Introduction to pinhole cameras

Size: px
Start display at page:

Download "Introduction to pinhole cameras"

Transcription

1 Introduction to pinhole cameras Lesson given by Sébastien Piérard in the course Introduction aux techniques audio et vidéo (ULg, Pr JJ Embrechts) INTELSIG, Montefiore Institute, University of Liège, Belgium October 30, / 21

2 Optics : the light travels along straight line segments The light travels along straight lines if one assumes a single material (air, glass, etc) and a single frequency Otherwise 2 / 21

3 Optics : behavior of a lens Assuming the Gauss assumptions, all light rays coming from the same direction converge to a unique point on the focal plane 3 / 21

4 Optics : an aperture 4 / 21

5 Optics : a pinhole camera A pinhole camera is a camera with a very small aperture The lens becomes completely useless The camera is just a small hole High exposure durations are needed due to the limited amount of light received 5 / 21

6 What is a camera? A camera is a function: point in the 3D world pixel ( ) ( ) x y z u v ( ) ( ) (c) ( x y z x y z u v ) (f ) ( ( ) x y z in the world 3D Cartesian coordinate system ( (c) x y z) in the 3D Cartesian coordinate system located at the camera s optical center (the hole), with the axis z (c) along its optical axis, and the axis y (c) pointing upperwards ( (f ) u v) in the 2D Cartesian coordinate system locate in the focal ( plane ) u v in the 2D coordinate system screen or image u v ) 6 / 21

7 (x y z) (x y z) (c) z (c) y (c) t x (c) y z x x (c) x t x y (c) = R 3 3 y + t y z (c) z t z 7 / 21

8 (x y z) (x y z) (c) x (c) x t x y (c) = R 3 3 y + t y z (c) z t z R is a matrix that gives the rotation from the world coordinate system to the camera coordinate system The columns of R are the base vectors of the world coordinate system expressed in the camera coordinate system In the following, we will assume that the two coordinate systems are orthonormal In this case, we have R T R = I R 1 = R T 8 / 21

9 (x y z) (c) (u v) (f ) z (c) y (c) v (f ) f x (c) u (f ) 9 / 21

10 (x y z) (c) (u v) (f ) We suppose that the image plane is orthogonal to the optical axis We have : u (f ) = x (c) f z (c) v (f ) = y (c) f z (c) 10 / 21

11 (u v) (f ) (u v) 1 k v v 0 v 1 k u θ u 0 v (f ) u u (f ) 11 / 21

12 (u v) (f ) (u v) We have : u = (u (f ) v (f ) tan θ )k u + u 0 v = v (f ) k v + v 0 The parameters k u and k v are scaling factors and (u 0, v 0 ) are the coordinates of the point where the optical axis crosses the image plane We pose s uv = ku tan θ and obtain: su k u s uv u 0 su (f ) sv = 0 k v v 0 sv (f ) s s Often, the grid of photosensitive cells can be considered as nearly rectangular The parameter s uv is then neglected and is considered as 0 12 / 21

13 The complete pinhole camera model With homogeneous coordinates the pinhole model can be written as a linear relation: su k u s uv u 0 f t x x R sv = 0 k v v 0 0 f t y y t s z z t su α u S uv u 0 0 x x R sv = 0 α v v t y y t s z z su m 11 m 12 m 13 m x 14 y sv = m 21 m 22 m 23 m 24 z s m 31 m 32 m 33 m 34 1 with α u = f k u, α v = f k v, and S uv = f s uv 13 / 21

14 Questions Question What is the physical meaning of the homogeneous coordinates? Think about all concurrent lines intersection at the origin and the three first elements of the homogeneous coordinates with (x y z) on a sphere Question How many degrees of freedom has M 3 4? (m 31 m 32 m 33 ) is a unit vector since (m 31 m 32 m 33 ) = (r 31 r 32 r 33 ) 14 / 21

