Work and Energy. Intext Exercise 2

Size: px
Start display at page:

Download "Work and Energy. Intext Exercise 2"

Transcription

1 Intext Exercise 1 Question 1: A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (Fig. 11.3). Let us take it that the force acts on the object through the displacement. What is the work done in this case? Solution 1: When a force F acts on an object to displace it through a distance S in its direction, then the work done W on the body by the force is given by: Work done = Force Displacement W = F S F = 7 N S = 8 m Therefore, work done, W = 7 8 = 56 Nm = 56 J Question 1: When do we say that work is done? Intext Exercise Solution 1: Work is done whenever the given conditions are satisfied: (i) A force acts on the body. (ii) There is a displacement of the body caused by the applied force along the direction of the applied force. Question : Write an expression for the work done when a force is acting on an object in the direction of its displacement. Solution : When a force FN displaces a body through a distance S mts in the direction of the applied force, then the work done W on the body is given by the expression: Work done = Force Displacement W = F s

2 Question 3: Define 1 J of work. Solution 3: 1 J is the amount of work done by a force of 1 N on an object that displaces it through a distance of 1 m in the direction of the applied force. Question 4: A pair of bullocks exerts a force of 140 N on a plough. The field being ploughed is 15m long. How much work is done in ploughing the length of the field? Solution 4: Work done by the bullocks is given by the expression: Work done = Force Displacement W = F s Applied force, F = 140 N Displacement, s = 15 m W = = 100 J Hence, 100 J of work is done in ploughing the length of the field. Intext Exercise 3 Question 1: What is the kinetic energy of an object? Solution 1: Kinetic energy is defined as the energy possessed by a body by the virtue of its motion. Every moving object possesses kinetic energy. Question : Write an expression for the kinetic energy of an object. Solution : If a body of mass m is moving with a velocity v, then its kinetic energy Ek is given by the expression, 1 Ek mv Its SI unit is Joule (J). Question 3: The kinetic energy of an object of mass, m moving with a velocity of 5 ms -1 1 is 5J.What will be its kinetic energy when its velocity is doubled? What will be its kinetic energy when its velocity is increased three times? 11.

3 Solution 3: 1 We know that Expression for kinetic energy is given by Ek mv m = Mass of the object v = Velocity of the object = 5 m - 1 s 1 Given that kinetic energy, Ek= 5 J (i) If the velocity of an object is doubled, then v = 5 = 10 m s -1. Since Kinetic energy proportional to the square of the velocity. So, v = (5 x ) = 100J, Therefore its kinetic energy becomes 4 times its initial value. (ii) If velocity is increased three times, then its kinetic energy becomes 9 times its original value, because it is proportional to the square of the velocity. Hence, kinetic energy = 5 9 = 5 J. Question 1: What is power? Intext Exercise 4 Solution 1: Power is defines as the rate of doing work or the rate of transfer of energy. If W is the amount of work done in time t, then power is given by Work done Energy Power = Time Time W P T Units for power is watt (W). Question : Define 1 watt of power: Solution : A body is said to have power of 1 watt if it does 1J of work at 1 second of time. the rate of 1 joule in 1 s,i.e., 1J 1W 1 s Question 3: A lamp consumes 1000 J of electrical energy in 10 s. What is its power? Solution 3: Power is given by the expression, Work done Power = Time

4 Work done = Energy consumed by the lamp = 1000 J Time = 10 s Power = 100Js 10 = 100 W Question 4: Define average power. Solution 4: Average power is obtained by dividing the total amount ofwork done in the total time taken to do this work. Total work done Average Power = Total time taken NCERT Exercise Question 1: Look at the activities listed below. Reason out whether or not work is done in the light of your understanding of the term work. Suma is swimming in a pond. A donkey is carrying a load on its back. A wind mill is lifting water from a well. A green plant is carrying out photosynthesis. An engine is pulling a train. Food grains are getting dried in the sun. A sailboat is moving due to wind energy. Solution 1: Work is done whenever the given two conditions are satisfied: (i) A force acts on the body. (ii) There is a displacement of the body by the application of force in or opposite to the direction of force. (a) While swimming, Suma applies a force to push the water backwards. Therefore, Suma swims in the forward direction caused by the forward reaction of water. Here, the force causes a displacement. Hence, work is done by Suma while swimming. (b) While carrying a load, the donkey has to apply a force in the upward direction. But, displacement of the load is in the forward direction. Since, displacement is perpendicular to force, the work done is zero. (c) A wind mill works against the gravitational force to lift water. Hence, work is done by the wind mill in lifting water from the well. (d) In this case, there is no displacement of the leaves of the plant. Therefore, the work done is zero

