CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix

Size: px
Start display at page:

Download "CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix"

Transcription

1 CS4495/6495 Introduction to Computer Vision 3D-L3 Fundamental matrix

2 Weak calibration Main idea: Estimate epipolar geometry from a (redundant) set of point correspondences between two uncalibrated cameras

3 From before: Projection matrix w wxim Y w wy K Φ im in t e x t Z w w 1 X

4 From before: Projection matrix w wxim Y w wy K Φ im in t e x t Z w w 1 r r r R T Φ r r r R T ext r r r R T X

5 From before: Projection matrix w wxim Y w wy K Φ im in t e x t Z w w 1 X K in t f / s 0 o x 0 f / s o y x y Note: Invertible, scale x and y, assumes no skew

6 From before: Projection matrix X w wxim Y w wy K Φ im in t e x t Z w w 1 p K Φ P im in t e x t w p K p im in t c p c

7 Uncalibrated case For a given camera: p K p im in t c 1 And since invertible: p K p c in t im

8 Uncalibrated case So, for two cameras (left and right): 1 p K p c, le ft in t,le ft im, le ft 1 p K p c, r ig h t in t,r ig h t im, r ig h t Internal calibration matrices, one per camera

9 Uncalibrated case 1 p K p c, r ig h t in t,r ig h t im, r ig h t 1 p K p c, le ft in t,le ft im, le ft From before, the essential matrix E. p E p 0 c, r ig h t c, le ft 1 1 K p in t,r ig h t im r ig h t E K p in t,le ft im le ft 0,,

10 Uncalibrated case 1 1 K p in t,r ig h t im r ig h t E K p in t,le ft im le ft 0,, 1 T 1 p K ) E K p 0 im, r ig h t in t,r ig h t in t,le ft im, le ft Fundamental matrix : F p F p 0 im, r ig h t im, le ft or p T F p ' 0

11 Properties of the Fundamental Matrix p T F p ' 0 l F p is the epipolar line in the p image associated with p

12 Properties of the Fundamental Matrix p T F p ' 0 T l ' F p is the epipolar line in the prime image associated with p

13 Properties of the Fundamental Matrix p T F p ' 0 Epipoles found by Fp = 0 and F T p = 0

14 Properties of the Fundamental Matrix p T F p ' 0 F is singular (mapping from homogeneoues 2-D point to 1-D family so rank 2 more later)

15 Fundamental matrix Relates pixel coordinates in the two views More general form than essential matrix: We remove the need to know intrinsic parameters

16 Fundamental matrix If we estimate fundamental matrix from correspondences in pixel coordinates, can reconstruct epipolar geometry without intrinsic or extrinsic parameters.

17 Different Example: Forward motion e e courtesy of Andrew Zisserman

18 Computing F from correspondences Each point correspondence generates one constraint on F p F p 0 im, r ig h t im, le ft

19 Computing F from correspondences Multiply out:

20 Computing F from correspondences Collect N of these: And solve for f the elements of F.

21 The (in)famous eight-point algorithm

22 Just solving for F

23 Rank of F Assume we know the homography H π that maps from Left to Right (Full 3x3) p ' H p Let line l be the epiloar line corresponding to p goes through epipole e

24 Rank of F Let line l be the epiloar line corresponding to p goes through epipole e l ' e ' p e ' H p [ e '] H p But l is the epipolar line for p: l ' F p Rank of F is rank of *e + x = 2

25 Fix the linear solution Use SVD or other method to do linear computation for F Decompose F using SVD (not the same SVD): F UDV T

26 Fix the linear solution Use SVD or other method to do linear computation for F Decompose F using SVD (not the same SVD): F UDV Set the last singular value to zero: r 0 0 r ˆ D s D 0 s t T

27 Fix the linear solution Estimate new F from the new ˆD ˆ ˆ T F UDV

28 That s better

29 Stereo image rectification

30 Stereo image rectification Reproject image planes onto a common plane parallel to the line between optical centers each a homography Pixel motion is horizontal after this transformation C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

31 C. Loop and Z. Zhang, Computing Rectifying Homographies for Stereo Vision, IEEE Conf. Computer Vision and Pattern Recognition, 1999.

