATH 409 Advned Clulus I Leture 22: Improper Riemnn integrls. Improper Riemnn integrl If funtion f : [,b] R is integrble on [,b], then the funtion F(x) = x f(t)dt is well defined nd ontinuous on [,b].

### ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), Kristína Rostás

ARCHIVUM MAHEMAICUM (BRNO) omu 47 (20), 23 33 MINIMAL AND MAXIMAL SOLUIONS OF FOURH ORDER IERAED DIFFERENIAL EQUAIONS WIH SINGULAR NONLINEARIY Kritín Rotá Abtrct. In thi pper we re concerned with ufficient

### Some New Inequalities of Simpson s Type for s-convex Functions via Fractional Integrals

Filomt 3:5 (7), 4989 4997 htts://doi.org/.98/fil75989c Published by Fculty o Sciences nd Mthemtics, University o Niš, Serbi Avilble t: htt://www.m.ni.c.rs/ilomt Some New Ineulities o Simson s Tye or s-convex

### Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

Divulgciones Mtemátics Vol. 11 No. 2(2003), pp. 115 120 Improvements of some Integrl Inequlities of H. Guchmn involving Tylor s Reminder Mejor de lguns Desigulddes Integrles de H. Guchmn que involucrn

### AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Applied Mthemtics E-Notes, 5(005), 53-60 c ISSN 1607-510 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

### The study of dual integral equations with generalized Legendre functions

J. Mth. Anl. Appl. 34 (5) 75 733 www.elsevier.om/lote/jm The study of dul integrl equtions with generlized Legendre funtions B.M. Singh, J. Rokne,R.S.Dhliwl Deprtment of Mthemtis, The University of Clgry,

### Chapter Gauss Quadrature Rule of Integration

Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

### Journal of Inequalities in Pure and Applied Mathematics

Journl of Inequlities in Pure nd Applied Mthemtics http://jipmvueduu/ Volume, Issue, Article, 00 SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL NS BARNETT,

### MonotonicBehaviourofRelativeIncrementsofPearsonDistributions

Globl Journl o Science Frontier Reserch: F Mthemtics nd Decision Sciences Volume 8 Issue 5 Version.0 Yer 208 Type : Double lind Peer Reviewed Interntionl Reserch Journl Publisher: Globl Journls Online

### T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

### GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR Abstrct. In this pper, we estblish some generliztions

### Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

Applied Mthemticl Sciences Vol. 9 05 no. 5-36 HIKARI Ltd www.m-hikri.com http://d.doi.org/0.988/ms.05.9 Hermite-Hdmrd Type Ineulities for the Functions whose Second Derivtives in Absolute Vlue re Conve

### A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

Filomt 30:3 06, 360 36 DOI 0.9/FIL6360Q Pulished y Fculty of Sciences nd Mthemtics, University of Niš, Seri Aville t: http://www.pmf.ni.c.rs/filomt A Compnion of Ostrowski Type Integrl Inequlity Using

### #A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

#A42 INTEGERS 11 (2011 ON THE CONDITIONED BINOMIAL COEFFICIENTS Liqun To Shool of Mthemtil Sienes, Luoyng Norml University, Luoyng, Chin lqto@lynuedun Reeived: 12/24/10, Revised: 5/11/11, Aepted: 5/16/11,

### CSCI565 - Compiler Design

CSCI565 - Compiler Deign Spring 6 Due Dte: Fe. 5, 6 t : PM in Cl Prolem [ point]: Regulr Expreion nd Finite Automt Develop regulr expreion (RE) tht detet the longet tring over the lphet {-} with the following

Mth 452 - Advnced Clculus II Line Integrls nd Green s Theorem The min gol of this chpter is to prove Stoke s theorem, which is the multivrible version of the fundmentl theorem of clculus. We will be focused

### Journal of Inequalities in Pure and Applied Mathematics

Journl o Inequlities in Pure nd Applied Mthemtics http://jipm.vu.edu.u/ Volume 6, Issue 4, Article 6, 2005 MROMORPHIC UNCTION THAT SHARS ON SMALL UNCTION WITH ITS DRIVATIV QINCAI ZHAN SCHOOL O INORMATION

### VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vector Integration

www.boopr.om VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vetor Integrtion Thi hpter tret integrtion in vetor field. It i the mthemti tht engineer nd phiit ue to deribe fluid flow, deign underwter trnmiion

