Tikrit Journal of Pure Science 21 (1) 2016 ISSN:

Size: px
Start display at page:

Download "Tikrit Journal of Pure Science 21 (1) 2016 ISSN:"

Transcription

1 Tikrit Journl of Pure Siene () 06 ISSN: K- onstnt type Khler n Nerly Khler mnifols for onhrmoni urvture tensor Ali A. Shih, Rn H. jsim Deprtment of Mthemtis, College of Eution Pure Sienes, Tikrit University, Tikrit, Irq li.8@yhoo.om rn.hzim03@gmil.om Astrt The onstnt of permnene onhrmoni type khler n nerly khler mnifol onitions re otine when the Nerly Khler mnifol is mnifol onhrmoni onstnt type (K). n lso prove tht M nerly khler mnifol of pointwise onstnt holomorphi setionl onhrmoni (PHKm()) urvture) urvture tensor if the omponents of holomorphi setionl (HS- urvture) urvture tensor in the joint G-struture spe tht stisfies onition. Keywors. Conhrmoni onstnt type khler n nerly khler mnifols, mnifol pointwise onstnt holomorphi setionl onhrmoni. Definition() [5] Let (M, J, g) is NK- mnifol of imension n, K - tensor onhrmoni urvture. tht omponents tensor Riemnn- Christoffel on spe of the joint, G-struture will e Remine [3] look like: ) R 3) R 5) R 8) R ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆˆ 0; ) R 0; 4) R 0; 6) R 0; 9) R ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ R R ˆ ˆ ˆˆ h h A A h h ; 7) R h ˆ ; 0) R h ˆ h ; h 0; 0. () n the omponents of Rii tensor S on spe of the joint G-struture look like: ) S 0; ) S ˆ 0; 3) S ˆ ˆ Sˆ A 3 h..() At lst slr urvture nerly Khler mnifols in the spe of the joint G-struture is lulte uner the formul χ = A + 6..(3) Proposition() [5] Let (M, J, g) - NK- mnifol. The urvture tensor onhrmoni ws introue will e Remine Ishii [] s tensor of type (4, 0) on n-imensionl Riemnnin mnifol, etermine y the formul K(,,,W) = R(,,,W) [g(, W)S(, ) (n ) g(,)s(,w) + g (, )S (,W) g (,W)S(,)] (4) Where R the Riemnn urvture tensor, S - Rii tensor. This tensore is invrint uner onhrmoni trnsformtions, i.e. with onforml trnsformtions of spe keeping hrmony of funtions. Let's onsier properties tensor onhrmoni urvture: [6] ) K,,, W,,, W g, W S, g, S, W n g, S, W g, W S, R,,, W n g, W S, g, S, W n g, S, W g, W S, K,,, W. n Properties re similrly prove: ) K(,,,W) = K(,, W, ). h ; ) K(,,,W) = K(,W,,). 3) K(,,,W) (,,,W) (,,,W) =0. Thus onhrmoni urvture tensor stisfies ll the properties of lgeri urvture tensor: ) K(,,,W) = K(,,,W); ) K(,,,W) = K(,, W, ); 3) K(,,,W) (,,, W) (,,, W) ; 4)K(,,,W) = K(, W,, );,,, W (M),where (M)is moule of vetor fiels on mnifol M (5) Lets Clulte Components of the Components tensor urvture on spe of the jonit G-struture for Nerly Khler mnifol, In terms of the ovrint omponents of the form[5] We shll write own s : K ijkl = R ijkl - ( gik δ (n ) jl + gjl δ jk - gjl δ jk - gjk δ il ).(6) we will extrt ompouns the tensor onhrmoni whih my extrte from the soure in nother wy, s in the following theory. Theorem(3) : The omponents of The onhrmoni onstnt onirulr tenser of Nerly Khler -mnifol in the jonit G-struture spe re given y the following forms: - K â =A - h h - δ + δ δ ).(7) - K ĉ = h h - δ δ (n ) (n ) δ + δ )+ + δ δ ) (8) n the other re onjugte to the ove omponents or equl to zero proof: K ijkl = R ijkl - (n ) (n ) ( gik δ jl + gjl δ jk - gjl δ jk - gjk δ il ) - Put i = j = k = n l = K = R - ( g δ + g δ - g δ - g δ ) - (n ) (0) 07

