M3: Multiple View Geometry

Size: px
Start display at page:

Download "M3: Multiple View Geometry"

Transcription

1 M3: Multiple View Geometry L18: Projective Structure from Motion: Iterative Algorithm based on Factorization Based on Sections 13.4 C. V. Jawahar jawahar-at-iiit.net Mar 2005: 1

2 Review: Reconstruction from Two Calibrated Cameras If a world point P is imaged at p and p in two cameras M and M, zp = MP or p MP = 0 zp = M P or p M P = 0 World point can be computed as the solution of the homogeneous system of equation [p] M [p ] M P = 0 C. V. Jawahar jawahar-at-iiit.net Mar 2005: 2

3 Ill posed SFM Problem Given the images of multiple world points in two or cameras zp i = MP i zp i = M P i we are interested in finding out the structure P i and motion M i. C. V. Jawahar jawahar-at-iiit.net Mar 2005: 3

4 Ambiguity of Projective Reconstruction If M i and P j are the solutions of the above mentioned equations, then M i = M i Q and P j = Q 1 P j are also acceptable solutions. The matrix Q is only defined upto scale and has 15 unknowns. The system of equations with m cameras and n points will have solution only if 2mn 11m + 3n 15 When m = 2, we need seven points. C. V. Jawahar jawahar-at-iiit.net Mar 2005: 4

5 Method 1: Five Point Correspondence and Epipole Define a projective frame of reference and compute structure/motion in this coordinate system. C. V. Jawahar jawahar-at-iiit.net Mar 2005: 5

6 Method 2: Cameras/Motion from Fundamental Matrix Let F be a fundamental matrix and S be a skew-symmetric matrix. Define the pair of camera matrices, M = [I 0] and M = [SF e ] where e is the epipole such that e T F = 0 and assume the M so defined is a valid camera matrix with rank -3. Then F is the fundamental matrix relating the views. C. V. Jawahar jawahar-at-iiit.net Mar 2005: 6

7 Projective Structure and Motion from Multiple Images Frequent situation. Multilinear constraints are not useful for views > 4. Robust computation and minimisation of error propagation. C. V. Jawahar jawahar-at-iiit.net Mar 2005: 7

8 Imaging Equations Basic Perspective Imaging Equation: zp = MP If there are m points and n cameras z ij p ij = M i P j Or D = MP where P = (P 1, P 2... P n ) z 11 p z 1n p 1n D = z m1 p m1... z mn p mn and M = M 1... M m C. V. Jawahar jawahar-at-iiit.net Mar 2005: 8

9 Rank and Factorization of D D is the product of two matrices 3m 4 and 4 n. Therefore rank of D is 4. If we knew z ij, we could have thought of factoring D into M and P However, we do not know the depths z ij. Or else this factorization is much more involved that the affine factorization. What about the solution of the following minimisation problem? E = D MP 2 = j E j = ij z ij p ij M i P j 2 C. V. Jawahar jawahar-at-iiit.net Mar 2005: 9

10 Unfortunately NOT. The above problem is ill posed z ij = 0; M i = 0 and P j = 0 is an acceptable minima!! There are infact many more non-meaningful trivial solutions. Solution is to impose additional constraints: say that columns of the matrix D, i.e., d j have unit norm. C. V. Jawahar jawahar-at-iiit.net Mar 2005: 10

11 An important class of Iterative Solution Procedures Fix the value of z j = [z 1j,... z mj ] Factorize and Compute M and P. Using the values of M and P, update the projective depth z ij C. V. Jawahar jawahar-at-iiit.net Mar 2005: 11

12 Condition for Minima E j = m z ij p ij M i P j 2 i=1 Differentiating with respect to P j and equating to zero. Or E j P j = 2 m M T i (z ij p ij M i P j ) = 0 i=1 M T d j = M T MP j P j = M + d j C. V. Jawahar jawahar-at-iiit.net Mar 2005: 12

