7.8 Transient motion in a two-layered sea

Size: px
Start display at page:

Download "7.8 Transient motion in a two-layered sea"

Transcription

1 1 Lecture Notes on Fluid Dynamics (1.63J/2.21J by Ciang C. Mei, layer.tex Refs: Csandy: Circulation in te Coastal Ocean Cusman-Rosin, Intro to Geopysical Fluid Dynamics 7.8 Transient motion in a two-layered sea allow water approximation Figure 7.8.1: A two-layered sea of contant dept. Let be te mean dept and U, V be te dept-integrated fluxes in te upper layer, and, U, V be te corresponding quantities in te lower layer. Let ζ and ζ be te vertical displacements of te free surface and interface respectively. Ten (U, V = 0 (u, vdz, (U, V = For sallow layers, we ave ydrostatic pressure in te upper layer: (u, v dz, (7.8.1 p = g(ζ z (7.8.2 On te interface, z = + ζ, p = g(ζ + ζ (7.8.3

2 2 In order tat pressure is continuous on te interface we must ave in te lower layer Tus p = g(ζ + ζ + g( + ζ z (7.8.4 p ( = g p = g + g = g + ( g Te dept-integrated momentum equations in te upper layer are U t fv = 1 p = g + τ x (7.8.5 (7.8.6 (7.8.7 V t + fu = 1 p = g + τ y (7.8.8 (ζ ζ + U t + V = 0 (7.8.9 after using ( Ignoring sear stresses on te interface and at te bottom, we ave, for te lower layer, U t fv = 1 p V t + fu = 1 p = g = g + V ɛg ɛg ( ( t + U = 0 ( were (7.8.2 as been used. Te density contrast ɛ = ( is usually small in oceans. Tere six equations for six unknowns : ζ, U, V, ζ, U, and V. As in te last section we can eliminate some unknowns and reduce te number of equations. For example, by eliminating U, V in te upper layer, we can get t ( 2 t 2 + f 2 (ζ ζ g 2 t = 1 ( τ x t + τ y f ( τ y τ x ( imilarly by eliminating U, V in te lower layer we get, ( 2 t t + f 2 ζ g 2 2 t ɛg 2 t = 0 ( Tese two govern te coupled beavior of ζ and ζ, in terms of wic te no-flux boundary conditons on te velocity can also be expressed. We sall owever introduce an alternate approac wic as some advantages.

3 Transformation into normal form To avoid solving six simultaneous equations at once, we seek a linear combination so tat te governing equations look like tose for a one-layer fluid wit just tree unknowns. Tis is called te normal form. Take a( (7.8.10, we get, t (au + U f(av + V = g ( aζ + ζ + ɛζ + aτ x ( imilarly a( ( gives t (av + V + f(au + U = g ( aζ + ζ + ɛζ + aτ y ( Finally a( ( gives, from te continuity equations. Now if we take and Ten ( ( become t (aζ aζ + ζ + (au + U + (av + V = 0 ( aζ + ζ + ɛζ = β ζ ( aζ aζ + ζ = aζ + (1 aζ = ζ ( Ū t f V = gβ ζ + a τ x ( V t ζ + fū = gβ + a τ y ( ζ t + Ū + V = 0 ( and take on te appearance of te governing equations for a single layer fluid. For tis reduction to be possible, conditions ( and ( imply tat aζ + ζ + ɛζ = β (aζ aζ + ζ ( Equating te coefficients of ζ and ζ separately, we get βa = a +, (7.8.25

4 4 β( a + 1 = ɛ A quadratic equation is found for β by eliminating a ( β 2 β 1 + ɛ + + ɛ = 0 ( i.e., Tere are two solutions for β { β1 β 2 β 2 } ( = [ 1 ± β + ɛ = 0 ( ] 1 4ɛ ( + 2, ( to be refered to as two normal modes. Te solutions corresonding to β 1 and β 2 will be refered to as Mode 1 and Mode 2, respectively. Let us see wat te corresponding a s are. Using (7.8.26, we ave ince from (7.8.27, it follows tat Terefore, a = 1 ɛ β. ( β 1 β 2 = ɛ a = 1 β 1β 2 β. a 1 = 1 β 2, a 2 = 1 β 1 ( Let us summarize te normal form equations for Mode k wit k = 1, 2. Defining, Ū k = a k U + U, Vk = a k V + V ( ζ k = a k ζ + (1 a k ζ ( ( τ x k = a k τ x, ( τ y k = a k τ y. ( ten Ūk t f V k = gβ k ζ k + ( τ x k ( V k t + fūk = gβ k ζ k + ( τ y k ( ζ k t + Ūk + V k = 0 (7.8.36