5 (e) An engine applies force to pull the train. This allows the train to move in the direction of applied force. Therefore, there is a displacement in the train in the same direction. Hence, work is done by the engine on the train. (f) Food grains do not move in the presence of solar energy. Hence, the work done is zero during the process of food grains getting dried in the Sun. (g)wind energy applies a force on the sailboat to push it in the forward direction. Therefore, there is a displacement in the boat in the direction of force. Hence,workis done by wind on the boat. Question : An object thrown at a certain angle to the ground moves in a curved path and falls back to the ground. The initial and the final points of the path of the object lie on the same horizontal line. What is the work done by the force of gravity on the object? Solution : Work done by the force of gravity on an object depends only on vertical displacement. Vertical displacement is given by the difference in the initial and final positions(height) of the object, which is zero. Work done by gravity is given by the expression, W = mgh m = mass of the object, g = acceleration due to gravity h = Vertical displacement, which is zero, so on substituting we get, W = mg 0 = 0 J Therefore, the work done by gravity on the given object is zero joules. Question 3: A battery lights a bulb. Describe the energy changes involved in the process. Solution 3: When a bulb is connected to a battery, then the chemical energy of the battery is transferred into electrical energy. When the bulb receives this electrical energy, hence it converts it into light and heat energy. Hence, the transformation of energy in the given situation can be shown as: Chemical Energy Electrical Energy Light Energy Heat energy Question 4: Certain force acting on a 0 kg mass changes its velocity from 5 ms -1 to ms -1. Calculate the work done by the force. Solution 4: We know that change in kinetic energy is equal to work done, so calculating kinetic energy at v = 5m/s and at v = m/s we get Kinetic energy is given by the expression,

6 1 ( Ek ) v mv Ek= Kinetic energy of the object moving with a velocity, v m = Mass of the object (i) Kinetic energy when the object was moving with a velocity 5 m s -1 1 ( Ek ) 5 0 (5) 50 J (ii) Kinetic energy when the object was moving with a velocity m s -1 1 ( Ek ) 0 () 40 J Therefore, work done by force = ( Ek) ( Ek) 5 = = 10 J Here the negative sign indicates that the force is acting in the direction opposite to the motion of the object. Question 5: A mass of 10 kg is at a point A on a table. It is moved to a point B. If the line joining A and B is horizontal, what is the work done on the object by the gravitational force? Explain your answer. Solution 5: Work done by gravitydepends only on the vertical displacement of the body. It does not depend upon the path of the body. Therefore, work done by gravity is given by the expression, W = mgh Vertical displacement, h = 0 W = mg 0 = 0 Hence, the work done by gravity on the body is zero. Question 6: The potential energy of a freely falling object decreases progressively. Does this violate the law of conservation of energy? Why? Solution 6: No. The process does not violate the law of conservation of energy. This is because when the body falls from a height, then its potential energy changes into kinetic energy progressively. A decrease in the potential energy is equal to an increase in the kinetic energy of the body. During this process, total mechanical energy of the body remains conserved. Therefore, the law of conservation of energy is not violated