13 If M = UWV T, its pseudo inverse is VW 1 U T. The objective function to be minimised reduces to E j = m z ij p j M i P j 2 i=1 E j = (I MM + )d j 2 E j = [I UU T ]d j 2 = 1 Ud j 2 Minimisation of E j with respect to z ij and P j is equivalent to maximisation of Ud j 2 C. V. Jawahar jawahar-at-iiit.net Mar 2005: 13

14 Define Q j as Q j = p 1j p 2j p mj such that d j = Q j z j C. V. Jawahar jawahar-at-iiit.net Mar 2005: 14

15 Minimisation of E j is equivalent to maximisation of R j z j 2 with respect to z j under the constraint Q j z j 2 = 1, where R = U T Q j i.e., minimise R j z j 2 + λ(1 Q j z j 2 ) Solution to the above minimisation problem (by a direct differentiation and equating to zero) is given by the largest scalar which satisfies R T j Rz j = λq T J Q j z j This is a generalised eigen value problem with available numerical solutions. C. V. Jawahar jawahar-at-iiit.net Mar 2005: 15

16 Factorization Algorithm for Projective Shape from Motion 1. Compute an initial estimate of the projective depths z ij 2. Normalize each column of the data matrix D. 3. Repeat (a) Use SVD to compute 3m 4 matrix M and the 4 n matrix P than minimize D MP 2. (b) for j = 1 to n, compute the matrices R j and Q j and find the value of z j that minimizes R j z j 2 under the constraint Q j z j 2 = 1 as the solution of a generalized eigen value problem. (c) Update the value of D accordingly. Until converges C. V. Jawahar jawahar-at-iiit.net Mar 2005: 16

17 Convergence of the Above Algorithm C. V. Jawahar jawahar-at-iiit.net Mar 2005: 17

18 Euclidean Upgrade of the Projective Structure and Motion C. V. Jawahar jawahar-at-iiit.net Mar 2005: 18

19 Next Module: Processing Dynamic Scenes C. V. Jawahar jawahar-at-iiit.net Mar 2005: 19

6.801/866. Affine Structure from Motion. T. Darrell

6.801/866. Affine Structure from Motion. T. Darrell 6.801/866 Affine Structure from Motion T. Darrell [Read F&P Ch. 12.0, 12.2, 12.3, 12.4] Affine geometry is, roughly speaking, what is left after all ability to measure lengths, areas, angles, etc. has

More information

Multi-Frame Factorization Techniques

Multi-Frame Factorization Techniques Multi-Frame Factorization Techniques Suppose { x j,n } J,N j=1,n=1 is a set of corresponding image coordinates, where the index n = 1,...,N refers to the n th scene point and j = 1,..., J refers to the

More information

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese Lecture 5 Epipolar Geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 5-21-Jan-15 Lecture 5 Epipolar Geometry Why is stereo useful? Epipolar constraints Essential

More information

Camera calibration Triangulation

Camera calibration Triangulation Triangulation Perspective projection in homogenous coordinates ~x img I 0 apple R t 0 T 1 ~x w ~x img R t ~x w Matrix transformations in 2D ~x img K R t ~x w K = 2 3 1 0 t u 40 1 t v 5 0 0 1 Translation

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Tasha Vanesian LECTURE 3 Calibrated 3D Reconstruction 3.1. Geometric View of Epipolar Constraint We are trying to solve the following problem:

More information

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Stefano Soatto Shankar Sastry Department of EECS, UC Berkeley Department of Computer Sciences, UCLA 30 Cory Hall,

More information

Camera Models and Affine Multiple Views Geometry

Camera Models and Affine Multiple Views Geometry Camera Models and Affine Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in May 29, 2001 1 1 Camera Models A Camera transforms a 3D

More information

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n Lectures -2: Linear Algebra Background Almost all linear and nonlinear problems in scientific computation require the use of linear algebra These lectures review basic concepts in a way that has proven

More information

Pose estimation from point and line correspondences

Pose estimation from point and line correspondences Pose estimation from point and line correspondences Giorgio Panin October 17, 008 1 Problem formulation Estimate (in a LSE sense) the pose of an object from N correspondences between known object points