5 5 Note tat for mode k te effective gravity is gβ k, and te effective forcing stresses are a k τx and a k τy. olution for te set of tree equations is obviouly a simpler task. For a general wind stress field (τx, τy, we first solve for (Ū1, V 1, ζ 1 and (Ū2 V 2, ζ 2 separately from ( to ( Afterwards (U, V, ζ and (U, V, ζ can be solved from te algebraic equations ( and ( For example, From ζ 1 = a 1 ζ + (1 a 1 ζ, ζ2 = a 2 ζ + (1 a 2 ζ ( we get for te sea surface, ζ = ζ 1 1 a 1 ζ 2 1 a 2 a 1 1 a 1 a 2 1 a 2 = (1 a 2 ζ 1 (1 a 1 ζ 2 a 1 a 2 ( and for te interface imilarly, from we get, for te upper layer and for te lower layer ζ = a 1 a 2 ζ1 ζ2 a 1 1 a 1 a 2 1 a 2 = a 2 ζ 1 + a 1 ζ2 a 1 a 2 ( Ū 1 = a 1 U + U, Ū 2 = a 2 U + U ( U = U = Ū 1 1 Ū 2 1 a 1 1 a 2 1 a 1 Ū 1 a 2 Ū 2 a 1 1 a 2 1 Te formulas for V and V are similar, wit U s replaced by V s Normal form for small density difference = Ū1 Ū2 a 1 a 2 ( = a 2Ū1 + a 1 Ū 2 a 1 a 2 ( From ere we sall only be interested in small density differences, ten β 1 = 1 + ɛ + + O(ɛ2 ( β 2 = ɛ + + O(ɛ2 (7.8.44

6 6 or a 1 = 1 ɛ + + O(ɛ2, ( Taking only te leading order terms, we ave From ( We also get from ( and ( a 2 = + ɛ + + O(ɛ2 ( a 1 = 1, a 2 =. ( β 1 = +, β 2 = ɛ + ( ζ = (1 + / ζ 1 + (1 1 ζ / = ζ 1. ( ζ = ( / ζ 1 + ζ / ( U = Ū1 Ū2 1 + /, U = ( /Ū1 + Ū2 1 + / V = V 1 V /, V = ( / V 1 + V / ( ( For Mode 1 we get from (7.8.31,( and (7.8.33, Ū 1 = U + U V1 = V + V ζ 1 = ζ, ( τ x 1 = τ x ( τ y 1 = τ y. ( Let H = + denote te total dept, te normal mode equations are Ū1 t f V 1 = gh ζ 1 + τ x ( V 1 t + fū1 = gh ζ 1 + τ y ( t + Ū1 + V 1 = 0. ( In view of (7.8.53, te two layers move togeter as if a single layer of omogeneous fluid. Tis is called te Barotropic (surface mode.

7 7 For Mode 2 we recall from (7.8.34, Ten from ( to (7.8.33, and a 2 = + O(ɛ, β 2 = ɛ + ( Ū 2 = U + U, V2 = V + V ( ζ 2 = ζ ζ ( β 2 = from ( Te normal form equations are ɛ + ( ζ 2 t + Ū2 + V 2 = 0 ( Note tat te effective gravity Ū2 t f V 2 = g ɛ + ζ 2 τ x, ( V 2 t + fū2 = g ɛ + ζ 2 τ x, ( is muc smaller tan g. Moreover, te effective wind stresses are ence are oppposite to te surface wind stresses. gβ 2 = g ɛ ( τ x, τ y ( Free modes witout wind Let us consider free waves in te absence of wind forcing ((τ x k, (τ y k = 0. It is ten possible to consider one mode and assume tat te oter modes to be zero. In particular we sall examine (eigen, or natural modes of sinusoidal wave form (ζ k, U k, V k e ikxx+ikyy iωt (7.8.65