7 Question 7: What are the various energy transformations that occur when you are riding a bicycle? Solution 7: While riding a bicycle, the muscular energy of the rider gets transferred into heat energy and kinetic energy of the bicycle. Heat energy heats the rider s body. Kinetic energy provides a velocity to the bicycle. The transformation can be shown as: Muscular Energy Kinetic Energy Heat Energy During the transformation, the total energy remains conserved. Question 8: Does the transfer of energy take place when you push a huge rock with all your might and fail to move it? Where is the energy you spend going? Solution 8: When we push a huge rock, there is no transfer of muscular energy to the stationary rock. Also, there is no loss of energy because muscular energy is transferred into heat energy, which causes our body to become hot. Question 9: A certain household has consumed 50 units of energy during a month. How much energy is this in joules? Solution 9: 1 unit of energy is equal to 1 kilowatt hour (kwh). 1 unit = 1 kwh 1 kwh = J Therefore, 50 units of energy = = J Question 10: An object of mass 40 kg is raised to a height of 5 m above the ground. What is its potential energy? If the object is allowed to fall, find its kinetic energy when it is half-way down. Solution 10: Gravitational potential energy is given by the expression, W = mgh h = Vertical displacement = 5 m m = Mass of the object = 40 kg g = Acceleration due to gravity = 9.8 m s - W = = 1960 J. At half-way down, the potential energy of the object will be 1960 = 980 J

8 At this point, the object has an equal amount of potential and kinetic energy(i.e., ½ x m x (square root of g(h/) = mgh). This is due to the law of conservation of energy. Hence, half-way down, the kinetic energyof the object will be 980 J. Question 11: What is the work done by the force of gravity on a satellite moving round the earth? Justify your answer. Solution 11: Work is done whenever the given two conditions are satisfied: (i) A force acts on the body. (ii) There is a displacement of the body by the application of force in or opposite to the direction of force. If the direction of force is perpendicular to displacement, then the work done is zero.when a satellite moves around the Earth, then the direction of force of gravity on the satellite is perpendicular to its displacement. Hence, the work done on the satellite by the Earth is zero. Question 1: Can there be displacement of an object in the absence of any force acting on it? Think. Discuss this question with your friends and teacher. Solution 1: Yes. object moving with uniform velocity Suppose an object is moving with constant velocity. The net force acting on it is zero. But, there is a displacement along the motion of the object. Hence, there can be a displacement without a force. Question 13: A person holds a bundle of hay over his head for 30 minutes and gets tired. Has he done some work or not? Justify your answer. Solution 13: Work is done whenever the given two conditions are satisfied: (i) A force acts on the body. (ii) There is a displacement of the body by the application of force in or opposite to the direction of force. When a person holds a bundle of hay over his head, then there is no displacement in the bundle of hay. Although, force of gravity is acting on the bundle, the person is not applying any force on it. Hence, in the absence of force, work done by the person on the bundle is zero. Question 14: An electric heater is rated 1500 W. How much energy does it use in 10 hours?

9 Solution 14: Energy consumed by an electric heater can be obtained with the help of the expression, W P T Power rating of the heater, P = 1500 W = 1.5 kw Time for which the heater has operated, T = 10 hrs Work done = Energy consumed by the heater Therefore, energy consumed = Power Time = = 15 kwh Hence, the energy consumed by the heater in 10 h is 15 kwh. Question 15: Illustrate the law of conservation of energy by discussing the energy changes which occur when we draw a pendulum bob to one side and allow it to oscillate. Why does the bob eventually come to rest? What happens to its energy eventually? Is it a violation of the law of conservation of energy? Solution 15: The law of conservation of energy states that energy can be neither created nor destroyed. It can only be converted from one form to another.consider the case of an oscillating pendulum. When a pendulum moves from its mean position P to either of its extreme positions A or B, it rises through a height h above the mean level P. At this point, the kinetic energy of the bob changes completely into potential energy. The kinetic energy becomes zero, and the bob possesses only potential energy. As it moves towards point P, its potential energy decreases progressively. Accordingly, the kinetic energy increases. As the bob reaches point P, its potential energy becomes zero and the bob possesses only kinetic energy. This process is repeated as long as the pendulum oscillates. The bob does not oscillate forever. It comes to rest because air resistance resists itsmotion. The pendulum loses its kinetic energy to overcome this friction and stops after some time. The law of conservation of energy is not violated because the energy lost by thependulum to overcome friction is gained by its surroundings. Hence, the total energyof the pendulum and the surrounding system remain conserved