2 Tikrit Journl of Pure Siene () 06 ISSN: Put I = â j = k = n l = K â = R â - ( g â (n ) δ + g δ â - g â δ - g δ â ) - (n ) 3- put i =, j =, k = n l = K = R δ - g δ - - (n ) ) (0) (n ) ( g δ + g δ - g 4- Put i =, j =, k = n l = K = R - g δ - g δ - ) (0) (n ) (n ) ( g δ + g δ - 5- Put i =, j =, k = n l = K = R - (n ) ( g δ + g δ - g δ - g δ ) - (0) (n ) 6- Put i = j = k = n l = K = R â â - ( g (n ) g δ - g δ ) - δ â + g δ - (n ) 7- Put i = j = k = n l = K ĉ = R ĉ - ( g δ (n ) + g δ - g δ -g δ ) K ĉ = h h - δ + (n ) δ δ )+ δ + δ δ ) 8- Put i = j = k = n l = K â = R â - ( g (n ) â â - g â δ -g δ â ) δ δ ) K â =A - h h - δ + g δ (n ) δ + i.e for Nerly Khler, only two onhrmoni invrint on t equl to zero ; K = K () = -K with omponent {K, K } n K 4 = K (4) with omponent { K, K }, other omponents onhrmoni urvture Tensor equl to zero. Definition (4) : [4] Suppose tht λ(,,,w ) = K(,,, W) K(,, J, JW) Consier the following tensor λ(,) = λ(,,,) We sy tht n lmost hermition mnifol M is of onstnt type t p M Provie tht for ll T P (M),where T P (M) is tngent spe of M t the point p λ(,) = λ(,).( 9) Remrk(5): - If (9) hols for ll p M then the mnifol M hs pointwise onstnt type. - If (9)is onstnt funtion,then (M,J,g) hs glol onstnt type. Definition (6) : An lmost hermition mnifol M n onhrmoni type (K- onstnt type ) If,,,W (M n ) tht λ(,,,w ) = K(,,, W) K(,, J, JW) Consier the following tensor λ(,) = λ(,,,) We sy tht n lmost hermition mnifol M is of onstnt type t p M Provie tht for ll T P (M),where T P (M) is tngent spe of M t the point p λ(,) = λ(,) Theorem (7): If M is Nerly Khler mnifol of The onhrmoni tenser then M mnifol onhrmoni onstnt onirulr if n only if λ(,) = λ(,) = -8 h h - (n ) δ + δ δ )+ δ + δ δ ) Proof : suppose tht M is Nerly Khler mnifol of onhrmoni tenser At first we fin the following result y using efinition( 6) it follows :- - λ(, ) = K(,,, ) K(,, J, J) Let M n Nerly Khler mnifol To ompute the K(,,, )n K(,, J, J) on the spe of the jont G-struture (i) K(,,, ) = K ijkl i j k l = K +K ĉ +K ĉ â â â â ĉ â + K â ĉ â â ĉ + K ĉ â ĉ â ĉ y using the properties of onhrmoni tenser eqution (5) We get : K (,,, ) = K â â â ĉ â + K ĉ + K ĉ.(0) (II) K (,, J, J ) In the joint G-struture spe the omponents 08

3 Tikrit Journl of Pure Siene () 06 ISSN: K (,, J, J ) = K ijkl i j (J) k l = K (J) (J) ĉ (J) (J) ĉ (J) (J) ĉ â (J) ĉ â â (J) (J) â (J) â (J) â (J) â (J) ĉ â (J) ĉ y using the properties of onhrmoni tenser eqution (5) We get : K (,, J, J )= K â () () + K â (J) ĉ K â (J) K (J) (J) ĉ K (J) ĉ () Mking use of the eqution (0) n () we get : K(,,, ) K(,, J, J)= K â â â + K ĉ +K () ĉ () K â (J) â (J) +K -K â (J) ĉ - K (J) - K (J) ĉ â ( J) ĉ = - 4 K This is the K 4 of theory (3) eqution (8) n the ompenstion we get : = - 4[ h h δ + δ δ ) = - 8 h h - (n ) δ (n ) δ δ + δ δ ).() - λ(, ) = K(,,, ) K(,, J, J) + δ δ )+ + δ δ )+ To ompute the K(,,, )n K(,, J, J) on the spe of the jont G-struture ( I ) K(,,, ) = K ijkl i j k l = K +K ĉ + K ĉ â â â â ĉ â + K â ĉ K â ĉ â ĉ + ĉ â ĉ y using the properties of onhrmoni tenser eqution (5) We get : K (,,, ) = K â ĉ â ĉ + K â â + K ĉ..(3) (II) K (,, J, J ) In the joint G-struture spe the omponents K (,, J, ) = K ijkl i j (J) k l = K (J) (J) ĉ (J) (J) ĉ â (J) (J) ĉ â (J) ĉ â (J) (J) â (J) â (J) â (J) â (J) ĉ â (J) ĉ y using the properties of onhrmoni tenser eqution (5) We get : K (,, J, J )= K â â (J) ĉ â K (J) K ( J) (J) ĉ K (J) ĉ.(4) Mking use of the eqution (3) n (4) we get : + K(,,, ) K(,, J, J)= K â â K â ĉ â ĉ â â ĉ ĉ () ĉ () K â â - K - K ĉ (J) ĉ ĉ â (J) ĉ - K â â (J) â (J) â (J) ( J) ĉ = - 4 K â J This is the K 4 of theory (3) eqution (8) n the ompenstion we get :- 09