15 The calibration step: finding the matrix M / 21

16 The calibration step: finding the matrix M 3 4 therefore su m 11 m 12 m 13 m x 14 y sv = m 21 m 22 m 23 m 24 z s m 31 m 32 m 33 m 34 1 u = m 11 x + m 12 y + m 13 z + m 14 m 31 x + m 32 y + m 33 z + m 34 v = m 21 x + m 22 y + m 23 z + m 24 m 31 x + m 32 y + m 33 z + m 34 and (m 31 u m 11 )x + (m 32 u m 12 )y + (m 33 u m 13 )z + (m 34 u m 14 ) = 0 (m 31 v m 21 )x + (m 32 v m 22 )y + (m 33 v m 23 )z + (m 34 v m 24 ) = 0 16 / 21

17 The calibration step: finding the matrix M 3 4 x 1 y 1 z u 1 x 1 u 1 y 1 u 1 z 1 u 1 x 2 y 2 z u 2 x 2 u 2 y 2 u 2 z 2 u 2 x n y n z n u nx n u ny n u nz n u n x 1 y 1 z 1 1 v 1 x 1 v 1 y 1 v 1 z 1 v x 2 y 2 z 2 1 v 2 x 2 v 2 y 2 v 2 z 2 v x n y n z n 1 v nx n v ny n v nz n v n m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 = 0 17 / 21

18 Questions Question What is the minimum value for n? 55 Question How can we solve the homogeneous system of the previous slide? Apply a SVD and use the vector of the matrix V corresponding the smallest singular value Question Is there a conditions on the set of 3D points used for calibrating the camera? Yes, they should not be coplanar 18 / 21

19 Intrinsic and extrinsic parameters m 11 m 12 m 13 m 14 α u S uv u 0 t x m 21 m 22 m 23 m 24 = 0 α v v 0 R 3 3 t y m 31 m 32 m 33 m t z }{{}}{{} intrinsic parameters extrinsic parameters The decomposition can be achieved via the orthonormalising theorem of Graham-Schmidt, or via a QR decomposition since m 11 m 12 m 13 m 21 m 22 m 23 = m 31 m 32 m 33 m 33 m 23 m 13 m 32 m 22 m 12 = m 31 m 21 m 11 α u S uv u 0 r 11 r 12 r 13 0 α v v 0 r 21 r 22 r r 31 r 32 r 33 r 33 r 23 r 13 1 v 0 u 0 r 32 r 22 r 12 0 α v S uv r 31 r 21 r α u 19 / 21

20 Questions Question What is the minimum of points to use for recalibrating a camera that has moved? 3 since there are 6 degrees of freedom in the extrinsic parameters Question What is this? 20 / 21

21 Bibliography D Forsyth and J Ponce, Computer Vision: a Modern Approach Prentice Hall, 2003 R Hartley and A Zisserman, Multiple View Geometry in Computer Vision, 2nd ed Cambridge University Press, 2004 Z Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 22, no 11, pp , / 21

3D from Photographs: Camera Calibration. Dr Francesco Banterle

3D from Photographs: Camera Calibration. Dr Francesco Banterle 3D from Photographs: Camera Calibration Dr Francesco Banterle francesco.banterle@isti.cnr.it 3D from Photographs Automatic Matching of Images Camera Calibration Photographs Surface Reconstruction Dense

More information

EE Camera & Image Formation

EE Camera & Image Formation Electric Electronic Engineering Bogazici University February 21, 2018 Introduction Introduction Camera models Goal: To understand the image acquisition process. Function of the camera Similar to that of

More information

A Study of Kruppa s Equation for Camera Self-calibration

A Study of Kruppa s Equation for Camera Self-calibration Proceedings of the International Conference of Machine Vision and Machine Learning Prague, Czech Republic, August 14-15, 2014 Paper No. 57 A Study of Kruppa s Equation for Camera Self-calibration Luh Prapitasari,

More information

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit Augmented Reality VU Camera Registration Prof. Vincent Lepetit Different Approaches to Vision-based 3D Tracking [From D. Wagner] [From Drummond PAMI02] [From Davison ICCV01] Consider natural features Consider

More information

A Practical Method for Decomposition of the Essential Matrix

A Practical Method for Decomposition of the Essential Matrix Applied Mathematical Sciences, Vol. 8, 2014, no. 176, 8755-8770 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410877 A Practical Method for Decomposition of the Essential Matrix Georgi

More information

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s =

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = cotα), and the lens distortion (radial distortion coefficient