10 Question 16: An object of mass, m is moving with a constant velocity, v. How much work should be done on the object in order to bring the object to rest? Solution 16: Kinetic energy of an object of mass, m moving with a velocity, v is given by the expression, 1 Ek mv 1 To bring the object to rest, mv amount of work is required to be done on theobject. Question 17: Calculate the work required to be done to stop a car of 1500 kg moving at a velocityof 60 km/h? Solution 17: 1 Kinetic energy, Ek mv Mass of car, m = 1500 kg Velocity of car, v = 60 km/h = 5 60 ms Ek J 18 Hence, J of work is required to stop the car. Question 18: In each of the following a force, F is acting on an object of mass, m. The direction of displacement is from west to east shown by the longer arrow. Observe the diagrams carefully and state whether the work done by the force is negative, positive or zero. Solution 18: Work is done whenever the given two conditions are satisfied: (i) A force acts on the body. (ii) There is a displacement of the body by the application of force in or opposite to the direction of force. Case I

11 In this case, the direction of force acting on the block is perpendicular to the displacement. Therefore, work done by force on the block will be zero. Case II In this case, the direction of force acting on the block is in the direction of displacement. Therefore, work done by force on the block will be positive. Case III In this case, the direction of force acting on the block is opposite to the direction of displacement. Therefore, work done by force on the block will be negative. Question 19: Soni says that the acceleration in an object could be zero even when several forces are acting on it. Do you agree with her? Why? Solution 19: Acceleration in an object could be zero even when several forces are acting on it.this happens when all the forces cancel out each other i.e., the net force acting on the object is zero. For a uniformly moving object, the net force acting on the objectis zero. Hence, the acceleration of the object is zero. Hence, Soni is right. Question 0: Find the energy in kw h consumed in 10 hours by four devices of power 500 W each. Solution 0: Energy consumed by an electric device can be obtained with the help of theexpression for power, W P T Power rating of the device, P = 500 W = 0.50 kw Time for which the device runs, T = 10 hrs Work done = Energy consumed by the device Therefore, energy consumed = Power Time = = 5 kwh Hence, the energy consumed by four equal rating devices in 10 hrs will be 4 5 kwh

12 = 0 kwh. Question 1: A freely falling object eventually stops on reaching the ground. What happens to its kinetic energy? Solution 1: When an object falls freely towards the ground, its potential energy decreases and kinetic energy increases. As the object touches the ground, all its potential energy gets converted into kinetic energy. As the object hits the hard ground, all its kineticenergy gets converted into heat energy and sound energy. It can also deform the ground depending upon the nature of the ground and the amount of kinetic energy possessed by the object

Class IX Chapter 11 Work and Energy Science

Class IX Chapter 11 Work and Energy Science Class IX Chapter 11 Work and Energy Science Question 1: A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (Fig. 11.3). Let us take it that the force acts on

More information

NCERT solution for Work and energy

NCERT solution for Work and energy 1 NCERT solution for Work and energy Question 1 A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (See below figure). Let us take it that the force acts on the

More information

SCIENCE WORK POWER & ENERGY

SCIENCE WORK POWER & ENERGY SCIENCE WORK POWER & ENERGY Class 9 Science (Physics) Question Bank www.eduvictors.com Work Power & Energy Question Bank based on NCERT Class 9 Chapter and Previous Years Papers Q1: force of 7 N acts on

More information

WORK AND ENERGY. Question Bank in Science Class-IX (Term-II)

WORK AND ENERGY. Question Bank in Science Class-IX (Term-II) Question Bank in Science Class-IX (Term-II) 11 WORK AND ENERGY CONCEPTS 1. Work : Work is said to be done, when a force causes displacement in its own direction.. No work is done, if the displacement is

More information

not to be republished NCERT C hapter Activity NOT

not to be republished NCERT C hapter Activity NOT C hapter In the previous few chapters we have talked about ways of describing the motion of objects, the cause of motion and gravitation. Another concept that helps us understand and interpret many natural

More information

Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena.