32 Photo synth Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," SIGGRAPH

33 Photosynth.net Based on Photo Tourism by Noah Snavely, Steve Seitz, and Rick Szeliski

34 3D from multiple images Building Rome in a Day: Agarwal et al. 2009

35 Summary For 2-views, there is a geometric relationship that define the relations between rays in one view to rays in the other epipolar geometry. These relationships can be captured algebraicly as well: Calibrated Essential matrix Uncalibrated Fundamental matrix. This relation can be estimated from point correspondences.

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese Lecture 5 Epipolar Geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 5-21-Jan-15 Lecture 5 Epipolar Geometry Why is stereo useful? Epipolar constraints Essential

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Hamed Masnadi Shirazi, Solmaz Alipour LECTURE 5 Relationships between the Homography and the Essential Matrix 5.1. Introduction In practice,

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Scene Planes & Homographies Lecture 19 March 24, 2005 2 In our last lecture, we examined various

More information

A Study of Kruppa s Equation for Camera Self-calibration

A Study of Kruppa s Equation for Camera Self-calibration Proceedings of the International Conference of Machine Vision and Machine Learning Prague, Czech Republic, August 14-15, 2014 Paper No. 57 A Study of Kruppa s Equation for Camera Self-calibration Luh Prapitasari,

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Tasha Vanesian LECTURE 3 Calibrated 3D Reconstruction 3.1. Geometric View of Epipolar Constraint We are trying to solve the following problem:

More information

Camera calibration by Zhang

Camera calibration by Zhang Camera calibration by Zhang Siniša Kolarić September 2006 Abstract In this presentation, I present a way to calibrate a camera using the method by Zhang. NOTE. This

More information

EPIPOLAR GEOMETRY WITH MANY DETAILS

EPIPOLAR GEOMETRY WITH MANY DETAILS EPIPOLAR GEOMERY WIH MANY DEAILS hank ou for the slides. he come mostl from the following source. Marc Pollefes U. of North Carolina hree questions: (i) Correspondence geometr: Given an image point in

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Trifocal Tensor Lecture 21 March 31, 2005 2 Lord Shiva is depicted as having three eyes. The

More information

Visual Object Recognition

Visual Object Recognition Visual Object Recognition Lecture 2: Image Formation Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University Lecture 2: Image Formation Pin-hole, and

More information

Final Exam Due on Sunday 05/06

Final Exam Due on Sunday 05/06 Final Exam Due on Sunday 05/06 The exam should be completed individually without collaboration. However, you are permitted to consult with the textbooks, notes, slides and even internet resources. If you

More information

arxiv: v2 [cs.cv] 22 Mar 2019

arxiv: v2 [cs.cv] 22 Mar 2019 Closed-Form Optimal Triangulation Based on Angular Errors Seong Hun Lee Javier Civera IA, University of Zaragoza, Spain {seonghunlee, jcivera}@unizar.es arxiv:190.09115v [cs.cv] Mar 019 Abstract In this

More information

Homographies and Estimating Extrinsics

Homographies and Estimating Extrinsics Homographies and Estimating Extrinsics Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Adapted from: Computer vision: models, learning and inference. Simon J.D. Prince Review: Motivation

More information

A Practical Method for Decomposition of the Essential Matrix

A Practical Method for Decomposition of the Essential Matrix Applied Mathematical Sciences, Vol. 8, 2014, no. 176, 8755-8770 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410877 A Practical Method for Decomposition of the Essential Matrix Georgi

More information

Structure from Motion. Read Chapter 7 in Szeliski s book

Structure from Motion. Read Chapter 7 in Szeliski s book Structure from Motion Read Chapter 7 in Szeliski s book Schedule (tentative) 2 # date topic 1 Sep.22 Introduction and geometry 2 Sep.29 Invariant features 3 Oct.6 Camera models and calibration 4 Oct.13