8 8 Barotropic (surface mode: Let us focus on mode 1 alone and assume mode 2 to be absent, i.e., ten ence Ū 2 = V 2 = ζ 2 = 0 ( Ū 2 = ( /U + U = 0 V 2 = ( /V + V = 0 ( ζ 2 = ( /ζ + (1 + / ζ = 0, U = U V = V, ζ = ζ. ( Again te dept-averaged velocities in bot layers are in pase and are numerically te same. Te interface displacement is in pase wit and smaller tan te free surface displacement in proportion to te vertical distance above te seabed. Moreover, ( to ( become for te upper layer: or ( ( + + t U f V = g( + ( ( + + t V + f t + + U ( U + V It is easy to get te equations for te lower layer. = g( + ( ( = 0. ( U fv = g ( t V + fu = g ( t t + + ( U + V = 0. ( U t fv = g V t + fu = g t + + ( U + V ( ( = 0. (7.8.77

9 9 Consider sinusidodal waves and te equations for te upper layer, iωu fv = gik x ζ iωv fu = gik y ζ iωζ + + (ik xu + ik y V = 0 For nontrivbil solution t eeigenvalue condition is easily found to be ω 2 = f 2 + g( + k 2 ( wic can be written as ω + g ( 2 = ± + f + k 2 ( + 2 g 1/2 ( Tis is te dispersion relation for te barotropic (surface wave mode, and is plotted in Figure Baroclinic (internal wave mode Now consider te unforced Mode 2 and assume Mode 1 to be absent, Ū 1 = V 1 = ζ 1 = 0 ( ince we ave, from ( to ( a 1 = 1 ( U + U = 0, V + V = 0. ( ζ = ɛ + ζ ( Note tat te orizontal velocities in te two layers are oppositive in pase, so are te free surface and te interface. Te last result implies te free surface beaves like a rigid lid; te interface oscillates wit muc greater vigor. Using tese results, we get ( U 2 = U + U = 1 + U ( ( V 2 = 1 + V ( ( ζ 2 = 1 + ζ (7.8.86

10 10 Figure 7.8.2: Dispersion relation for te barotropic mode in a two-layered sea of contant dept. Putting all tis in ( to (7.8.36, we get ( 1 + U f t Terefore, for te lower layer, imilarly, Also from (7.8.31, ( 1 + = g ɛ + + ( 1 + V. ( U t fv = g ɛ +. ( V t + fu = gɛ + ( t ( ( U + V = 0. (7.8.90

11 ence, and t + U + V We can also write te equations for te upper layer, 11 = 0. ( U t fv = g ɛ +. ( V t + fu = gɛ + t U V ( = 0. ( Note te sign canges in te momentum and mass conservation equations. For sinusoical waves we ave wit iωu fv = g ik x ζ iωv fu = g ik y ζ iωζ (ik x U + ik y V = 0 g = gɛ ( Te eigenvalue condition acan be easily found to be wic can be written as ω 2 = f 2 + g k 2 ( ( 1/2 ω = ± f g g + k2 2 ( Tis dispersion relation is similar to Figure ince te reduced gravity, i svery small. Te baroclinic mode as a muc longer natural period. Mode 2 is called te barolinic (internal wave mode.

Section 3.1: Derivatives of Polynomials and Exponential Functions

Section 3.1: Derivatives of Polynomials and Exponential Functions Section 3.1: Derivatives of Polynomials and Exponential Functions In previous sections we developed te concept of te derivative and derivative function. Te only issue wit our definition owever is tat it

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Part 2: Introduction to Open-Channel Flow SPRING 2005

Part 2: Introduction to Open-Channel Flow SPRING 2005 Part : Introduction to Open-Cannel Flow SPRING 005. Te Froude number. Total ead and specific energy 3. Hydraulic jump. Te Froude Number Te main caracteristics of flows in open cannels are tat: tere is

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016 MAT244 - Ordinary Di erential Equations - Summer 206 Assignment 2 Due: July 20, 206 Full Name: Student #: Last First Indicate wic Tutorial Section you attend by filling in te appropriate circle: Tut 0

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

MATH1151 Calculus Test S1 v2a

MATH1151 Calculus Test S1 v2a MATH5 Calculus Test 8 S va January 8, 5 Tese solutions were written and typed up by Brendan Trin Please be etical wit tis resource It is for te use of MatSOC members, so do not repost it on oter forums

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 -

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 - Eercise. Find te derivative of g( 3 + t5 dt wit respect to. Solution: Te integrand is f(t + t 5. By FTC, f( + 5. Eercise. Find te derivative of e t2 dt wit respect to. Solution: Te integrand is f(t e t2.