Energy is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena. Energy Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena." David Rose What is energy? Energy makes changes;

More information

CBSE Class 9 Work Energy and Power Quick Study Chapter Note

CBSE Class 9 Work Energy and Power Quick Study Chapter Note CBSE Class 9 Work Energy and Power Quick Study Chapter Note Work: In our daily life anything that makes us tired is known as work. For example, reading, writing, painting, walking, etc. In physics work

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE 6.1 Work and Energy In science, work is done when a force acts over a displacement; energy is transferred.

More information

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 1 PHYS:100 LECTURE 9 MECHANICS (8) In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 9 1. Conservation of Energy. Energy is one of the most fundamental

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12 Observing Motion CHAPTERS 11 & 12 MOTION & FORCES Everything surrounding us is in motion, but it is relative to other object that remain in place. Motion is observed using a frame of reference. Motion

More information

Mechanics & Properties of Matter 5: Energy and Power

Mechanics & Properties of Matter 5: Energy and Power Mechanics & Properties of Matter 5: Energy and Power Energy and Power AIM This unit re-introduces the formulae for calculating work done, potential energy, kinetic energy and power. The principle that

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Foundations of Physical Science. Unit 2: Work and Energy

Foundations of Physical Science. Unit 2: Work and Energy Foundations of Physical Science Unit 2: Work and Energy Chapter 5: Work, Energy, and Power 5.1 Work 5.2 Energy Conservation 5.3 Energy Transformations Learning Goals Calculate the amount of work done by

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Unit 5: Energy (Part 2)

Unit 5: Energy (Part 2) SUPERCHARGED SCIENCE Unit 5: Energy (Part 2) www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-15 hours, depending on how many activities you do! We covered

More information

HNRS 227 Chapter 3. Energy presented by Prof. Geller Fall 2008

HNRS 227 Chapter 3. Energy presented by Prof. Geller Fall 2008 HNRS 227 Chapter 3 Energy presented by Prof. Geller Fall 2008 Don t Forget the Following Units of length, mass and time Metric Prefixes The Scientific Method Speed, velocity, acceleration Force Falling

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Engineering Systems & Investigation. Dynamic Systems Fundamentals

Engineering Systems & Investigation. Dynamic Systems Fundamentals Engineering Systems & Investigation Dynamic Systems Fundamentals Dynamics: Linear Motion Linear Motion Equations s.u.v.a.t s = Displacement. u = Initial Velocity. v = Final Velocity. a = Acceleration.

More information

Energy and Mechanical Energy

Energy and Mechanical Energy Energy and Mechanical Energy Energy Review Remember: Energy is the ability to do work or effect change. Usually measured in joules (J) One joule represents the energy needed to move an object 1 m of distance

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Physics 3.1 & 3.3 & 3.4 - Energy, Work, and Power Energy, Work, and Power You need to know what energy, work, and power is, and the units for energy and

More information

Chapter 9 Conceptual Physics Study Guide

Chapter 9 Conceptual Physics Study Guide Name : Date: Period: Chapter 9 Conceptual Physics Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In physics, work is defined as a. force times

More information

Physics Unit 4:Work & Energy Name:

Physics Unit 4:Work & Energy Name: Name: Review and Preview We have come a long way in our study of mechanics. We started with the concepts of displacement and time, and built up to the more complex quantities of velocity and acceleration.

More information

In the last lecture the concept of kinetic energy was introduced. Kinetic energy (KE) is the energy that an object has by virtue of its motion

In the last lecture the concept of kinetic energy was introduced. Kinetic energy (KE) is the energy that an object has by virtue of its motion 1 PHYS:100 LETUE 9 MEHANIS (8) I. onservation of Energy In the last lecture the concept of kinetic energy was introduced. Kinetic energy (KE) is the energy that an object has by virtue of its motion KINETI

More information

Lesson 3A Energy, Work and Power

Lesson 3A Energy, Work and Power Physics 30 Lesson 3A Energy, Work and Power I. Energy and its forms The idea of Energy is the most fundamental principle in all of science. Everything in the universe is a manifestation or form of Energy.