More information

Determining the Translational Speed of a Camera from Time-Varying Optical Flow

Determining the Translational Speed of a Camera from Time-Varying Optical Flow Determining the Translational Speed of a Camera from Time-Varying Optical Flow Anton van den Hengel, Wojciech Chojnacki, and Michael J. Brooks School of Computer Science, Adelaide University, SA 5005,

More information

PAijpam.eu EPIPOLAR GEOMETRY WITH A FUNDAMENTAL MATRIX IN CANONICAL FORM Georgi Hristov Georgiev 1, Vencislav Dakov Radulov 2

PAijpam.eu EPIPOLAR GEOMETRY WITH A FUNDAMENTAL MATRIX IN CANONICAL FORM Georgi Hristov Georgiev 1, Vencislav Dakov Radulov 2 International Journal of Pure and Applied Mathematics Volume 105 No. 4 2015, 669-683 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v105i4.8

More information

Tracking for VR and AR

Tracking for VR and AR Tracking for VR and AR Hakan Bilen November 17, 2017 Computer Graphics University of Edinburgh Slide credits: Gordon Wetzstein and Steven M. La Valle 1 Overview VR and AR Inertial Sensors Gyroscopes Accelerometers

More information

Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm

Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm Pascal Monasse monasse@imagine.enpc.fr IMAGINE, École des Ponts ParisTech Contents Some useful rules

More information

Pose estimation from point and line correspondences

Pose estimation from point and line correspondences Pose estimation from point and line correspondences Giorgio Panin October 17, 008 1 Problem formulation Estimate (in a LSE sense) the pose of an object from N correspondences between known object points

More information

Introduction to pinhole cameras

Introduction to pinhole cameras Introduction to pinhole cameras Lesson given by Sébastien Piérard in the course Introduction aux techniques audio et vidéo (ULg, Pr JJ Embrechts) INTELSIG, Montefiore Institute, University of Liège, Belgium

More information

Verifying Global Minima for L 2 Minimization Problems

Verifying Global Minima for L 2 Minimization Problems Verifying Global Minima for L 2 Minimization Problems Richard Hartley Australian National University and NICTA Yongduek Seo Sogang University, Korea Abstract We consider the least-squares (L2) triangulation

More information

Outline. Linear Algebra for Computer Vision

Outline. Linear Algebra for Computer Vision Outline Linear Algebra for Computer Vision Introduction CMSC 88 D Notation and Basics Motivation Linear systems of equations Gauss Elimination, LU decomposition Linear Spaces and Operators Addition, scalar

More information

Structure from Motion. CS4670/CS Kevin Matzen - April 15, 2016

Structure from Motion. CS4670/CS Kevin Matzen - April 15, 2016 Structure from Motion CS4670/CS5670 - Kevin Matzen - April 15, 2016 Video credit: Agarwal, et. al. Building Rome in a Day, ICCV 2009 Roadmap What we ve seen so far Single view modeling (1 camera) Stereo

More information

Induced Planar Homologies in Epipolar Geometry

Induced Planar Homologies in Epipolar Geometry Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 4 (2016), pp. 3759 3773 Research India Publications http://www.ripublication.com/gjpam.htm Induced Planar Homologies in

More information

Parameterizing the Trifocal Tensor

Parameterizing the Trifocal Tensor Parameterizing the Trifocal Tensor May 11, 2017 Based on: Klas Nordberg. A Minimal Parameterization of the Trifocal Tensor. In Computer society conference on computer vision and pattern recognition (CVPR).