More information

Solution for the Homework 4

Solution for the Homework 4 Solution for te Homework 4 Problem 6.5: In tis section we computed te single-particle translational partition function, tr, by summing over all definite-energy wavefunctions. An alternative approac, owever,

More information

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator Capter Seven Te Quantum Mecanical Simple Harmonic Oscillator Introduction Te potential energy function for a classical, simple armonic oscillator is given by ZÐBÑ œ 5B were 5 is te spring constant. Suc

More information

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2 MTH - Spring 04 Exam Review (Solutions) Exam : February 5t 6:00-7:0 Tis exam review contains questions similar to tose you sould expect to see on Exam. Te questions included in tis review, owever, are

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

Analytic Functions. Differentiable Functions of a Complex Variable

Analytic Functions. Differentiable Functions of a Complex Variable Analytic Functions Differentiable Functions of a Complex Variable In tis capter, we sall generalize te ideas for polynomials power series of a complex variable we developed in te previous capter to general

More information

The Vorticity Equation in a Rotating Stratified Fluid

The Vorticity Equation in a Rotating Stratified Fluid Capter 7 Te Vorticity Equation in a Rotating Stratified Fluid Te vorticity equation for a rotating, stratified, viscous fluid Te vorticity equation in one form or anoter and its interpretation provide

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Polynomials 3: Powers of x 0 + h

Polynomials 3: Powers of x 0 + h near small binomial Capter 17 Polynomials 3: Powers of + Wile it is easy to compute wit powers of a counting-numerator, it is a lot more difficult to compute wit powers of a decimal-numerator. EXAMPLE

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

Darcy s law in 3-D. K * xx K * yy K * zz

Darcy s law in 3-D. K * xx K * yy K * zz PART 7 Equations of flow Darcy s law in 3-D Specific discarge (vector) is calculated by multiplying te ydraulic conductivity (second-order tensor) by te ydraulic gradient (vector). We obtain a general

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only.

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

Finite Difference Methods Assignments

Finite Difference Methods Assignments Finite Difference Metods Assignments Anders Söberg and Aay Saxena, Micael Tuné, and Maria Westermarck Revised: Jarmo Rantakokko June 6, 1999 Teknisk databeandling Assignment 1: A one-dimensional eat equation

More information

Phase space in classical physics

Phase space in classical physics Pase space in classical pysics Quantum mecanically, we can actually COU te number of microstates consistent wit a given macrostate, specified (for example) by te total energy. In general, eac microstate

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

NCCI: Simple methods for second order effects in portal frames

NCCI: Simple methods for second order effects in portal frames NCC: Simple metods for second order effects in portal frames NCC: Simple metods for second order effects in portal frames NCC: Simple metods for second order effects in portal frames Tis NCC presents information

More information

Calculus I Practice Exam 1A

Calculus I Practice Exam 1A Calculus I Practice Exam A Calculus I Practice Exam A Tis practice exam empasizes conceptual connections and understanding to a greater degree tan te exams tat are usually administered in introductory

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

The Laplace equation, cylindrically or spherically symmetric case

The Laplace equation, cylindrically or spherically symmetric case Numerisce Metoden II, 7 4, und Übungen, 7 5 Course Notes, Summer Term 7 Some material and exercises Te Laplace equation, cylindrically or sperically symmetric case Electric and gravitational potential,

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin.

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin. I Introduction. Quantum Mecanics Capter.5: An illustration using measurements of particle spin. Quantum mecanics is a teory of pysics tat as been very successful in explaining and predicting many pysical

More information

11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR SECTION 11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 633 wit speed v o along te same line from te opposite direction toward te source, ten te frequenc of te sound eard b te observer is were c is

More information

Work and Energy. Introduction. Work. PHY energy - J. Hedberg

Work and Energy. Introduction. Work. PHY energy - J. Hedberg Work and Energy PHY 207 - energy - J. Hedberg - 2017 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mecanical Energy 6. Ex: Te Loop te Loop 7. Conservative and Non-conservative

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

Math 1210 Midterm 1 January 31st, 2014

Math 1210 Midterm 1 January 31st, 2014 Mat 110 Midterm 1 January 1st, 01 Tis exam consists of sections, A and B. Section A is conceptual, wereas section B is more computational. Te value of every question is indicated at te beginning of it.