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d ENERGY CHAPTER 11 Work Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d Units = Joules Work and energy transferred are equivalent in ideal systems. Two Types of Energy

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

What is Energy? Energy is the capacity to do work

What is Energy? Energy is the capacity to do work What is Energy? Energy is the capacity to do work Work the product of force exerted on an object and the distance the object moves in the direction of the force. W=Fd W = work (Joules, J) F = force (N)

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Work, Power and Energy Worksheet. 2. Calculate the work done by a 47 N force pushing a kg pencil 0.25 m against a force of 23 N.

Work, Power and Energy Worksheet. 2. Calculate the work done by a 47 N force pushing a kg pencil 0.25 m against a force of 23 N. Work, Power and Energy Worksheet Work and Power 1. Calculate the work done by a 47 N force pushing a pencil 0.26 m. 2. Calculate the work done by a 47 N force pushing a 0.025 kg pencil 0.25 m against a

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Work changes Energy. Do Work Son!

Work changes Energy. Do Work Son! 1 Work changes Energy Do Work Son! 2 Do Work Son! 3 Work Energy Relationship 2 types of energy kinetic : energy of an object in motion potential: stored energy due to position or stored in a spring Work

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

CHAPTER 13.3 AND 13.4 ENERGY

CHAPTER 13.3 AND 13.4 ENERGY CHAPTER 13.3 AND 13.4 ENERGY Section 13.3 Energy Objective 1: What is the relationship between energy and work? Objective 2: Identify the energy of position. Objective 3: The factors that kinetic energy

More information

In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain.

In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain. ENERGY Energy Objective 1: What is the relationship between energy and work? Objective 2: Identify the energy of position. Objective 3: The factors that kinetic energy depends on Objective 4: What is non-mechanical

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will.

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will. Ch. 4 Newton s Second Law of Motion p.65 Review Questions 3. How great is the force of friction compared with your push on a crate that doesn t move on a level floor? Ans. They are equal in magnitude and

More information

WORK, ENERGY, AND MACHINES

WORK, ENERGY, AND MACHINES WORK, ENERGY, AND MACHINES Vocabulary Review Write the term that correctly completes the statement. Use each term once. compound machine joule resistance force efficiency kinetic energy translational kinetic

More information

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 1 Yanbu University College General Studies Department Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 2 Chapter 2 Worksheet Part 1 Matching: Match the definitions with the given concepts. 1.

More information

Physics 20 Lesson 26 Energy, Work and Power

Physics 20 Lesson 26 Energy, Work and Power Physics 20 Lesson 26 Energy, Work and Power Let us recap what we have learned in Physics 20 so far. At the beginning of the course we learned about kinematics which is the description of how objects move

More information

1 Forces. 2 Energy & Work. GS 104, Exam II Review

1 Forces. 2 Energy & Work. GS 104, Exam II Review 1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who

More information

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy Today Finish Ch. 6 on Momentum Start Ch. 7 on Energy Next three lectures (Sep 16, 20, 23) : Energy (Ch7) and Rotation (Ch.8) will be taught by Dr. Yonatan Abranyos, as I will be away at a research conference

More information

W = mgh joule and mass (m) = volume density =

W = mgh joule and mass (m) = volume density = 1. A rain drop of radius 2 mm falls from a height of 500 m above the ground. It falls with decreasing acceleration due to viscous resistance of the air until at half its original height, it attains its

More information

An Introduction. Work

An Introduction. Work Work and Energy An Introduction Work Work tells us how much a force or combination of forces changes the energy of a system. Work is the bridge between force (a vector) and energy (a scalar). W = F Dr

More information

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday Announcements Test Wednesday Closed book 3 page sheet sheet (on web) Calculator Chap 12.6-10, 13.1-6 Principle of Work and Energy - Sections 14.1-3 Today s Objectives: Students will be able to: a) Calculate

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER Objectives Explain the relationship between power and work. Explain the relationship between power, force, and speed for an object in translational motion. Calculate a device s efficiency in terms of the