More information

A Practical Method for Decomposition of the Essential Matrix

A Practical Method for Decomposition of the Essential Matrix Applied Mathematical Sciences, Vol. 8, 2014, no. 176, 8755-8770 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410877 A Practical Method for Decomposition of the Essential Matrix Georgi

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Scene Planes & Homographies Lecture 19 March 24, 2005 2 In our last lecture, we examined various

More information

Tikhonov Regularization in General Form 8.1

Tikhonov Regularization in General Form 8.1 Tikhonov Regularization in General Form 8.1 To introduce a more general formulation, let us return to the continuous formulation of the first-kind Fredholm integral equation. In this setting, the residual

More information

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit Augmented Reality VU Camera Registration Prof. Vincent Lepetit Different Approaches to Vision-based 3D Tracking [From D. Wagner] [From Drummond PAMI02] [From Davison ICCV01] Consider natural features Consider

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Trifocal Tensor Lecture 21 March 31, 2005 2 Lord Shiva is depicted as having three eyes. The

More information

Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm

Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm Pascal Monasse monasse@imagine.enpc.fr IMAGINE, École des Ponts ParisTech Contents Some useful rules

More information

Outline. Linear Algebra for Computer Vision

Outline. Linear Algebra for Computer Vision Outline Linear Algebra for Computer Vision Introduction CMSC 88 D Notation and Basics Motivation Linear systems of equations Gauss Elimination, LU decomposition Linear Spaces and Operators Addition, scalar

More information

Algorithms for Computing a Planar Homography from Conics in Correspondence

Algorithms for Computing a Planar Homography from Conics in Correspondence Algorithms for Computing a Planar Homography from Conics in Correspondence Juho Kannala, Mikko Salo and Janne Heikkilä Machine Vision Group University of Oulu, Finland {jkannala, msa, jth@ee.oulu.fi} Abstract

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

Robert Collins CSE486, Penn State. Lecture 25: Structure from Motion

Robert Collins CSE486, Penn State. Lecture 25: Structure from Motion Lecture 25: Structure from Motion Structure from Motion Given a set of flow fields or displacement vectors from a moving camera over time, determine: the sequence of camera poses the 3D structure of the

More information

CS6964: Notes On Linear Systems

CS6964: Notes On Linear Systems CS6964: Notes On Linear Systems 1 Linear Systems Systems of equations that are linear in the unknowns are said to be linear systems For instance ax 1 + bx 2 dx 1 + ex 2 = c = f gives 2 equations and 2

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition (Com S 477/577 Notes Yan-Bin Jia Sep, 7 Introduction Now comes a highlight of linear algebra. Any real m n matrix can be factored as A = UΣV T where U is an m m orthogonal

More information

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti Mobile Robotics 1 A Compact Course on Linear Algebra Giorgio Grisetti SA-1 Vectors Arrays of numbers They represent a point in a n dimensional space 2 Vectors: Scalar Product Scalar-Vector Product Changes

More information

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions Linear Systems Carlo Tomasi June, 08 Section characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix

More information

Optimisation on Manifolds

Optimisation on Manifolds Optimisation on Manifolds K. Hüper MPI Tübingen & Univ. Würzburg K. Hüper (MPI Tübingen & Univ. Würzburg) Applications in Computer Vision Grenoble 18/9/08 1 / 29 Contents 2 Examples Essential matrix estimation

More information

Computation of the Quadrifocal Tensor

Computation of the Quadrifocal Tensor Computation of the Quadrifocal Tensor Richard I. Hartley G.E. Corporate Research and Development Research Circle, Niskayuna, NY 2309, USA Abstract. This paper gives a practical and accurate algorithm for

More information

Trinocular Geometry Revisited

Trinocular Geometry Revisited Trinocular Geometry Revisited Jean Pounce and Martin Hebert 报告人 : 王浩人 2014-06-24 Contents 1. Introduction 2. Converging Triplets of Lines 3. Converging Triplets of Visual Rays 4. Discussion 1. Introduction