4 Tikrit Journl of Pure Siene () 06 ISSN: = - 4[ h h δ + δ δ )] = - 8 h h - (n ) δ (n ) δ δ + δ δ ).(5) From eqution () n (5) it follows λ(, )= λ(, ) = - 8 h h - δ + δ δ ) Thus y efinition (6) we get : M is onstnt type if n only if λ(, )= -8 h h - (n ) δ (n ) δ + δ δ )+ + δ δ )+ + δ δ )+ + δ δ )+ δ + δ δ ) Now we stuing Nerly Khler mnifol of pointwise holomorphi setionl onhormoni (PMK M ()) urvture tensor. Let {M n,g,j} Almost Hermitin mnifol (M) moule smooth vetor fiel on mnifol M n Definition (8): [ ] Two imensions Level two-imensionl σ T m (M),m M lle holomorphi, if J m (σ)= σ Theorem (9) :[ ] Two imensions Level two-imensionl σ T m (M),m M holomorphi if n only if when σ = L(, J)where (M)- some vetor, L enote tking liner hull Defintion (0):[3 ] Setionl urvture lmost Hermitin mnifol {M,g,J} on the iretion two imensions Level two-imensionl σ T m (M),m M lle holomorphi setionl urvture (on t equl zero ) vetor σ n enote H m (),With form H m () = <Rm (,J)J,)> 4 ; m M, T m (M) - If H m () Do not epen on the hoie of the point σ T m (M) then mnifol involving M pointwise onstnt holomorphi setionl urvture. - If Hm()Do not epen on the hoie of the point m then mnifol involving M glool onstnt holomorphi setionl urvture. Definition () : Let M e n lmost Hermitin mnifol, holomorphi setionl urvture onhormoni (HK m ()- urture) tensor of mnifol M in the iretion (M), 0 is funtion H() whih is efin s : K (, J,,J ) = MK m () 4, (M) (HK m () = = <Km (,J)J,)> 4 ; m M, T m (M) where = <,> (6) Definition (): A mnifol M is lle mnifol pointwise onstnt holomorphi setionl onhormoi urvture (PHK m ()) urvture tensor, if HK m () oes not epen on i.e K (, J,,J ) = 4 ; (M), C (M).(7) Definition (3): A mnifol M pointwise onstnt holomorphi setionl onhormoi urvture is lle glol onstnt holomorphi setionl onhormoi urvture if HK m () hs onstnt i.e (HK m () oes not epen on m M ) Theorem(4): [5] Almost Hermitin mnifol (M,g,J) is mnifol onstnt HK- urvture if n only if,,when in the joint G-struture spe δ = K Lemm(5): [4] If M lmost Hermitin mnifol of pointwise holomorphi setionl urvture tensor then we hve: 4 = δ Theorem (6) : Nerly Khler mnifol of pointwise onstnt holomorphi setionl onhrmoni (PHK m ()) urvture ) urvture tensor if the omponents of holomorphi setionl (HS-urvture) urvture tensor in the joint G-struture spe tht stisfies the following onition: = δ A Proof : Suppose tht M is Nerly Khler mnifol of PHKurvtue tensor Aoring to the the efinition () we hve : K (, J,,J ) = 4.(8) Where C (M) y using Lemm(5),the eqution (8) eomes:- K (, J,,J ) = δ.(9) In the joint G-struture spe the eqution (9) n e written s the following form: K ijkl i j () k l = K ( J) ĉ ( J) ( J) ĉ ĉ +K ĉ +K â ĉ ĉ ĉ â â â â â ĉ â ĉ â + K â = δ y using the properties =, â = â we get :- 0

5 Tikrit Journl of Pure Siene () 06 ISSN: < K(, J), J, > = - K â K â â + 4 K + K â ĉ + K â ĉ K = δ y using the properties of onhrmoni tenser eqution (5) We get : K â K â T.e K Similrly: K, K we get : = K â =, K, K Referenes. Aul - Qer R.T., "On the geometry of onhrmoni urvture tensor of Khler n nerly Khler mnifols", M.S. thesis, University of Tikrit, College of Eution for Pure Sienes, 05.. Kirihenko V.F. "Differentil - Geometril struture on mnifol", Mosow Stte Pegogil University, Kirihenko V.F. n Vlsov L.I., Conirulr gemetry of nerly Khler mnifol,sornik: mthemtis, V.93,No.5,pp ,00. < K(, J), J, > = 4 K â = δ y theorm (3) the eqution (8 ) we show : 4 {A h δ δ (n ) + δ δ } = δ If we ompute nti symmetrizing struture tensor we hve : A δ + δ δ + δ δ + δ δ ) = δ 4(n ) h Explin tht A tensor type ( ) with omponent 0 0 A = A δ + δ δ + δ δ ) 4(n ) + δ δ Symmetri for eh Ientil for eh pir supernl or sujent n we get : A = δ. 4. Sn M.J., "Complex onirulr urvture tensor of ertin lsses of lmost Hermition mnifol", (Mster thesis). University of srh, Shih A.A., "Geometry of the tensor of onhrmoni urvture of nerly Khlerin mnifols", (PhD thesis). Mosow Stte Pegogil Univ., (in Russin), Shih A.A., Kirihenko V.F, Rustnoy A.R, "On geometry of the tensor of onhrmoni urvtur of lmost Hermitin",Mthemtil Notes, Mosow, Vol.90, No-, pp , 0. الملخص النوع الثابت )K( لمنطويات كوهلر ومنطوي كوهلر التقريبي لتنزر االنحناء الكونهورموني علي عبد المجيد شهاب رنا حازم جاسم قسم الرياضيات كلية التربية للعلوم الصرفة جامعة تكريت تكريت الع ارق ان الشروط الثابتة لألنواع الكونهورمونية لمنطوي كوهلر ومنطوي كوهلر التقريبي نحصل عليها عندما يكون منطوي كوهلر التقريبي هو منطوي كونهورموني من النوع الثابت )K(. وكذلك اثبات ان )M( هو منطوي كوهلر تقريبي ذات ثابت نقطي هلومورفك في القاطع الكونهورموني ) urvture (PHKm()) لتنزر االنحناء اذا كانت محتويات القاطع الهولومورفك urvture) (HS- لتنزر االنحناء في بنية الفضاء المركب G يحقق الشروط محدد.