More information

Multi-Frame Factorization Techniques

Multi-Frame Factorization Techniques Multi-Frame Factorization Techniques Suppose { x j,n } J,N j=1,n=1 is a set of corresponding image coordinates, where the index n = 1,...,N refers to the n th scene point and j = 1,..., J refers to the

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese Lecture 5 Epipolar Geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 5-21-Jan-15 Lecture 5 Epipolar Geometry Why is stereo useful? Epipolar constraints Essential

More information

Optimisation on Manifolds

Optimisation on Manifolds Optimisation on Manifolds K. Hüper MPI Tübingen & Univ. Würzburg K. Hüper (MPI Tübingen & Univ. Würzburg) Applications in Computer Vision Grenoble 18/9/08 1 / 29 Contents 2 Examples Essential matrix estimation

More information

Least squares Solution of Homogeneous Equations

Least squares Solution of Homogeneous Equations Least squares Solution of Homogeneous Equations supportive text for teaching purposes Revision: 1.2, dated: December 15, 2005 Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering

More information

A Factorization Method for 3D Multi-body Motion Estimation and Segmentation

A Factorization Method for 3D Multi-body Motion Estimation and Segmentation 1 A Factorization Method for 3D Multi-body Motion Estimation and Segmentation René Vidal Department of EECS University of California Berkeley CA 94710 rvidal@eecs.berkeley.edu Stefano Soatto Dept. of Computer

More information

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix CS4495/6495 Introduction to Computer Vision 3D-L3 Fundamental matrix Weak calibration Main idea: Estimate epipolar geometry from a (redundant) set of point correspondences between two uncalibrated cameras

More information

Visual Object Recognition

Visual Object Recognition Visual Object Recognition Lecture 2: Image Formation Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University Lecture 2: Image Formation Pin-hole, and

More information

Position & motion in 2D and 3D

Position & motion in 2D and 3D Position & motion in 2D and 3D! METR4202: Guest lecture 22 October 2014 Peter Corke Peter Corke Robotics, Vision and Control FUNDAMENTAL ALGORITHMS IN MATLAB 123 Sections 11.1, 15.2 Queensland University

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm

Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm Pascal Monasse monasse@imagine.enpc.fr IMAGINE, École des Ponts ParisTech Contents Some useful rules

More information

Induced Planar Homologies in Epipolar Geometry

Induced Planar Homologies in Epipolar Geometry Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 4 (2016), pp. 3759 3773 Research India Publications http://www.ripublication.com/gjpam.htm Induced Planar Homologies in

More information

Camera calibration Triangulation

Camera calibration Triangulation Triangulation Perspective projection in homogenous coordinates ~x img I 0 apple R t 0 T 1 ~x w ~x img R t ~x w Matrix transformations in 2D ~x img K R t ~x w K = 2 3 1 0 t u 40 1 t v 5 0 0 1 Translation

More information

PAijpam.eu EPIPOLAR GEOMETRY WITH A FUNDAMENTAL MATRIX IN CANONICAL FORM Georgi Hristov Georgiev 1, Vencislav Dakov Radulov 2

PAijpam.eu EPIPOLAR GEOMETRY WITH A FUNDAMENTAL MATRIX IN CANONICAL FORM Georgi Hristov Georgiev 1, Vencislav Dakov Radulov 2 International Journal of Pure and Applied Mathematics Volume 105 No. 4 2015, 669-683 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v105i4.8

More information

Camera Calibration. (Trucco, Chapter 6) -Toproduce an estimate of the extrinsic and intrinsic camera parameters.

Camera Calibration. (Trucco, Chapter 6) -Toproduce an estimate of the extrinsic and intrinsic camera parameters. Camera Calibration (Trucco, Chapter 6) What is the goal of camera calibration? -Toproduce an estimate of the extrinsic and intrinsic camera parameters. Procedure -Given the correspondences beteen a set

More information

Trinocular Geometry Revisited

Trinocular Geometry Revisited Trinocular Geometry Revisited Jean Pounce and Martin Hebert 报告人 : 王浩人 2014-06-24 Contents 1. Introduction 2. Converging Triplets of Lines 3. Converging Triplets of Visual Rays 4. Discussion 1. Introduction