More information

Optimisation on Manifolds

Optimisation on Manifolds Optimisation on Manifolds K. Hüper MPI Tübingen & Univ. Würzburg K. Hüper (MPI Tübingen & Univ. Würzburg) Applications in Computer Vision Grenoble 18/9/08 1 / 29 Contents 2 Examples Essential matrix estimation

More information

CS 231A Computer Vision (Fall 2011) Problem Set 2

CS 231A Computer Vision (Fall 2011) Problem Set 2 CS 231A Computer Vision (Fall 2011) Problem Set 2 Solution Set Due: Oct. 28 th, 2011 (5pm) 1 Some Projective Geometry Problems (15 points) Suppose there are two parallel lines that extend to infinity in

More information

3D Computer Vision - WT 2004

3D Computer Vision - WT 2004 3D Computer Vision - WT 2004 Singular Value Decomposition Darko Zikic CAMP - Chair for Computer Aided Medical Procedures November 4, 2004 1 2 3 4 5 Properties For any given matrix A R m n there exists

More information

Camera Models and Affine Multiple Views Geometry

Camera Models and Affine Multiple Views Geometry Camera Models and Affine Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in May 29, 2001 1 1 Camera Models A Camera transforms a 3D

More information

Multi-Frame Factorization Techniques

Multi-Frame Factorization Techniques Multi-Frame Factorization Techniques Suppose { x j,n } J,N j=1,n=1 is a set of corresponding image coordinates, where the index n = 1,...,N refers to the n th scene point and j = 1,..., J refers to the

More information

Robust Camera Location Estimation by Convex Programming

Robust Camera Location Estimation by Convex Programming Robust Camera Location Estimation by Convex Programming Onur Özyeşil and Amit Singer INTECH Investment Management LLC 1 PACM and Department of Mathematics, Princeton University SIAM IS 2016 05/24/2016,

More information

(c) Only when AB = BA d) only when AB BA. find the first column of its inverse,

(c) Only when AB = BA d) only when AB BA. find the first column of its inverse, . Find the symmetric and the skew symmetric part of 2 0 3 7 5 9 3 respectively 2. n n n B B, where & B are two matrix above result true (a) lways (b) Never (c) Only when B = B d) only when B B 3. Find

More information

Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction

Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction Qifa Ke and Takeo Kanade Department of Computer Science, Carnegie Mellon University Email: ke@cmu.edu, tk@cs.cmu.edu Abstract

More information

Sparse Levenberg-Marquardt algorithm.

Sparse Levenberg-Marquardt algorithm. Sparse Levenberg-Marquardt algorithm. R. I. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision. Cambridge University Press, second edition, 2004. Appendix 6 was used in part. The Levenberg-Marquardt

More information

3D from Photographs: Camera Calibration. Dr Francesco Banterle

3D from Photographs: Camera Calibration. Dr Francesco Banterle 3D from Photographs: Camera Calibration Dr Francesco Banterle francesco.banterle@isti.cnr.it 3D from Photographs Automatic Matching of Images Camera Calibration Photographs Surface Reconstruction Dense

More information

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Stefano Soatto Shankar Sastry Department of EECS, UC Berkeley Department of Computer Sciences, UCLA 30 Cory Hall,

More information

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix ECCV Workshop on Vision and Modeling of Dynamic Scenes, Copenhagen, Denmark, May 2002 Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Dept of EECS, UC Berkeley Berkeley,

More information

High Accuracy Fundamental Matrix Computation and Its Performance Evaluation

High Accuracy Fundamental Matrix Computation and Its Performance Evaluation High Accuracy Fundamental Matrix Computation and Its Performance Evaluation Kenichi Kanatani Department of Computer Science, Okayama University, Okayama 700-8530 Japan kanatani@suri.it.okayama-u.ac.jp

More information

Lecture 6 Stereo Systems Multi-view geometry

Lecture 6 Stereo Systems Multi-view geometry Lectre 6 Stereo Systems Mlti-view geometry Professor Silvio Savarese Comptational Vision and Geometry Lab Silvio Savarese Lectre 6-29-Jan-18 Lectre 6 Stereo Systems Mlti-view geometry Stereo systems Rectification

More information

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Géométrie épipolaire Frédéric Devernay Avec des transparents de Marc Pollefeys Epipolar geometry π Underlying structure in set of matches for rigid scenes C1 m1 l1 M L2 L1 l T 1 l