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

A Primer on Continuous-time Economic Dynamics

A Primer on Continuous-time Economic Dynamics Eonomis 205A Fll 2008 K Kletzer A Primer on Continuous-time Eonomi Dnmis A Liner Differentil Eqution Sstems (i) Simplest se We egin with the simple liner first-orer ifferentil eqution The generl solution

More information

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues MTB 050 1 ORIGIN 1 Eigenvets n Eigenvlues This wksheet esries the lger use to lulte "prinipl" "hrteristi" iretions lle Eigenvets n the "prinipl" "hrteristi" vlues lle Eigenvlues ssoite with these iretions.

More information

Generalized Kronecker Product and Its Application

Generalized Kronecker Product and Its Application Vol. 1, No. 1 ISSN: 1916-9795 Generlize Kroneker Prout n Its Applition Xingxing Liu Shool of mthemtis n omputer Siene Ynn University Shnxi 716000, Chin E-mil: lxx6407@163.om Astrt In this pper, we promote

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap Prtile Physis Mihelms Term 2011 Prof Mrk Thomson g X g X g g Hnout 3 : Intertion y Prtile Exhnge n QED Prof. M.A. Thomson Mihelms 2011 101 Rep Working towrs proper lultion of ey n sttering proesses lnitilly

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours Mi-Term Exmintion - Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into

More information

SOME COPLANAR POINTS IN TETRAHEDRON

SOME COPLANAR POINTS IN TETRAHEDRON Journl of Pure n Applie Mthemtis: Avnes n Applitions Volume 16, Numer 2, 2016, Pges 109-114 Aville t http://sientifivnes.o.in DOI: http://x.oi.org/10.18642/jpm_7100121752 SOME COPLANAR POINTS IN TETRAHEDRON

More information

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 ) Neessry n suient onitions for some two vrile orthogonl esigns in orer 44 C. Koukouvinos, M. Mitrouli y, n Jennifer Seerry z Deite to Professor Anne Penfol Street Astrt We give new lgorithm whih llows us

More information

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

F / x everywhere in some domain containing R. Then, + ). (10.4.1) 0.4 Green's theorem in the plne Double integrls over plne region my be trnsforme into line integrls over the bounry of the region n onversely. This is of prtil interest beuse it my simplify the evlution

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS Krgujev Journl of Mthemtis Volume 38() (204), Pges 35 49. DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS MOHAMMAD W. ALOMARI Abstrt. In this pper, severl bouns for the ifferene between two Riemn-

More information

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES Avne Mth Moels & Applitions Vol3 No 8 pp63-75 SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVE STOCHASTIC PROCESSES ON THE CO-ORDINATES Nurgül Okur * Imt Işn Yusuf Ust 3 3 Giresun University Deprtment

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

I 3 2 = I I 4 = 2A

I 3 2 = I I 4 = 2A ECE 210 Eletril Ciruit Anlysis University of llinois t Chigo 2.13 We re ske to use KCL to fin urrents 1 4. The key point in pplying KCL in this prolem is to strt with noe where only one of the urrents

More information

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of: 22: Union Fin CS 473u - Algorithms - Spring 2005 April 14, 2005 1 Union-Fin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x) - rete set tht ontins the single element x. 2. Fin(x)

More information

HARMONIC BALANCE SOLUTION OF COUPLED NONLINEAR NON-CONSERVATIVE DIFFERENTIAL EQUATION

HARMONIC BALANCE SOLUTION OF COUPLED NONLINEAR NON-CONSERVATIVE DIFFERENTIAL EQUATION GNIT J. nglesh Mth. So. ISSN - HRMONIC LNCE SOLUTION OF COUPLED NONLINER NON-CONSERVTIVE DIFFERENTIL EQUTION M. Sifur Rhmn*, M. Mjeur Rhmn M. Sjeur Rhmn n M. Shmsul lm Dertment of Mthemtis Rjshhi University