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Energy Unit Test * Required

Energy Unit Test * Required Energy Unit Test * Required 1. First and Last Name 2. Class Period 2nd 4th Forms of Energy Standard 6.PS3.1 Analyze the properties and compare sources of kinetic, elastic potential, gravitational potential,

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Energy and Work ASSIGNMENT EDULABZ

Energy and Work ASSIGNMENT EDULABZ Energy and Work ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below : List : created, constant, destroyed, work, force, mechanical energy, displacement, K.E.,

More information

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws Forces and the Laws of Motion Table of Contents Section 1 Changes in Motion Section 2 Newton's First Law Section 3 Newton's Second and Third Laws Section 4 Everyday Forces Section 1 Changes in Motion Objectives

More information

W = Fd cos θ. W = (75.0 N)(25.0 m) cos (35.0º) = 1536 J = J. W 2400 kcal =

W = Fd cos θ. W = (75.0 N)(25.0 m) cos (35.0º) = 1536 J = J. W 2400 kcal = 8 CHAPTER 7 WORK, ENERGY, AND ENERGY RESOURCES generator does negative work on the briefcase, thus removing energy from it. The drawing shows the latter, with the force from the generator upward on the

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Work and Energy Lectures 16-17 Chapter 6 (Cutnell & Johnson, Physics 7 th edition) 1 Work and Energy: Work done by a constant force Constant pushing force F pointing in the same direction

More information

Efficiency = power out x 100% power in

Efficiency = power out x 100% power in Work, Energy and Power Review Package 1) Work: change in energy. Measured in Joules, J. W = Fd W = ΔE Work is scalar, but can be negative. To remember this, ask yourself either: Is the object is losing

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

Physics 12 Unit 2: Vector Dynamics

Physics 12 Unit 2: Vector Dynamics 1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

Date Period Name. Energy, Work, and Simple Machines Vocabulary Review

Date Period Name. Energy, Work, and Simple Machines Vocabulary Review Date Period Name CHAPTER 10 Study Guide Energy, Work, and Simple Machines Vocabulary Review Write the term that correctly completes the statement. Use each term once. compound machine joule resistance

More information

2. Kinetic friction - The force that acts against an object s motion. - Occurs once static friction has been overcome and object is moving

2. Kinetic friction - The force that acts against an object s motion. - Occurs once static friction has been overcome and object is moving Section 2.14: Friction Friction is needed to move. Without friction, a car would sit in one spot spinning its tires, and a person would not be able to step forward. However, the motion of an object along

More information

7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and

7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and 7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and 7.7(B) illustrate the transformation of energy within an organism such as the transfer from chemical energy

More information

Power is easily derived from the definition of work. We know that: P=Wt=FΔxcosθtin the case where F and Δx are in the same direction=fδxt=fδxt=fv

Power is easily derived from the definition of work. We know that: P=Wt=FΔxcosθtin the case where F and Δx are in the same direction=fδxt=fδxt=fv Power Now that we understand the relationship between work and energy, we are ready to look at a quantity related the rate of energy transfer. For example, a mother pushing a trolley full of groceries

More information

There are two main types of friction:

There are two main types of friction: Section 4.15: Friction Friction is needed to move. Without friction, a car would sit in one spot spinning its tires, and a person would not be able to step forward. However, the motion of an object along

More information

Chapter 7 Kinetic Energy and Work

Chapter 7 Kinetic Energy and Work Prof. Dr. I. Nasser Chapter7_I 14/11/017 Chapter 7 Kinetic Energy and Work Energy: Measure of the ability of a body or system to do work or produce a change, expressed usually in joules or kilowatt hours

More information

AP Physics 2 Summer Assignment (2014)

AP Physics 2 Summer Assignment (2014) Name: Date: AP Physics 2 Summer Assignment (2014) Instructions: 1. Read and study Chapter 16 Electric Charge and Electric Field. 2. Answer the questions below. Some questions may require you to use your

More information

WEP-Work and Power. What is the amount of work done against gravity as an identical mass is moved from A to C? J J J 4.