More information

arxiv: v1 [cs.cv] 6 Jun 2017

arxiv: v1 [cs.cv] 6 Jun 2017 A Minimal Solution for Two-view Focal-length Estimation using Two Affine Correspondences arxiv:76.649v [cs.cv] 6 Jun 27 Abstract A minimal solution using two affine correspondences is presented to estimate

More information

Mirrors in motion: Epipolar geometry and motion estimation

Mirrors in motion: Epipolar geometry and motion estimation Mirrors in motion: Epipolar geometry and motion estimation Christopher Geyer Kostas Daniilidis University of California, Berkeley University of Pennsylvania Berkeley, CA 970 Philadelphia, PA 1910 cgeyer@eecs.berkeley.edu

More information

Camera Calibration. (Trucco, Chapter 6) -Toproduce an estimate of the extrinsic and intrinsic camera parameters.

Camera Calibration. (Trucco, Chapter 6) -Toproduce an estimate of the extrinsic and intrinsic camera parameters. Camera Calibration (Trucco, Chapter 6) What is the goal of camera calibration? -Toproduce an estimate of the extrinsic and intrinsic camera parameters. Procedure -Given the correspondences beteen a set

More information

Algorithms for Computing a Planar Homography from Conics in Correspondence

Algorithms for Computing a Planar Homography from Conics in Correspondence Algorithms for Computing a Planar Homography from Conics in Correspondence Juho Kannala, Mikko Salo and Janne Heikkilä Machine Vision Group University of Oulu, Finland {jkannala, msa, jth@ee.oulu.fi} Abstract

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Lines and points. Lines and points

Lines and points. Lines and points omogeneous coordinates in the plane Homogeneous coordinates in the plane A line in the plane a + by + c is represented as (a, b, c). A line is a subset of points in the plane. All vectors (ka, kb, kc)

More information

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit Augmented Reality VU Camera Registration Prof. Vincent Lepetit Different Approaches to Vision-based 3D Tracking [From D. Wagner] [From Drummond PAMI02] [From Davison ICCV01] Consider natural features Consider

More information

Recovering Unknown Focal Lengths in Self-Calibration: G.N. Newsam D.Q. Huynh M.J. Brooks H.-P. Pan.

Recovering Unknown Focal Lengths in Self-Calibration: G.N. Newsam D.Q. Huynh M.J. Brooks H.-P. Pan. Recovering Unknown Focal Lengths in Self-Calibration: An Essentially Linear Algorithm and Degenerate Congurations G.N. Newsam D.Q. Huynh M.J. Brooks H.-P. Pan fgnewsam,du,mjb,hepingg@cssip.edu.au Centre

More information

Computation of the Quadrifocal Tensor

Computation of the Quadrifocal Tensor Computation of the Quadrifocal Tensor Richard I. Hartley G.E. Corporate Research and Development Research Circle, Niskayuna, NY 2309, USA Abstract. This paper gives a practical and accurate algorithm for

More information

Trinocular Geometry Revisited

Trinocular Geometry Revisited Trinocular Geometry Revisited Jean Pounce and Martin Hebert 报告人 : 王浩人 2014-06-24 Contents 1. Introduction 2. Converging Triplets of Lines 3. Converging Triplets of Visual Rays 4. Discussion 1. Introduction

More information

The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views

The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views Richard Hartley 1,2 and RenéVidal 2,3 1 Dept. of Systems Engineering 3 Center for Imaging Science Australian National University

More information

Factorization with Uncertainty

Factorization with Uncertainty International Journal of Computer Vision 49(2/3), 101 116, 2002 c 2002 Kluwer Academic Publishers Manufactured in The Netherlands Factorization with Uncertainty P ANANDAN Microsoft Corporation, One Microsoft

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation Memoirs of the Faculty of Engineering Okayama University Vol 45 pp 1 9 January 2011 Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation Kenichi KANATANI Department of Computer Science

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool Outline Camera calibration Camera projection models Camera calibration i Nonlinear least square methods A camera calibration tool Applications Digital Visual Effects Yung-Yu Chuang with slides b Richard