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Now we must transform the original model so we can use the new parameters. = S max. Recruits MODEL FOR VARIABLE RECRUITMENT (ontinue) Alterntive Prmeteriztions of the pwner-reruit Moels We n write ny moel in numerous ifferent ut equivlent forms. Uner ertin irumstnes it is onvenient to work with

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Solutions to Problem Set #1

Solutions to Problem Set #1 CSE 233 Spring, 2016 Solutions to Prolem Set #1 1. The movie tse onsists of the following two reltions movie: title, iretor, tor sheule: theter, title The first reltion provies titles, iretors, n tors

More information

AP Calculus AB Unit 4 Assessment

AP Calculus AB Unit 4 Assessment Clss: Dte: 0-04 AP Clulus AB Unit 4 Assessment Multiple Choie Identify the hoie tht best ompletes the sttement or nswers the question. A lultor my NOT be used on this prt of the exm. (6 minutes). The slope

More information

Math 225B: Differential Geometry, Homework 6

Math 225B: Differential Geometry, Homework 6 ath 225B: Differential Geometry, Homework 6 Ian Coley February 13, 214 Problem 8.7. Let ω be a 1-form on a manifol. Suppose that ω = for every lose urve in. Show that ω is exat. We laim that this onition

More information

Lecture 8: Abstract Algebra

Lecture 8: Abstract Algebra Mth 94 Professor: Pri Brtlett Leture 8: Astrt Alger Week 8 UCSB 2015 This is the eighth week of the Mthemtis Sujet Test GRE prep ourse; here, we run very rough-n-tumle review of strt lger! As lwys, this

More information

N=2 Gauge Theories. S-duality, holography and a surprise. DG, G. Moore, A. Neitzke to appear. arxiv:

N=2 Gauge Theories. S-duality, holography and a surprise. DG, G. Moore, A. Neitzke to appear. arxiv: N=2 Guge Theories S-ulity, hologrphy n surprise DG, G. Moore, A. Neitzke to pper DG: rxiv:0904.2715 DG, J. Mlen: rxiv:0904.4466 L.F.Aly, DG, Y.Thikw: rxiv:0906.3219 1 Overview M5 rnes on Riemnn surfes.

More information

SEMI-EXCIRCLE OF QUADRILATERAL

SEMI-EXCIRCLE OF QUADRILATERAL JP Journl of Mthemtil Sienes Volume 5, Issue &, 05, Pges - 05 Ishn Pulishing House This pper is ville online t http://wwwiphsiom SEMI-EXCIRCLE OF QUADRILATERAL MASHADI, SRI GEMAWATI, HASRIATI AND HESY

More information

ON HELİCES AND BERTRAND CURVES IN EUCLİDEAN 3-SPACE

ON HELİCES AND BERTRAND CURVES IN EUCLİDEAN 3-SPACE ON HELİCES AND ERRAND CURVES IN EUCLİDEAN -SPACE Murt brsln Deprtment of Mthemtis, Fulty of Siene n Arts ozok University, Yozgt, urkey murt.bbrsln@bozok.eu.tr Yusuf Yylı Deprtment of Mthemtis, Fulty of

More information

Algebra 2 Semester 1 Practice Final

Algebra 2 Semester 1 Practice Final Alger 2 Semester Prtie Finl Multiple Choie Ientify the hoie tht est ompletes the sttement or nswers the question. To whih set of numers oes the numer elong?. 2 5 integers rtionl numers irrtionl numers

More information

16z z q. q( B) Max{2 z z z z B} r z r z r z r z B. John Riley 19 October Econ 401A: Microeconomic Theory. Homework 2 Answers

16z z q. q( B) Max{2 z z z z B} r z r z r z r z B. John Riley 19 October Econ 401A: Microeconomic Theory. Homework 2 Answers John Riley 9 Otober 6 Eon 4A: Miroeonomi Theory Homework Answers Constnt returns to sle prodution funtion () If (,, q) S then 6 q () 4 We need to show tht (,, q) S 6( ) ( ) ( q) q [ q ] 4 4 4 4 4 4 Appeling

More information

Regulated functions and the regulated integral

Regulated functions and the regulated integral Regulted functions nd the regulted integrl Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics University of Toronto April 3 2014 1 Regulted functions nd step functions Let = [ b] nd let X be normed

More information

VECTOR ALGEBRA. Syllabus :

VECTOR ALGEBRA. Syllabus : MV VECTOR ALGEBRA Syllus : Vetors nd Slrs, ddition of vetors, omponent of vetor, omponents of vetor in two dimensions nd three dimensionl spe, slr nd vetor produts, slr nd vetor triple produt. Einstein

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

Compression of Palindromes and Regularity.