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

Math 34A Practice Final Solutions Fall 2007

Math 34A Practice Final Solutions Fall 2007 Mat 34A Practice Final Solutions Fall 007 Problem Find te derivatives of te following functions:. f(x) = 3x + e 3x. f(x) = x + x 3. f(x) = (x + a) 4. Is te function 3t 4t t 3 increasing or decreasing wen

More information

Cubic Functions: Local Analysis

Cubic Functions: Local Analysis Cubic function cubing coefficient Capter 13 Cubic Functions: Local Analysis Input-Output Pairs, 378 Normalized Input-Output Rule, 380 Local I-O Rule Near, 382 Local Grap Near, 384 Types of Local Graps

More information

Stepped-Impedance Low-Pass Filters

Stepped-Impedance Low-Pass Filters 4/23/27 Stepped Impedance Low Pass Filters 1/14 Stepped-Impedance Low-Pass Filters Say we know te impedance matrix of a symmetric two-port device: 11 21 = 21 11 Regardless of te construction of tis two

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

2. Temperature, Pressure, Wind, and Minor Constituents.

2. Temperature, Pressure, Wind, and Minor Constituents. 2. Temperature, Pressure, Wind, and Minor Constituents. 2. Distributions of temperature, pressure and wind. Close examination of Figs..7-.0 of MS reveals te following features tat cry out for explanation:

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Last lecture (#4): J vortex. J tr

Last lecture (#4): J vortex. J tr Last lecture (#4): We completed te discussion of te B-T pase diagram of type- and type- superconductors. n contrast to type-, te type- state as finite resistance unless vortices are pinned by defects.

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

The Krewe of Caesar Problem. David Gurney. Southeastern Louisiana University. SLU 10541, 500 Western Avenue. Hammond, LA

The Krewe of Caesar Problem. David Gurney. Southeastern Louisiana University. SLU 10541, 500 Western Avenue. Hammond, LA Te Krewe of Caesar Problem David Gurney Souteastern Louisiana University SLU 10541, 500 Western Avenue Hammond, LA 7040 June 19, 00 Krewe of Caesar 1 ABSTRACT Tis paper provides an alternative to te usual

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

1 (10) 2 (10) 3 (10) 4 (10) 5 (10) 6 (10) Total (60)

1 (10) 2 (10) 3 (10) 4 (10) 5 (10) 6 (10) Total (60) First Name: OSU Number: Last Name: Signature: OKLAHOMA STATE UNIVERSITY Department of Matematics MATH 2144 (Calculus I) Instructor: Dr. Matias Sculze MIDTERM 1 September 17, 2008 Duration: 50 minutes No

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY O SASKATCHEWAN Department of Pysics and Engineering Pysics Pysics 117.3 MIDTERM EXAM Regular Sitting NAME: (Last) Please Print (Given) Time: 90 minutes STUDENT NO.: LECTURE SECTION (please ceck):

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

. If lim. x 2 x 1. f(x+h) f(x)

. If lim. x 2 x 1. f(x+h) f(x) Review of Differential Calculus Wen te value of one variable y is uniquely determined by te value of anoter variable x, ten te relationsip between x and y is described by a function f tat assigns a value

More information

Phy 231 Sp 02 Homework #6 Page 1 of 4

Phy 231 Sp 02 Homework #6 Page 1 of 4 Py 231 Sp 02 Homework #6 Page 1 of 4 6-1A. Te force sown in te force-time diagram at te rigt versus time acts on a 2 kg mass. Wat is te impulse of te force on te mass from 0 to 5 sec? (a) 9 N-s (b) 6 N-s

More information

New Fourth Order Quartic Spline Method for Solving Second Order Boundary Value Problems

New Fourth Order Quartic Spline Method for Solving Second Order Boundary Value Problems MATEMATIKA, 2015, Volume 31, Number 2, 149 157 c UTM Centre for Industrial Applied Matematics New Fourt Order Quartic Spline Metod for Solving Second Order Boundary Value Problems 1 Osama Ala yed, 2 Te

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

HOW TO DEAL WITH FFT SAMPLING INFLUENCES ON ADEV CALCULATIONS

HOW TO DEAL WITH FFT SAMPLING INFLUENCES ON ADEV CALCULATIONS HOW TO DEAL WITH FFT SAMPLING INFLUENCES ON ADEV CALCULATIONS Po-Ceng Cang National Standard Time & Frequency Lab., TL, Taiwan 1, Lane 551, Min-Tsu Road, Sec. 5, Yang-Mei, Taoyuan, Taiwan 36 Tel: 886 3

More information

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section Pre-lab Quiz/PHYS 4 Eart s Magnetic Field Your name Lab section 1. Wat do you investigate in tis lab?. For a pair of Helmoltz coils described in tis manual and sown in Figure, r=.15 m, N=13, I =.4 A, wat

More information