More information

Basics of Epipolar Geometry

Basics of Epipolar Geometry Basics of Epipolar Geometry Hellmuth Stachel stachel@dmg.tuwien.ac.at http://www.geometrie.tuwien.ac.at/stachel Seminar at the Institute of Mathematics and Physics Faculty of Mechanical Engineering, May

More information

Camera calibration Triangulation

Camera calibration Triangulation Triangulation Perspective projection in homogenous coordinates ~x img I 0 apple R t 0 T 1 ~x w ~x img R t ~x w Matrix transformations in 2D ~x img K R t ~x w K = 2 3 1 0 t u 40 1 t v 5 0 0 1 Translation

More information

Diagram Techniques for Multiple View Geometry

Diagram Techniques for Multiple View Geometry Diagram Techniques for Multiple View Geometry Alberto Ruiz DIS, Universidad de Murcia, Spain http://dis.um.es/ alberto Pedro E. Lopez-de-Teruel DITEC, Universidad de Murcia, Spain http://ditec.um.es/ pedroe

More information

Foundations of Computer Vision

Foundations of Computer Vision Foundations of Computer Vision Wesley. E. Snyder North Carolina State University Hairong Qi University of Tennessee, Knoxville Last Edited February 8, 2017 1 3.2. A BRIEF REVIEW OF LINEAR ALGEBRA Apply

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 37 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

M3: Multiple View Geometry

M3: Multiple View Geometry M3: Multiple View Geometry L18: Projective Structure from Motion: Iterative Algorithm based on Factorization Based on Sections 13.4 C. V. Jawahar jawahar-at-iiit.net Mar 2005: 1 Review: Reconstruction

More information

Self-Calibration of a Moving Camera by Pre-Calibration

Self-Calibration of a Moving Camera by Pre-Calibration Self-Calibration of a Moving Camera by Pre-Calibration Peter Sturm To cite this version: Peter Sturm. Self-Calibration of a Moving Camera by Pre-Calibration. Robert B. Fisher and Emanuele Trucco. 7th British

More information

A Factorization Method for 3D Multi-body Motion Estimation and Segmentation

A Factorization Method for 3D Multi-body Motion Estimation and Segmentation 1 A Factorization Method for 3D Multi-body Motion Estimation and Segmentation René Vidal Department of EECS University of California Berkeley CA 94710 rvidal@eecs.berkeley.edu Stefano Soatto Dept. of Computer

More information

Do We Really Have to Consider Covariance Matrices for Image Feature Points?

Do We Really Have to Consider Covariance Matrices for Image Feature Points? Electronics and Communications in Japan, Part 3, Vol. 86, No. 1, 2003 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J85-A, No. 2, February 2002, pp. 231 239 Do We Really Have to Consider Covariance

More information

nonrobust estimation The n measurement vectors taken together give the vector X R N. The unknown parameter vector is P R M.

nonrobust estimation The n measurement vectors taken together give the vector X R N. The unknown parameter vector is P R M. Introduction to nonlinear LS estimation R. I. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision. Cambridge University Press, 2ed., 2004. After Chapter 5 and Appendix 6. We will use x

More information

Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix

Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix Manolis I.A. Lourakis and Rachid Deriche Projet Robotvis, INRIA Sophia-Antipolis 00 route des Lucioles, BP 3 00

More information

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s =

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = cotα), and the lens distortion (radial distortion coefficient

More information

Linear Algebra - Part II

Linear Algebra - Part II Linear Algebra - Part II Projection, Eigendecomposition, SVD (Adapted from Sargur Srihari s slides) Brief Review from Part 1 Symmetric Matrix: A = A T Orthogonal Matrix: A T A = AA T = I and A 1 = A T

More information

Single view metrology

Single view metrology EECS 44 Computer vision Single view metrology Review calibration Lines and planes at infinity Absolute conic Estimating geometry from a single image Etensions Reading: [HZ] Chapters,3,8 Calibration Problem