Compression of Palindromes and Regularity. Compression of Plinromes n Regulrity. Kyoko Shikishim-Tsuji Center for Lierl Arts Eution n Reserh Tenri University 1 Introution In [1], property of likstrem t t view of tse is isusse n it is shown tht

More information

- Primary Submodules

- Primary Submodules - Primary Submodules Nuhad Salim Al-Mothafar*, Ali Talal Husain Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq Abstract Let is a commutative ring with identity and

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. B.Sc. Mathematics. (2011 Admn.) Semester Core Course VECTOR CALCULUS

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. B.Sc. Mathematics. (2011 Admn.) Semester Core Course VECTOR CALCULUS Shool of Dtne Eution UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B.S. Mthemt 2011 Amn. V Semester Core Course VECTOR CALCULUS Question Bnk & Answer Key 1. The Components of the vetor with initil

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals. MATH 409 Advned Clulus I Leture 22: Improper Riemnn integrls. Improper Riemnn integrl If funtion f : [,b] R is integrble on [,b], then the funtion F(x) = x f(t)dt is well defined nd ontinuous on [,b].

More information

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras Glol Journl of Mthemtil Sienes: Theory nd Prtil. ISSN 974-32 Volume 9, Numer 3 (27), pp. 387-397 Interntionl Reserh Pulition House http://www.irphouse.om On Implitive nd Strong Implitive Filters of Lttie

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd

More information

EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED

EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED Astrt. The GCD Str of Dvi Theorem n the numerous ppers relte to it hve lrgel een evote to shoing the equlit

More information

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets. I MATRIX ALGEBRA INTRODUCTION TO MATRICES Referene : Croft & Dvison, Chpter, Blos, A mtri ti is retngulr rr or lo of numers usull enlosed in rets. A m n mtri hs m rows nd n olumns. Mtri Alger Pge If the

More information

Linearly Similar Polynomials

Linearly Similar Polynomials Linerly Similr Polynomils rthur Holshouser 3600 Bullrd St. Chrlotte, NC, US Hrold Reiter Deprtment of Mthemticl Sciences University of North Crolin Chrlotte, Chrlotte, NC 28223, US hbreiter@uncc.edu stndrd

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

Implication Graphs and Logic Testing

Implication Graphs and Logic Testing Implition Grphs n Logi Testing Vishwni D. Agrwl Jmes J. Dnher Professor Dept. of ECE, Auurn University Auurn, AL 36849 vgrwl@eng.uurn.eu www.eng.uurn.eu/~vgrwl Joint reserh with: K. K. Dve, ATI Reserh,

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 1 Sturm-Liouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory

More information

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f 1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

On the properties of the two-sided Laplace transform and the Riemann hypothesis

On the properties of the two-sided Laplace transform and the Riemann hypothesis On the properties of the two-sie Lple trnsform n the Riemnn hypothesis Seong Won Ch, Ph.D. swh@gu.eu Astrt We will show interesting properties of two-sie Lple trnsform, minly of positive even funtions.

More information

EULER-LAGRANGE EQUATIONS. Contents. 2. Variational formulation 2 3. Constrained systems and d Alembert principle Legendre transform 6

EULER-LAGRANGE EQUATIONS. Contents. 2. Variational formulation 2 3. Constrained systems and d Alembert principle Legendre transform 6 EULER-LAGRANGE EQUATIONS EUGENE LERMAN Contents 1. Clssicl system of N prticles in R 3 1 2. Vritionl formultion 2 3. Constrine systems n Alembert principle. 4 4. Legenre trnsform 6 1. Clssicl system of

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for ECTURE 3 Orthogonl Functions 1. Orthogonl Bses The pproprite setting for our iscussion of orthogonl functions is tht of liner lgebr. So let me recll some relevnt fcts bout nite imensionl vector spces.

More information

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp. 920 926 ON THE UNUSUAL FUČÍK SPECTRUM Ntlij Sergejev Deprtment of Mthemtics nd Nturl Sciences Prdes 1 LV-5400

More information

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

More information

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS Bull. Koren Mth. So. 35 (998), No., pp. 53 6 POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS YOUNG BAE JUN*, YANG XU AND KEYUN QIN ABSTRACT. We introue the onepts of positive

More information

Logic, Set Theory and Computability [M. Coppenbarger]

Logic, Set Theory and Computability [M. Coppenbarger] 14 Orer (Hnout) Definition 7-11: A reltion is qusi-orering (or preorer) if it is reflexive n trnsitive. A quisi-orering tht is symmetri is n equivlene reltion. A qusi-orering tht is nti-symmetri is n orer

More information

Dorf, R.C., Wan, Z. T- Equivalent Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Dorf, R.C., Wan, Z. T- Equivalent Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000 orf, R.C., Wn,. T- Equivlent Networks The Eletril Engineering Hndook Ed. Rihrd C. orf Bo Rton: CRC Press LLC, 000 9 T P Equivlent Networks hen Wn University of Cliforni, vis Rihrd C. orf University of

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship 5.4, 6.1, 6.2 Hnout As we ve iscusse, the integrl is in some wy the opposite of tking erivtive. The exct reltionship is given by the Funmentl Theorem of Clculus: The Funmentl Theorem of Clculus: If f is

More information

On Right α-centralizers and Commutativity of Prime Rings

On Right α-centralizers and Commutativity of Prime Rings On Right α-centralizers and Commutativity of Prime Rings Amira A. Abduljaleel*, Abdulrahman H. Majeed Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq Abstract: Let R be

More information

Total score: /100 points

Total score: /100 points Points misse: Stuent's Nme: Totl sore: /100 points Est Tennessee Stte University Deprtment of Computer n Informtion Sienes CSCI 2710 (Trnoff) Disrete Strutures TEST 2 for Fll Semester, 2004 Re this efore

More information

Section 4.4. Green s Theorem

Section 4.4. Green s Theorem The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higher-dimensionl nlogues) with the definite integrls

More information

LESSON 11: TRIANGLE FORMULAE

LESSON 11: TRIANGLE FORMULAE . THE SEMIPERIMETER OF TRINGLE LESSON : TRINGLE FORMULE In wht follows, will hve sides, nd, nd these will e opposite ngles, nd respetively. y the tringle inequlity, nd..() So ll of, & re positive rel numers.