More information

Homographies and Estimating Extrinsics

Homographies and Estimating Extrinsics Homographies and Estimating Extrinsics Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Adapted from: Computer vision: models, learning and inference. Simon J.D. Prince Review: Motivation

More information

Camera Models and Affine Multiple Views Geometry

Camera Models and Affine Multiple Views Geometry Camera Models and Affine Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in May 29, 2001 1 1 Camera Models A Camera transforms a 3D

More information

3D Computer Vision - WT 2004

3D Computer Vision - WT 2004 3D Computer Vision - WT 2004 Singular Value Decomposition Darko Zikic CAMP - Chair for Computer Aided Medical Procedures November 4, 2004 1 2 3 4 5 Properties For any given matrix A R m n there exists

More information

Lecture 16: Projection and Cameras. October 17, 2017

Lecture 16: Projection and Cameras. October 17, 2017 Lecture 6: Projection and Cameras October 7 207 3D Viewing as Virtual Camera To take a picture with a camera or to render an image with computer graphics we need to:. Position the camera/viewpoint in 3D

More information

Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction

Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction Uncertainty Models in Quasiconvex Optimization for Geometric Reconstruction Qifa Ke and Takeo Kanade Department of Computer Science, Carnegie Mellon University Email: ke@cmu.edu, tk@cs.cmu.edu Abstract

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Tasha Vanesian LECTURE 3 Calibrated 3D Reconstruction 3.1. Geometric View of Epipolar Constraint We are trying to solve the following problem:

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Camera calibration by Zhang

Camera calibration by Zhang Camera calibration by Zhang Siniša Kolarić September 2006 Abstract In this presentation, I present a way to calibrate a camera using the method by Zhang. NOTE. This

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Scene Planes & Homographies Lecture 19 March 24, 2005 2 In our last lecture, we examined various

More information

Maths for Map Makers

Maths for Map Makers SUB Gottingen 7 210 050 861 99 A 2003 Maths for Map Makers by Arthur Allan Whittles Publishing Contents /v Chapter 1 Numbers and Calculation 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14

More information

Pose estimation from point and line correspondences

Pose estimation from point and line correspondences Pose estimation from point and line correspondences Giorgio Panin October 17, 008 1 Problem formulation Estimate (in a LSE sense) the pose of an object from N correspondences between known object points

More information

Recovering Unknown Focal Lengths in Self-Calibration: G.N. Newsam D.Q. Huynh M.J. Brooks H.-P. Pan.

Recovering Unknown Focal Lengths in Self-Calibration: G.N. Newsam D.Q. Huynh M.J. Brooks H.-P. Pan. Recovering Unknown Focal Lengths in Self-Calibration: An Essentially Linear Algorithm and Degenerate Congurations G.N. Newsam D.Q. Huynh M.J. Brooks H.-P. Pan fgnewsam,du,mjb,hepingg@cssip.edu.au Centre

More information

ROINN NA FISICE Department of Physics

ROINN NA FISICE Department of Physics ROINN NA FISICE Department of 1.1 Astrophysics Telescopes Profs Gabuzda & Callanan 1.2 Astrophysics Faraday Rotation Prof. Gabuzda 1.3 Laser Spectroscopy Cavity Enhanced Absorption Spectroscopy Prof. Ruth

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

Lecture 1.2 Pose in 2D and 3D. Thomas Opsahl

Lecture 1.2 Pose in 2D and 3D. Thomas Opsahl Lecture 1.2 Pose in 2D and 3D Thomas Osahl Motivation For the inhole camera, the corresondence between observed 3D oints in the world and 2D oints in the catured image is given by straight lines through

More information

I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University. Computer Vision: 4. Filtering

I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University. Computer Vision: 4. Filtering I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University Computer Vision: 4. Filtering Outline Impulse response and convolution. Linear filter and image pyramid. Textbook: David A. Forsyth

More information

Outline. Linear Algebra for Computer Vision

Outline. Linear Algebra for Computer Vision Outline Linear Algebra for Computer Vision Introduction CMSC 88 D Notation and Basics Motivation Linear systems of equations Gauss Elimination, LU decomposition Linear Spaces and Operators Addition, scalar