### f (z) dz = 0 f(z) dz = 2πj f(z 0 ) Generalized Cauchy Integral Formula (For pole with any order) (n 1)! f (n 1) (z 0 ) f (n) (z 0 ) M n!

uhy s Theorems I Ang M.S. Otober 26, 212 Augustin-Louis uhy 1789 1857 Referenes Murry R. Spiegel omplex V ribles with introdution to onf orml mpping nd its pplitions Dennis G. Zill, P. D. Shnhn A F irst

### A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

An. Ştiinţ. Univ. Al. I. Cuz Işi. Mt. (N.S. Tomul LXIII, 07, f. A unified generliztion of perturbed mid-point nd trpezoid inequlities nd symptotic expressions for its error term Wenjun Liu Received: 7.XI.0

### Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

DOI 763/s4956-6-4- Moroccn J Pure nd Appl AnlMJPAA) Volume ), 6, Pges 34 46 ISSN: 35-87 RESEARCH ARTICLE Generlized Hermite-Hdmrd-Fejer type inequlities for GA-conve functions vi Frctionl integrl I mdt

### TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS S.S. DRAGOMIR AND A. SOFO Abstrct. In this pper by utilising result given by Fink we obtin some new results relting to the trpezoidl inequlity

### SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL NS BARNETT P CERONE SS DRAGOMIR AND J ROUMELIOTIS Abstrct Some ineulities for the dispersion of rndom

### Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals

NTMSCI 4, No. 3, 39-53 6 39 New Trends in Mthemticl Sciences http://d.doi.or/.5/ntmsci.6337 Hermite-Hdmrd-Fejér type ineulities or hrmoniclly conve unctions vi rctionl interls Imdt Iscn, Mehmet Kunt nd

### ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

Krgujevc Journl of Mthemtics Volume 40( (016, Pges 166 171. ON A CONVEXITY PROPERTY SLAVKO SIMIĆ Abstrct. In this rticle we proved n interesting property of the clss of continuous convex functions. This

### MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

### ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

Journl of Applied Mhemics, Sisics nd Informics JAMSI), 9 ), No. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX MEHMET ZEKI SARIKAYA, ERHAN. SET

### Journal of Inequalities in Pure and Applied Mathematics

Journl of Inequlities in Pure nd Applied Mthemtics ON LANDAU TYPE INEQUALITIES FOR FUNCTIONS WIT ÖLDER CONTINUOUS DERIVATIVES LJ. MARANGUNIĆ AND J. PEČARIĆ Deprtment of Applied Mthemtics Fculty of Electricl

### Journal of Inequalities in Pure and Applied Mathematics

Journl of Inequlities in Pure nd Applied Mthemtics http://jipm.vu.edu.u/ Volume 3, Issue, Article 4, 00 ON AN IDENTITY FOR THE CHEBYCHEV FUNCTIONAL AND SOME RAMIFICATIONS P. CERONE SCHOOL OF COMMUNICATIONS

### APPENDIX 2 LAPLACE TRANSFORMS

APPENDIX LAPLACE TRANSFORMS Thi ppendix preent hort introduction to Lplce trnform, the bic tool ued in nlyzing continuou ytem in the frequency domin. The Lplce trnform convert liner ordinry differentil

### Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Generl Mthemtics Vol. 6, No. (28), 7 97 Ostrowski Grüss Čebyšev type inequlities for functions whose modulus of second derivtives re convex Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn Abstrct In this pper,

### NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

Journl of Mthemticl Ineulities Volume 1, Number 3 18, 655 664 doi:1.7153/jmi-18-1-5 NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX SHAHID

### Vector Integration. Line integral: Let F ( x y,

Vetor Integrtion Thi hpter tret integrtion in vetor field. It i the mthemti tht engineer nd phiit ue to deribe fluid flow, deign underwter trnmiion ble, eplin the flow of het in tr, nd put tellite in orbit.

### Improvement of Ostrowski Integral Type Inequalities with Application

Filomt 30:6 06), 56 DOI 098/FIL606Q Published by Fculty of Sciences nd Mthemtics, University of Niš, Serbi Avilble t: http://wwwpmfnicrs/filomt Improvement of Ostrowski Integrl Type Ineulities with Appliction