More information

More Properties of the Riemann Integral

More Properties of the Riemann Integral More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

More information

Solids of Revolution

Solids of Revolution Solis of Revolution Solis of revolution re rete tking n re n revolving it roun n is of rottion. There re two methos to etermine the volume of the soli of revolution: the isk metho n the shell metho. Disk

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics ON LANDAU TYPE INEQUALITIES FOR FUNCTIONS WIT ÖLDER CONTINUOUS DERIVATIVES LJ. MARANGUNIĆ AND J. PEČARIĆ Deprtment of Applied Mthemtics Fculty of Electricl

More information

y z A left-handed system can be rotated to look like the following. z

y z A left-handed system can be rotated to look like the following. z Chpter 2 Crtesin Coördintes The djetive Crtesin bove refers to René Desrtes (1596 1650), who ws the first to oördintise the plne s ordered pirs of rel numbers, whih provided the first sstemti link between

More information

Figure 1. The left-handed and right-handed trefoils

Figure 1. The left-handed and right-handed trefoils The Knot Group A knot is n emedding of the irle into R 3 (or S 3 ), k : S 1 R 3. We shll ssume our knots re tme, mening the emedding n e extended to solid torus, K : S 1 D 2 R 3. The imge is lled tuulr

More information

Let s divide up the interval [ ab, ] into n subintervals with the same length, so we have

Let s divide up the interval [ ab, ] into n subintervals with the same length, so we have III. INTEGRATION Eonomists seem muh more intereste in mrginl effets n ifferentition thn in integrtion. Integrtion is importnt for fining the epete vlue n vrine of rnom vriles, whih is use in eonometris

More information

Lecture 2: Cayley Graphs

Lecture 2: Cayley Graphs Mth 137B Professor: Pri Brtlett Leture 2: Cyley Grphs Week 3 UCSB 2014 (Relevnt soure mteril: Setion VIII.1 of Bollos s Moern Grph Theory; 3.7 of Gosil n Royle s Algeri Grph Theory; vrious ppers I ve re

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

Math 211A Homework. Edward Burkard. = tan (2x + z)

Math 211A Homework. Edward Burkard. = tan (2x + z) Mth A Homework Ewr Burkr Eercises 5-C Eercise 8 Show tht the utonomous system: 5 Plne Autonomous Systems = e sin 3y + sin cos + e z, y = sin ( + 3y, z = tn ( + z hs n unstble criticl point t = y = z =

More information

50 AMC Lectures Problem Book 2 (36) Substitution Method

50 AMC Lectures Problem Book 2 (36) Substitution Method 0 AMC Letures Prolem Book Sustitution Metho PROBLEMS Prolem : Solve for rel : 9 + 99 + 9 = Prolem : Solve for rel : 0 9 8 8 Prolem : Show tht if 8 Prolem : Show tht + + if rel numers,, n stisf + + = Prolem

More information

Quasi Duo Rings whose Every Simple Singular Modules is YJ-Injective حلقات كوازي ديو والتي كل مقاس بسيط منفرد عليها غامر من النمط- YJ

Quasi Duo Rings whose Every Simple Singular Modules is YJ-Injective حلقات كوازي ديو والتي كل مقاس بسيط منفرد عليها غامر من النمط- YJ Quasi Duo Rings whose Every Simple Singular Modules is YJ-Injective Akram S. Mohammed 1*, Sinan O. AL-Salihi 1 Department of Mathematics,College of Computer Science and Mathematics,University of Tikrit,

More information

SIMPLE NONLINEAR GRAPHS

SIMPLE NONLINEAR GRAPHS S i m p l e N o n l i n e r G r p h s SIMPLE NONLINEAR GRAPHS www.mthletis.om.u Simple SIMPLE Nonliner NONLINEAR Grphs GRAPHS Liner equtions hve the form = m+ where the power of (n ) is lws. The re lle

More information

Mass Creation from Extra Dimensions

Mass Creation from Extra Dimensions Journl of oern Physics, 04, 5, 477-48 Publishe Online April 04 in SciRes. http://www.scirp.org/journl/jmp http://x.oi.org/0.436/jmp.04.56058 ss Cretion from Extr Dimensions Do Vong Duc, Nguyen ong Gio