More information

CS6640 Computational Photography. 8. Gaussian optics Steve Marschner

CS6640 Computational Photography. 8. Gaussian optics Steve Marschner S6640 omputational Photography 8. Gaussian optics 2012 Steve Marschner 1 First order optics Lenses are complicated it s all about correcting aberrations If we re not interested in aberrations, it s all

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Fitting functions to data

Fitting functions to data 1 Fitting functions to data 1.1 Exact fitting 1.1.1 Introduction Suppose we have a set of real-number data pairs x i, y i, i = 1, 2,, N. These can be considered to be a set of points in the xy-plane. They

More information

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Stefano Soatto Shankar Sastry Department of EECS, UC Berkeley Department of Computer Sciences, UCLA 30 Cory Hall,

More information

Single view metrology

Single view metrology EECS 44 Computer vision Single view metrology Review calibration Lines and planes at infinity Absolute conic Estimating geometry from a single image Etensions Reading: [HZ] Chapters,3,8 Calibration Problem

More information

Robotics - Homogeneous coordinates and transformations. Simone Ceriani

Robotics - Homogeneous coordinates and transformations. Simone Ceriani Robotics - Homogeneous coordinates and transformations Simone Ceriani ceriani@elet.polimi.it Dipartimento di Elettronica e Informazione Politecnico di Milano 5 March 0 /49 Outline Introduction D space

More information

PnP Problem Revisited

PnP Problem Revisited Journal of Mathematical Imaging and Vision 4: 131 141, 006 c 006 Springer Science + Business Media, Inc. Manufactured in The Netherlands. DOI: 10.1007/s10851-005-3617-z PnP Problem Revisited YIHONG WU

More information

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool Outline Camera calibration Camera projection models Camera calibration i Nonlinear least square methods A camera calibration tool Applications Digital Visual Effects Yung-Yu Chuang with slides b Richard

More information

Basics of Epipolar Geometry

Basics of Epipolar Geometry Basics of Epipolar Geometry Hellmuth Stachel stachel@dmg.tuwien.ac.at http://www.geometrie.tuwien.ac.at/stachel Seminar at the Institute of Mathematics and Physics Faculty of Mechanical Engineering, May

More information

Lecture 10: Vector Algebra: Orthogonal Basis

Lecture 10: Vector Algebra: Orthogonal Basis Lecture 0: Vector Algebra: Orthogonal Basis Orthogonal Basis of a subspace Computing an orthogonal basis for a subspace using Gram-Schmidt Orthogonalization Process Orthogonal Set Any set of vectors that

More information

Conditions for Segmentation of Motion with Affine Fundamental Matrix

Conditions for Segmentation of Motion with Affine Fundamental Matrix Conditions for Segmentation of Motion with Affine Fundamental Matrix Shafriza Nisha Basah 1, Reza Hoseinnezhad 2, and Alireza Bab-Hadiashar 1 Faculty of Engineering and Industrial Sciences, Swinburne University

More information

High Accuracy Fundamental Matrix Computation and Its Performance Evaluation

High Accuracy Fundamental Matrix Computation and Its Performance Evaluation High Accuracy Fundamental Matrix Computation and Its Performance Evaluation Kenichi Kanatani Department of Computer Science, Okayama University, Okayama 700-8530 Japan kanatani@suri.it.okayama-u.ac.jp

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Math 150 Chapter 9 Fall 2014 1 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional plane.

More information

Computer Vision Motion

Computer Vision Motion Computer Vision Motion Professor Hager http://www.cs.jhu.edu/~hager 12/1/12 CS 461, Copyright G.D. Hager Outline From Stereo to Motion The motion field and optical flow (2D motion) Factorization methods

More information

Reconstruction from projections using Grassmann tensors

Reconstruction from projections using Grassmann tensors Reconstruction from projections using Grassmann tensors Richard I. Hartley 1 and Fred Schaffalitzky 2 1 Australian National University and National ICT Australia, Canberra 2 Australian National University,

More information

Basic Math for

Basic Math for Basic Math for 16-720 August 23, 2002 1 Linear Algebra 1.1 Vectors and Matrices First, a reminder of a few basic notations, definitions, and terminology: Unless indicated otherwise, vectors are always