More information

Essential Matrix Estimation via Newton-type Methods

Essential Matrix Estimation via Newton-type Methods Essential Matrix Estimation via Newton-type Methods Uwe Helmke 1, Knut Hüper, Pei Yean Lee 3, John Moore 3 1 Abstract In this paper camera parameters are assumed to be known and a novel approach for essential

More information

Camera Projection Model

Camera Projection Model amera Projection Model 3D Point Projection (Pixel Space) O ( u, v ) ccd ccd f Projection plane (, Y, Z ) ( u, v ) img Z img (0,0) w img ( u, v ) img img uimg f Z p Y v img f Z p x y Zu f p Z img img x

More information

Singular Value Decomposition and Digital Image Compression

Singular Value Decomposition and Digital Image Compression Singular Value Decomposition and Digital Image Compression Chris Bingham December 1, 016 Page 1 of Abstract The purpose of this document is to be a very basic introduction to the singular value decomposition

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Uncertainty analysis of 3D reconstruction from uncalibrated views

Uncertainty analysis of 3D reconstruction from uncalibrated views Image and Vision Computing 18 (000) 685 696 www.elsevier.com/locate/imavis Uncertainty analysis of 3D reconstruction from uncalibrated views E. Grossmann*, J. Santos-Victor Instituto de Sistemas e Robótica,

More information

EE Camera & Image Formation

EE Camera & Image Formation Electric Electronic Engineering Bogazici University February 21, 2018 Introduction Introduction Camera models Goal: To understand the image acquisition process. Function of the camera Similar to that of

More information

Affine Structure From Motion

Affine Structure From Motion EECS43-Advanced Computer Vision Notes Series 9 Affine Structure From Motion Ying Wu Electrical Engineering & Computer Science Northwestern University Evanston, IL 68 yingwu@ece.northwestern.edu Contents

More information

Eigenvalues and diagonalization

Eigenvalues and diagonalization Eigenvalues and diagonalization Patrick Breheny November 15 Patrick Breheny BST 764: Applied Statistical Modeling 1/20 Introduction The next topic in our course, principal components analysis, revolves

More information

Rotational Invariants for Wide-baseline Stereo

Rotational Invariants for Wide-baseline Stereo Rotational Invariants for Wide-baseline Stereo Jiří Matas, Petr Bílek, Ondřej Chum Centre for Machine Perception Czech Technical University, Department of Cybernetics Karlovo namesti 13, Prague, Czech

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Theory of Bouguet s MatLab Camera Calibration Toolbox

Theory of Bouguet s MatLab Camera Calibration Toolbox Theory of Bouguet s MatLab Camera Calibration Toolbox Yuji Oyamada 1 HVRL, University 2 Chair for Computer Aided Medical Procedure (CAMP) Technische Universität München June 26, 2012 MatLab Camera Calibration

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

Multiview Geometry and Bundle Adjustment. CSE P576 David M. Rosen

Multiview Geometry and Bundle Adjustment. CSE P576 David M. Rosen Multiview Geometry and Bundle Adjustment CSE P576 David M. Rosen 1 Recap Previously: Image formation Feature extraction + matching Two-view (epipolar geometry) Today: Add some geometry, statistics, optimization

More information

Dynamic P n to P n Alignment

Dynamic P n to P n Alignment Dynamic P n to P n Alignment Amnon Shashua and Lior Wolf School of Engineering and Computer Science, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel {shashua,lwolf}@cs.huji.ac.il We introduce

More information

Degeneracies, Dependencies and their Implications in Multi-body and Multi-Sequence Factorizations

Degeneracies, Dependencies and their Implications in Multi-body and Multi-Sequence Factorizations Degeneracies, Dependencies and their Implications in Multi-body and Multi-Sequence Factorizations Lihi Zelnik-Manor Michal Irani Dept. of Computer Science and Applied Math The Weizmann Institute of Science

More information

Reconstruction from projections using Grassmann tensors

Reconstruction from projections using Grassmann tensors Reconstruction from projections using Grassmann tensors Richard I. Hartley 1 and Fred Schaffalitzky 2 1 Australian National University and National ICT Australia, Canberra 2 Australian National University,