More information

Conservation Law. Chapter Goal. 6.2 Theory

Conservation Law. Chapter Goal. 6.2 Theory Chpter 6 Conservtion Lw 6.1 Gol Our long term gol is to unerstn how mthemticl moels re erive. Here, we will stuy how certin quntity chnges with time in given region (sptil omin). We then first erive the

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

arxiv:math-ph/ v1 6 Jun 2003

arxiv:math-ph/ v1 6 Jun 2003 On the energy-momentum tensor Rirdo E. Gmbo Srví Deprtmento de Físi, Universidd Nionl de L Plt C.C. 67, 1900 L Plt, Argentin Dted: September 10, 2002 We lrify the reltion mong nonil, metri nd Belinfnte

More information

arxiv: v1 [math.ca] 21 Aug 2018

arxiv: v1 [math.ca] 21 Aug 2018 rxiv:1808.07159v1 [mth.ca] 1 Aug 018 Clulus on Dul Rel Numbers Keqin Liu Deprtment of Mthemtis The University of British Columbi Vnouver, BC Cnd, V6T 1Z Augest, 018 Abstrt We present the bsi theory of

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

Can one hear the shape of a drum?

Can one hear the shape of a drum? Cn one her the shpe of drum? After M. K, C. Gordon, D. We, nd S. Wolpert Corentin Lén Università Degli Studi di Torino Diprtimento di Mtemti Giuseppe Peno UNITO Mthemtis Ph.D Seminrs Mondy 23 My 2016 Motivtion:

More information

ECE Microwave Engineering

ECE Microwave Engineering ECE 5317-6351 Mirowve Engineering Apte from notes Prof. Jeffer T. Willims Fll 18 Prof. Dvi R. Jkson Dept. of ECE Notes 1 Wveguiing Strutures Prt 5: Coil Cle 1 TEM Solution Proess A) Solve Lple s eqution

More information

Introduction to Complex Variables Class Notes Instructor: Louis Block

Introduction to Complex Variables Class Notes Instructor: Louis Block Introuction to omplex Vribles lss Notes Instructor: Louis Block Definition 1. (n remrk) We consier the complex plne consisting of ll z = (x, y) = x + iy, where x n y re rel. We write x = Rez (the rel prt

More information

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1.

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1. Exerise Genertor polynomils of onvolutionl ode, given in binry form, re g, g j g. ) Sketh the enoding iruit. b) Sketh the stte digrm. ) Find the trnsfer funtion T. d) Wht is the minimum free distne of

More information

Well Centered Spherical Quadrangles

Well Centered Spherical Quadrangles Beiträge zur Algebr und Geometrie Contributions to Algebr nd Geometry Volume 44 (003), No, 539-549 Well Centered Sphericl Qudrngles An M d Azevedo Bred 1 Altino F Sntos Deprtment of Mthemtics, University

More information

Mathematics 53.2, Fall 2008 Final Examination, 20 Decernber 114points total GSI:

Mathematics 53.2, Fall 2008 Final Examination, 20 Decernber 114points total GSI: Mthemtis 53.2, Fll 2008 Finl Exmintion, 20 Deerner 114points totl NAME: I D: GSI: INSTRUCTIONS: The exmintion hs T.WO PAFUTS. of 90 rninutes eh. Prt I (54 pts) is MULTIPLE CHOICE n no justifition is neessry.

More information

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233, Surs n Inies Surs n Inies Curriulum Rey ACMNA:, 6 www.mthletis.om Surs SURDS & & Inies INDICES Inies n surs re very losely relte. A numer uner (squre root sign) is lle sur if the squre root n t e simplifie.

More information

Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I

Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I Exm Stuy Guie Mth 26 - Clulus II, Fll 205 The following is list of importnt onepts from eh setion tht will be teste on exm. This is not omplete list of the mteril tht you shoul know for the ourse, but

More information

The Riemann-Stieltjes Integral

The Riemann-Stieltjes Integral Chpter 6 The Riemnn-Stieltjes Integrl 6.1. Definition nd Eistene of the Integrl Definition 6.1. Let, b R nd < b. ( A prtition P of intervl [, b] is finite set of points P = { 0, 1,..., n } suh tht = 0

More information

How many proofs of the Nebitt s Inequality?

How many proofs of the Nebitt s Inequality? How mny roofs of the Neitt s Inequlity? Co Minh Qung. Introdution On Mrh, 90, Nesitt roosed the following rolem () The ove inequlity is fmous rolem. There re mny eole interested in nd solved (). In this

More information

Reflection Property of a Hyperbola

Reflection Property of a Hyperbola Refletion Propert of Hperol Prefe The purpose of this pper is to prove nltill nd to illustrte geometrill the propert of hperol wherein r whih emntes outside the onvit of the hperol, tht is, etween the

More information

Chapter Five - Eigenvalues, Eigenfunctions, and All That

Chapter Five - Eigenvalues, Eigenfunctions, and All That Chpter Five - Eigenvlues, Eigenfunctions, n All Tht The prtil ifferentil eqution methos escrie in the previous chpter is specil cse of more generl setting in which we hve n eqution of the form L 1 xux,tl

More information