More information

Theory of Bouguet s MatLab Camera Calibration Toolbox

Theory of Bouguet s MatLab Camera Calibration Toolbox Theory of Bouguet s MatLab Camera Calibration Toolbox Yuji Oyamada 1 HVRL, University 2 Chair for Computer Aided Medical Procedure (CAMP) Technische Universität München June 26, 2012 MatLab Camera Calibration

More information

ANALYTICAL IMAGE FEATURES

ANALYTICAL IMAGE FEATURES Chapter 6 ANALYTICAL IMAGE FEATURES Chapter laid the geometric foundations of image formation. This chapter uses analytical geometry to quantify more precisely the relationship between a camera, the objects

More information

Principal Component Analysis (PCA) CSC411/2515 Tutorial

Principal Component Analysis (PCA) CSC411/2515 Tutorial Principal Component Analysis (PCA) CSC411/2515 Tutorial Harris Chan Based on previous tutorial slides by Wenjie Luo, Ladislav Rampasek University of Toronto hchan@cs.toronto.edu October 19th, 2017 (UofT)

More information

What is Image Deblurring?

What is Image Deblurring? What is Image Deblurring? When we use a camera, we want the recorded image to be a faithful representation of the scene that we see but every image is more or less blurry, depending on the circumstances.

More information

Winmeen Tnpsc Group 1 & 2 Study Materials

Winmeen Tnpsc Group 1 & 2 Study Materials 17. Magnetic Effect of Electric Current and Light 1. Give detail on Oersted? Name : Oersted Born : 14th August 1777 Birth place : Langeland Denmark Died : 9th March 1851 Best known for : The study of electromagnetism

More information

Pseudoinverse & Moore-Penrose Conditions

Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 7 ECE 275A Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: TA sessions for tutorial 1 start today Tutorial 2 will go online after lecture 3 Practicals: Make sure to find a team partner very soon

More information

Tutorials. 1. Autocollimator. Angle Dekkor. General

Tutorials. 1. Autocollimator. Angle Dekkor. General Tutorials 1. Autocollimator General An autocollimator is a Precise Optical Instrument for measurement of small angle deviations with very high sensitivity. Autocollimator is essentially an infinity telescope

More information

A geometric interpretation of the homogeneous coordinates is given in the following Figure.

A geometric interpretation of the homogeneous coordinates is given in the following Figure. Introduction Homogeneous coordinates are an augmented representation of points and lines in R n spaces, embedding them in R n+1, hence using n + 1 parameters. This representation is useful in dealing with

More information

3D Coordinate Transformations. Tuesday September 8 th 2015

3D Coordinate Transformations. Tuesday September 8 th 2015 3D Coordinate Transformations Tuesday September 8 th 25 CS 4 Ross Beveridge & Bruce Draper Questions / Practice (from last week I messed up!) Write a matrix to rotate a set of 2D points about the origin

More information

Self-Calibration of a Moving Camera by Pre-Calibration

Self-Calibration of a Moving Camera by Pre-Calibration Self-Calibration of a Moving Camera by Pre-Calibration Peter Sturm To cite this version: Peter Sturm. Self-Calibration of a Moving Camera by Pre-Calibration. Robert B. Fisher and Emanuele Trucco. 7th British

More information

= n. 1 n. Next apply Snell s law at the cylindrical boundary between the core and cladding for the marginal ray. = n 2. sin π 2.

= n. 1 n. Next apply Snell s law at the cylindrical boundary between the core and cladding for the marginal ray. = n 2. sin π 2. EXERCISE.-9 First, re-derive equation.-5 considering the possibility that the index at the entrance to the fiber bay be different than one. Snell s law at the entrance to the fiber is where all symbols

More information

Lecture'8:'' Camera'Models'

Lecture'8:'' Camera'Models' Lecture'8:'' Camera'Models' Dr.'Juan'Carlos'Niebles' Stanford'AI'Lab' ' Professor'Fei?Fei'Li' Stanford'Vision'Lab' 1' 2?Oct?16' What'we'will'learn'today?' 'Pinhole'cameras' 'Cameras'&'lenses' 'The'geometry'of'pinhole'cameras'