More information

Lecture 4.3 Estimating homographies from feature correspondences. Thomas Opsahl

Lecture 4.3 Estimating homographies from feature correspondences. Thomas Opsahl Lecture 4.3 Estimating homographies from feature correspondences Thomas Opsahl Homographies induced by central projection 1 H 2 1 H 2 u uu 2 3 1 Homography Hu = u H = h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h

More information

The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views

The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views Richard Hartley 1,2 and RenéVidal 2,3 1 Dept. of Systems Engineering 3 Center for Imaging Science Australian National University

More information

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6]

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] Inner products and Norms Inner product or dot product of 2 vectors u and v in R n : u.v = u 1 v 1 + u 2 v 2 + + u n v n Calculate u.v when u = 1 2 2 0 v = 1 0

More information

Outline Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo Error, Accuracy and Convergence Floating Point Mod

Outline Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo Error, Accuracy and Convergence Floating Point Mod Outline Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo Error, Accuracy and Convergence Floating Point Modeling the World with Arrays The World in a Vector What

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

A Factorization Method for 3D Multi-body Motion Estimation and Segmentation

A Factorization Method for 3D Multi-body Motion Estimation and Segmentation 1 A Factorization Method for 3D Multi-body Motion Estimation and Segmentation René Vidal Department of EECS University of California Berkeley CA 94710 rvidal@eecs.berkeley.edu Stefano Soatto Dept. of Computer

More information

Machine Learning for Signal Processing Sparse and Overcomplete Representations

Machine Learning for Signal Processing Sparse and Overcomplete Representations Machine Learning for Signal Processing Sparse and Overcomplete Representations Abelino Jimenez (slides from Bhiksha Raj and Sourish Chaudhuri) Oct 1, 217 1 So far Weights Data Basis Data Independent ICA

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

CSE4030 Introduction to Computer Graphics

CSE4030 Introduction to Computer Graphics CSE4030 Introduction to Computer Graphics Dongguk University Jeong-Mo Hong Week 5 Living in a 3 dimensional world II Geometric coordinate in 3D How to move your cubes in 3D Objectives Introduce concepts

More information

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A =

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = 30 MATHEMATICS REVIEW G A.1.1 Matrices and Vectors Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = a 11 a 12... a 1N a 21 a 22... a 2N...... a M1 a M2... a MN A matrix can

More information

Matrices and systems of linear equations

Matrices and systems of linear equations Matrices and systems of linear equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T.

More information

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION APPENDIX B EIGENVALUES AND SINGULAR VALUE DECOMPOSITION B.1 LINEAR EQUATIONS AND INVERSES Problems of linear estimation can be written in terms of a linear matrix equation whose solution provides the required

More information

A Study of Kruppa s Equation for Camera Self-calibration

A Study of Kruppa s Equation for Camera Self-calibration Proceedings of the International Conference of Machine Vision and Machine Learning Prague, Czech Republic, August 14-15, 2014 Paper No. 57 A Study of Kruppa s Equation for Camera Self-calibration Luh Prapitasari,

More information

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s =

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = cotα), and the lens distortion (radial distortion coefficient

More information

Method 1: Geometric Error Optimization

Method 1: Geometric Error Optimization Method 1: Geometric Error Optimization we need to encode the constraints ŷ i F ˆx i = 0, rank F = 2 idea: reconstruct 3D point via equivalent projection matrices and use reprojection error equivalent projection

More information

Chapter 3. Linear and Nonlinear Systems

Chapter 3. Linear and Nonlinear Systems 59 An expert is someone who knows some of the worst mistakes that can be made in his subject, and how to avoid them Werner Heisenberg (1901-1976) Chapter 3 Linear and Nonlinear Systems In this chapter

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Linear Systems. Carlo Tomasi

Linear Systems. Carlo Tomasi Linear Systems Carlo Tomasi Section 1 characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix and of

More information

Matrices and RRE Form

Matrices and RRE Form Matrices and RRE Form Notation R is the real numbers, C is the complex numbers (we will only consider complex numbers towards the end of the course) is read as an element of For instance, x R means that