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 51 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

6.801/866. Affine Structure from Motion. T. Darrell

6.801/866. Affine Structure from Motion. T. Darrell 6.801/866 Affine Structure from Motion T. Darrell [Read F&P Ch. 12.0, 12.2, 12.3, 12.4] Affine geometry is, roughly speaking, what is left after all ability to measure lengths, areas, angles, etc. has

More information

EECS 442 Discussion. Arash Ushani. September 20, Arash Ushani EECS 442 Discussion September 20, / 14

EECS 442 Discussion. Arash Ushani. September 20, Arash Ushani EECS 442 Discussion September 20, / 14 EECS 442 Discussion Arash Ushani September 20, 2016 Arash Ushani EECS 442 Discussion September 20, 2016 1 / 14 Projective Geometry Projective Geometry For more detail, see HZ Chapter 2 Arash Ushani EECS

More information

Covariance-Based PCA for Multi-Size Data

Covariance-Based PCA for Multi-Size Data Covariance-Based PCA for Multi-Size Data Menghua Zhai, Feiyu Shi, Drew Duncan, and Nathan Jacobs Department of Computer Science, University of Kentucky, USA {mzh234, fsh224, drew, jacobs}@cs.uky.edu Abstract

More information

A Linear Algorithm for Computing the Homography from Conics in Correspondence

A Linear Algorithm for Computing the Homography from Conics in Correspondence Journal of Mathematical Imaging and Vision 13, 115 130, 2000 c 2000 Kluwer Academic Publishers Manufactured in The Netherlands A Linear Algorithm for Computing the Homography from Conics in Correspondence

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 6.869 Advances in Computer Vision Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 1 Sampling Sampling Pixels Continuous world 3 Sampling 4 Sampling 5 Continuous image f (x, y) Sampling

More information

Determining the Epipolar Geometry and its Uncertainty: A Review

Determining the Epipolar Geometry and its Uncertainty: A Review International Journal of Computer Vision, 27(2), 161 198 (1998) c 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Determining the Epipolar Geometry and its Uncertainty: A Review

More information

Photo Tourism and im2gps: 3D Reconstruction and Geolocation of Internet Photo Collections Part II

Photo Tourism and im2gps: 3D Reconstruction and Geolocation of Internet Photo Collections Part II Photo Tourism and im2gps: 3D Reconstruction and Geolocation of Internet Photo Collections Part II Noah Snavely Cornell James Hays CMU MIT (Fall 2009) Brown (Spring 2010 ) Complexity of the Visual World

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

Image Compression Using Singular Value Decomposition

Image Compression Using Singular Value Decomposition Image Compression Using Singular Value Decomposition Ian Cooper and Craig Lorenc December 15, 2006 Abstract Singular value decomposition (SVD) is an effective tool for minimizing data storage and data

More information

Multicore Bundle Adjustment - Supplemental Material

Multicore Bundle Adjustment - Supplemental Material Multicore Bundle Adjustment - Supplemental Material This document reports the comparison of runtime and convergence on various datasets. We selected 6 models (to cover different sizes) from each of the

More information

Conditions for Segmentation of Motion with Affine Fundamental Matrix

Conditions for Segmentation of Motion with Affine Fundamental Matrix Conditions for Segmentation of Motion with Affine Fundamental Matrix Shafriza Nisha Basah 1, Reza Hoseinnezhad 2, and Alireza Bab-Hadiashar 1 Faculty of Engineering and Industrial Sciences, Swinburne University

More information

CATADIOPTRIC PROJECTIVE GEOMETRY: THEORY AND APPLICATIONS. Christopher Michael Geyer. Computer and Information Science

CATADIOPTRIC PROJECTIVE GEOMETRY: THEORY AND APPLICATIONS. Christopher Michael Geyer. Computer and Information Science CATADIOPTRIC PROJECTIVE GEOMETRY: THEORY AND APPLICATIONS Christopher Michael Geyer A DISSERTATION in Computer and Information Science Presented to the Faculties of the University of Pennsylvania in Partial

More information