More information

Singular value decomposition

Singular value decomposition Singular value decomposition The eigenvalue decomposition (EVD) for a square matrix A gives AU = UD. Let A be rectangular (m n, m > n). A singular value σ and corresponding pair of singular vectors u (m

More information

Introduction to aberrations OPTI518 Lecture 5

Introduction to aberrations OPTI518 Lecture 5 Introduction to aberrations OPTI518 Lecture 5 Second-order terms 1 Second-order terms W H W W H W H W, cos 2 2 000 200 111 020 Piston Change of image location Change of magnification 2 Reference for OPD

More information

Final Exam Due on Sunday 05/06

Final Exam Due on Sunday 05/06 Final Exam Due on Sunday 05/06 The exam should be completed individually without collaboration. However, you are permitted to consult with the textbooks, notes, slides and even internet resources. If you

More information

Homogeneous Coordinates

Homogeneous Coordinates Homogeneous Coordinates Basilio Bona DAUIN-Politecnico di Torino October 2013 Basilio Bona (DAUIN-Politecnico di Torino) Homogeneous Coordinates October 2013 1 / 32 Introduction Homogeneous coordinates

More information

Determining Constant Optical Flow

Determining Constant Optical Flow Determining Constant Optical Flow Berthold K.P. Horn Copyright 003 The original optical flow algorithm [1] dealt with a flow field that could vary from place to place in the image, as would typically occur

More information

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation. Problem Solving picture θ f = 10 m s =1 cm equation rearrange numbers with units θ factors to change units s θ = = f sinθ fθ = s / cm 10 m f 1 m 100 cm check dimensions 1 3 π 180 radians = 10 60 arcmin

More information

7. Dimension and Structure.

7. Dimension and Structure. 7. Dimension and Structure 7.1. Basis and Dimension Bases for Subspaces Example 2 The standard unit vectors e 1, e 2,, e n are linearly independent, for if we write (2) in component form, then we obtain

More information

Complex number review

Complex number review Midterm Review Problems Physics 8B Fall 009 Complex number review AC circuits are usually handled with one of two techniques: phasors and complex numbers. We ll be using the complex number approach, so

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

Algorithms for Computing a Planar Homography from Conics in Correspondence

Algorithms for Computing a Planar Homography from Conics in Correspondence Algorithms for Computing a Planar Homography from Conics in Correspondence Juho Kannala, Mikko Salo and Janne Heikkilä Machine Vision Group University of Oulu, Finland {jkannala, msa, jth@ee.oulu.fi} Abstract

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

Ray Optics. 30 teaching hours (every wednesday 9-12am) labs as possible, tutoring (see NW s homepage on atomoptic.

Ray Optics. 30 teaching hours (every wednesday 9-12am) labs as possible, tutoring (see NW s homepage on  atomoptic. Erasmus Mundus Mundus OptSciTech Nathalie Westbrook Ray Optics 30 teaching hours (every wednesday 9-12am) including lectures, problems in class and regular assignments,, as many labs as possible, tutoring

More information

An Exploration of Coordinate Metrology

An Exploration of Coordinate Metrology An Exploration of Coordinate Metrology Katie Cakounes and Aimee Ross August 5, 2009 Abstract Many manufacturing companies use coordinate measuring techniques to test their products and make sure that they

More information

Robotics Institute, Carnegie Mellon University Forbes Ave., Pittsburgh PA of Sun altitude, but the basic ideas could be applied

Robotics Institute, Carnegie Mellon University Forbes Ave., Pittsburgh PA of Sun altitude, but the basic ideas could be applied Robot Localization using a Computer Vision Sextant Fabio Cozman Eric Krotkov Robotics Institute, Carnegie Mellon University 5000 Forbes Ave., Pittsburgh PA 15213 Abstract This paper explores the possibility

More information

AOL Spring Wavefront Sensing. Figure 1: Principle of operation of the Shack-Hartmann wavefront sensor

AOL Spring Wavefront Sensing. Figure 1: Principle of operation of the Shack-Hartmann wavefront sensor AOL Spring Wavefront Sensing The Shack Hartmann Wavefront Sensor system provides accurate, high-speed measurements of the wavefront shape and intensity distribution of beams by analyzing the location and