More information

EPIPOLAR GEOMETRY WITH MANY DETAILS

EPIPOLAR GEOMETRY WITH MANY DETAILS EPIPOLAR GEOMERY WIH MANY DEAILS hank ou for the slides. he come mostl from the following source. Marc Pollefes U. of North Carolina hree questions: (i) Correspondence geometr: Given an image point in

More information

COMPUTATIONAL METHODS IN MRI: MATHEMATICS

COMPUTATIONAL METHODS IN MRI: MATHEMATICS COMPUTATIONAL METHODS IN MATHEMATICS Imaging Sciences-KCL November 20, 2008 OUTLINE 1 MATRICES AND LINEAR TRANSFORMS: FORWARD OUTLINE 1 MATRICES AND LINEAR TRANSFORMS: FORWARD 2 LINEAR SYSTEMS: INVERSE

More information

3D from Photographs: Camera Calibration. Dr Francesco Banterle

3D from Photographs: Camera Calibration. Dr Francesco Banterle 3D from Photographs: Camera Calibration Dr Francesco Banterle francesco.banterle@isti.cnr.it 3D from Photographs Automatic Matching of Images Camera Calibration Photographs Surface Reconstruction Dense

More information

Consensus Algorithms for Camera Sensor Networks. Roberto Tron Vision, Dynamics and Learning Lab Johns Hopkins University

Consensus Algorithms for Camera Sensor Networks. Roberto Tron Vision, Dynamics and Learning Lab Johns Hopkins University Consensus Algorithms for Camera Sensor Networks Roberto Tron Vision, Dynamics and Learning Lab Johns Hopkins University Camera Sensor Networks Motes Small, battery powered Embedded camera Wireless interface

More information

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix ECCV Workshop on Vision and Modeling of Dynamic Scenes, Copenhagen, Denmark, May 2002 Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Dept of EECS, UC Berkeley Berkeley,

More information

Reconstruction from projections using Grassmann tensors

Reconstruction from projections using Grassmann tensors Reconstruction from projections using Grassmann tensors Richard I. Hartley 1 and Fred Schaffalitzky 2 1 Australian National University and National ICT Australia, Canberra 2 Australian National University,

More information

Similarity transformation in 3D between two matched points patterns.

Similarity transformation in 3D between two matched points patterns. Similarity transformation in 3D between two matched points patterns. coordinate system 1 coordinate system 2 The first 3D coordinate system is transformed through a three-dimensional R followed by a translation

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 Petros Koumoutsakos Gerardo Tauriello (Last update: July 27, 2015) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material

More information

Affine Structure From Motion

Affine Structure From Motion EECS43-Advanced Computer Vision Notes Series 9 Affine Structure From Motion Ying Wu Electrical Engineering & Computer Science Northwestern University Evanston, IL 68 yingwu@ece.northwestern.edu Contents

More information

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix CS4495/6495 Introduction to Computer Vision 3D-L3 Fundamental matrix Weak calibration Main idea: Estimate epipolar geometry from a (redundant) set of point correspondences between two uncalibrated cameras

More information

Parallel Singular Value Decomposition. Jiaxing Tan

Parallel Singular Value Decomposition. Jiaxing Tan Parallel Singular Value Decomposition Jiaxing Tan Outline What is SVD? How to calculate SVD? How to parallelize SVD? Future Work What is SVD? Matrix Decomposition Eigen Decomposition A (non-zero) vector

More information

Multiview Geometry and Bundle Adjustment. CSE P576 David M. Rosen

Multiview Geometry and Bundle Adjustment. CSE P576 David M. Rosen Multiview Geometry and Bundle Adjustment CSE P576 David M. Rosen 1 Recap Previously: Image formation Feature extraction + matching Two-view (epipolar geometry) Today: Add some geometry, statistics, optimization

More information

Math Review: parameter estimation. Emma

Math Review: parameter estimation. Emma Math Review: parameter estimation Emma McNally@flickr Fitting lines to dots: We will cover how Slides provided by HyunSoo Park 1809, Carl Friedrich Gauss What about fitting line on a curved surface? Least

More information

Computational Methods CMSC/AMSC/MAPL 460. EigenValue decomposition Singular Value Decomposition. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. EigenValue decomposition Singular Value Decomposition. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 EigenValue decomposition Singular Value Decomposition Ramani Duraiswami, Dept. of Computer Science Hermitian Matrices A square matrix for which A = A H is said

More information

Camera Calibration. (Trucco, Chapter 6) -Toproduce an estimate of the extrinsic and intrinsic camera parameters.