More information

Dr. Radhakrishnan A N Assistant Professor of Physics GPTC, Vechoochira

Dr. Radhakrishnan A N Assistant Professor of Physics GPTC, Vechoochira CONTENTS. Vernier Calipers. Screw Gauge. Simple Pendulum 7. Moment Bar 9. Convex Lens Appendix Vernier Calipers Exp. No: Date: Aim (i) To nd the volume of the given cylinder by measuring its length and

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: Tutorial 1 will be online later today TA sessions for questions start next week Practicals: Exams: Make sure to find a team partner very

More information

Matrix decompositions

Matrix decompositions Matrix decompositions Zdeněk Dvořák May 19, 2015 Lemma 1 (Schur decomposition). If A is a symmetric real matrix, then there exists an orthogonal matrix Q and a diagonal matrix D such that A = QDQ T. The

More information

Determining the Translational Speed of a Camera from Time-Varying Optical Flow

Determining the Translational Speed of a Camera from Time-Varying Optical Flow Determining the Translational Speed of a Camera from Time-Varying Optical Flow Anton van den Hengel, Wojciech Chojnacki, and Michael J. Brooks School of Computer Science, Adelaide University, SA 5005,

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

Linear Algebra - Part II

Linear Algebra - Part II Linear Algebra - Part II Projection, Eigendecomposition, SVD (Adapted from Sargur Srihari s slides) Brief Review from Part 1 Symmetric Matrix: A = A T Orthogonal Matrix: A T A = AA T = I and A 1 = A T

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH SOME SOLUTIONS TO EXAM 1 Fall 018 Version A refers to the regular exam and Version B to the make-up 1. Version A. Find the center

More information

Graph Matching & Information. Geometry. Towards a Quantum Approach. David Emms

Graph Matching & Information. Geometry. Towards a Quantum Approach. David Emms Graph Matching & Information Geometry Towards a Quantum Approach David Emms Overview Graph matching problem. Quantum algorithms. Classical approaches. How these could help towards a Quantum approach. Graphs

More information

Tracking for VR and AR

Tracking for VR and AR Tracking for VR and AR Hakan Bilen November 17, 2017 Computer Graphics University of Edinburgh Slide credits: Gordon Wetzstein and Steven M. La Valle 1 Overview VR and AR Inertial Sensors Gyroscopes Accelerometers

More information

1 Linearity and Linear Systems

1 Linearity and Linear Systems Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 26 Jonathan Pillow Lecture 7-8 notes: Linear systems & SVD Linearity and Linear Systems Linear system is a kind of mapping f( x)

More information

PHYSICS. Ray Optics. Mr Rishi Gopie

PHYSICS. Ray Optics. Mr Rishi Gopie Ray Optics Mr Rishi Gopie Ray Optics Nature of light Light is a form of energy which affects the human eye in such a way as to cause the sensation of sight. Visible light is a range of electromagnetic

More information

Singular Value Decompsition

Singular Value Decompsition Singular Value Decompsition Massoud Malek One of the most useful results from linear algebra, is a matrix decomposition known as the singular value decomposition It has many useful applications in almost

More information

Concave mirrors. Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3

Concave mirrors. Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3 Concave mirrors Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3 1 2 3 c F Point C: geometrical center of the mirror, F: focal point 2 Concave mirrors Which

More information

DETERMINING THE EGO-MOTION OF AN UNCALIBRATED CAMERA FROM INSTANTANEOUS OPTICAL FLOW

DETERMINING THE EGO-MOTION OF AN UNCALIBRATED CAMERA FROM INSTANTANEOUS OPTICAL FLOW DETERMINING THE EGO-MOTION OF AN UNCALIBRATED CAMERA FROM INSTANTANEOUS OPTICAL FLOW MICHAEL J. BROOKS, WOJCIECH CHOJNACKI, AND LUIS BAUMELA Abstract. The main result of this paper is a procedure for self-calibration

More information

Particle-Wave Duality and Which-Way Information

Particle-Wave Duality and Which-Way Information Particle-Wave Duality and Which-Way Information Graham Jensen and Samantha To University of Rochester, Rochester, NY 14627, U.S. September 25, 2013 Abstract Samantha To This experiment aimed to support

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS) Image Processing 1 (IP1) Bildverarbeitung 1 Lecture 18 Mo

More information