Camera Calibration. (Trucco, Chapter 6) -Toproduce an estimate of the extrinsic and intrinsic camera parameters. Camera Calibration (Trucco, Chapter 6) What is the goal of camera calibration? -Toproduce an estimate of the extrinsic and intrinsic camera parameters. Procedure -Given the correspondences beteen a set

More information

CS 4495 Computer Vision Principle Component Analysis

CS 4495 Computer Vision Principle Component Analysis CS 4495 Computer Vision Principle Component Analysis (and it s use in Computer Vision) Aaron Bobick School of Interactive Computing Administrivia PS6 is out. Due *** Sunday, Nov 24th at 11:55pm *** PS7

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

Data Mining Lecture 4: Covariance, EVD, PCA & SVD

Data Mining Lecture 4: Covariance, EVD, PCA & SVD Data Mining Lecture 4: Covariance, EVD, PCA & SVD Jo Houghton ECS Southampton February 25, 2019 1 / 28 Variance and Covariance - Expectation A random variable takes on different values due to chance The

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Numerical Linear Algebra Background Cho-Jui Hsieh UC Davis May 15, 2018 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

Inverse differential kinematics Statics and force transformations

Inverse differential kinematics Statics and force transformations Robotics 1 Inverse differential kinematics Statics and force transformations Prof Alessandro De Luca Robotics 1 1 Inversion of differential kinematics! find the joint velocity vector that realizes a desired

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

BlockMatrixComputations and the Singular Value Decomposition. ATaleofTwoIdeas

BlockMatrixComputations and the Singular Value Decomposition. ATaleofTwoIdeas BlockMatrixComputations and the Singular Value Decomposition ATaleofTwoIdeas Charles F. Van Loan Department of Computer Science Cornell University Supported in part by the NSF contract CCR-9901988. Block

More information

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm J. K. Pant, W.-S. Lu, and A. Antoniou University of Victoria August 25, 2011 Compressive Sensing 1 University

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

Determining the Translational Speed of a Camera from Time-Varying Optical Flow

Determining the Translational Speed of a Camera from Time-Varying Optical Flow Determining the Translational Speed of a Camera from Time-Varying Optical Flow Anton van den Hengel, Wojciech Chojnacki, and Michael J. Brooks School of Computer Science, Adelaide University, SA 5005,

More information

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Géométrie épipolaire Frédéric Devernay Avec des transparents de Marc Pollefeys Epipolar geometry π Underlying structure in set of matches for rigid scenes C1 m1 l1 M L2 L1 l T 1 l

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

Principal Component Analysis

Principal Component Analysis Machine Learning Michaelmas 2017 James Worrell Principal Component Analysis 1 Introduction 1.1 Goals of PCA Principal components analysis (PCA) is a dimensionality reduction technique that can be used

More information

Advanced Techniques for Mobile Robotics Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Advanced Techniques for Mobile Robotics Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Advanced Techniques for Mobile Robotics Least Squares Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Problem Given a system described by a set of n observation functions {f i (x)} i=1:n

More information

Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics Chap. c /9/9 page 147 le-tex

Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics Chap. c /9/9 page 147 le-tex Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics Chap. c08 2013/9/9 page 147 le-tex 8.3 Principal Component Analysis (PCA) 147 Figure 8.1 Principal and independent components

More information

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems To appear in International Journal of Computer Vision Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems Roland Angst Marc Pollefeys Received: January 28, 2011 / Accepted:

More information

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR 1. Definition Existence Theorem 1. Assume that A R m n. Then there exist orthogonal matrices U R m m V R n n, values σ 1 σ 2... σ p 0 with p = min{m, n},

More information

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Introduction to Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Vectors Arrays of numbers Vectors represent a point in a n dimensional space

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

ME751 Advanced Computational Multibody Dynamics

ME751 Advanced Computational Multibody Dynamics ME751 Advanced Computational Multibody Dynamics Review: Elements of Linear Algebra & Calculus September 9, 2016 Dan Negrut University of Wisconsin-Madison Quote of the day If you can't convince them, confuse

More information

RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS

RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS (Preprint) AAS 12-202 RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS Hemanshu Patel 1, T. Alan Lovell 2, Ryan Russell 3, Andrew Sinclair 4 "Relative navigation using

More information

Basic Math for

Basic Math for Basic Math for 16-720 August 23, 2002 1 Linear Algebra 1.1 Vectors and Matrices First, a reminder of a few basic notations, definitions, and terminology: Unless indicated otherwise, vectors are always

More information

Homogeneous Transformations

Homogeneous Transformations Purpose: Homogeneous Transformations The purpose of this chapter is to introduce you to the Homogeneous Transformation. This simple 4 x 4 transformation is used in the geometry engines of CAD systems and

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 5: Numerical Linear Algebra Cho-Jui Hsieh UC Davis April 20, 2017 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction

Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction Qifa Ke and Takeo Kanade Department of Computer Science, Carnegie Mellon University Email: ke@cmu.edu, tk@cs.cmu.edu Abstract

More information

Rigid Structure from Motion from a Blind Source Separation Perspective

Rigid Structure from Motion from a Blind Source Separation Perspective Noname manuscript No. (will be inserted by the editor) Rigid Structure from Motion from a Blind Source Separation Perspective Jeff Fortuna Aleix M. Martinez Received: date / Accepted: date Abstract We

More information

Lecture 23: 6.1 Inner Products

Lecture 23: 6.1 Inner Products Lecture 23: 6.1 Inner Products Wei-Ta Chu 2008/12/17 Definition An inner product on a real vector space V is a function that associates a real number u, vwith each pair of vectors u and v in V in such

More information

Essential Matrix Estimation via Newton-type Methods

Essential Matrix Estimation via Newton-type Methods Essential Matrix Estimation via Newton-type Methods Uwe Helmke 1, Knut Hüper, Pei Yean Lee 3, John Moore 3 1 Abstract In this paper camera parameters are assumed to be known and a novel approach for essential

More information

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Structure of the tutorial Session 1: Introduction to inverse problems & sparse

More information

Structure from Motion. CS4670/CS Kevin Matzen - April 15, 2016

Structure from Motion. CS4670/CS Kevin Matzen - April 15, 2016 Structure from Motion CS4670/CS5670 - Kevin Matzen - April 15, 2016 Video credit: Agarwal, et. al. Building Rome in a Day, ICCV 2009 Roadmap What we ve seen so far Single view modeling (1 camera) Stereo

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 1. Basic Linear Algebra Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki Example

More information

Parameterizing the Trifocal Tensor

Parameterizing the Trifocal Tensor Parameterizing the Trifocal Tensor May 11, 2017 Based on: Klas Nordberg. A Minimal Parameterization of the Trifocal Tensor. In Computer society conference on computer vision and pattern recognition (CVPR).

More information

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice 3. Eigenvalues and Eigenvectors, Spectral Representation 3.. Eigenvalues and Eigenvectors A vector ' is eigenvector of a matrix K, if K' is parallel to ' and ' 6, i.e., K' k' k is the eigenvalue. If is

More information

Photometric Stereo: Three recent contributions. Dipartimento di Matematica, La Sapienza

Photometric Stereo: Three recent contributions. Dipartimento di Matematica, La Sapienza Photometric Stereo: Three recent contributions Dipartimento di Matematica, La Sapienza Jean-Denis DUROU IRIT, Toulouse Jean-Denis DUROU (IRIT, Toulouse) 17 December 2013 1 / 32 Outline 1 Shape-from-X techniques

More information