WEP-Work and Power. What is the amount of work done against gravity as an identical mass is moved from A to C? J J J 4. 1. The work done in accelerating an object along a frictionless horizontal surface is equal to the change in the object s 1. momentum 2. velocity 3. potential energy 4. kinetic energy 2. The graph below

More information

NEW HORIZON SCHOOL WORKSHEETS TERM 2 SESSION [CLASS 9] Physics

NEW HORIZON SCHOOL WORKSHEETS TERM 2 SESSION [CLASS 9] Physics Physics GRAVITATION 1. Pascal is a unit of a) pressure b) force c) linear momentum d) energy 2. The buoyant force on a body acts in a a) vertically downward direction b) vertically upward direction c)

More information

Introduction to Energy Study Guide (also use your notes!!!!)

Introduction to Energy Study Guide (also use your notes!!!!) Introduction to Energy Study Guide (also use your notes!!!!) 1. What is energy? The ability to do work 2. What is kinetic energy? The energy of motion (movement) 3. Can objects with kinetic energy do work?

More information

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time Momentum continued from last time If the earth collided with a meteor that slowed it down in its orbit, what would happen: A: It would maintain the same distance from the sun. B: It would fall closer in

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Conservation of Energy is one of Nature s fundamental laws that is not violated. Energy can take on different forms in a given system. This chapter we will discuss work

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Unit 1 : Mechanics and Heat. Homework 1 - Average and Instantaneous Speed.

Unit 1 : Mechanics and Heat. Homework 1 - Average and Instantaneous Speed. Homework 1 - Average and Instantaneous Speed. 1 Two pupils wish to measure the average speeds of cars as they travel between Craighall Crescent and Craighall Avenue. State what apparatus they would use,

More information

Answers Energy Conservation

Answers Energy Conservation Answers Energy Conservation Year 10 Science Chapter 8 p187 1 What is the kinetic energy of a 10 kg ball moving at a speed of 5 metres per second? KE = 1 mv = 0.5 10 5 J = 15 J What is the kinetic energy

More information

Physics Test Review: Mechanics Session: Name:

Physics Test Review: Mechanics Session: Name: Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below

More information

Exercises. 9.1 Work (pages ) 9.2 Power (pages ) 9.3 Mechanical Energy (page 147)

Exercises. 9.1 Work (pages ) 9.2 Power (pages ) 9.3 Mechanical Energy (page 147) Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance

More information

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force WORK, ENERGY & POWER Work Let a force be applied on a body so that the body gets displaced. Then work is said to be done. So work is said to be done if the point of application of force gets displaced.

More information

Physics Year 11 Term 1 Week 7

Physics Year 11 Term 1 Week 7 Physics Year 11 Term 1 Week 7 Energy According to Einstein, a counterpart to mass An enormously important but abstract concept Energy can be stored (coal, oil, a watch spring) Energy is something moving

More information

Physics Fall 2011 Exam 2

Physics Fall 2011 Exam 2 Physics 102.001 Fall 2011 Exam 2 1) Two He(lium) nuclei are a certain distance apart. One He nucleus is replaced by a C(arbon) nucleus, keeping the distance unchanged. What happens to the strength of the

More information

Momentum. Impulse = F t. Impulse Changes Momentum

Momentum. Impulse = F t. Impulse Changes Momentum Momentum and Energy Chapter 3 Momentum Momentum is inertia in motion Mass x velocity Has both magnitude and direction Large mass or high speed can give object great amount of momentum Momentum = m v Change

More information

a. Change of object s motion is related to both force and how long the force acts.

a. Change of object s motion is related to both force and how long the force acts. 0. Concept of Energy 1. Work. Power a. Energy is the most central concept underlying all sciences. Concept of energy is unknown to Isaac Newton. Its existence was still debated in the 1850s. Concept of

More information

Today: Chapter 7 -- Energy

Today: Chapter 7 -- Energy Today: Chapter 7 -- Energy Energy is a central concept in all of science. We will discuss how energy appears in different forms, but cannot be created or destroyed. Some forms are more useful than others

More information

Unit V: Mechanical Energy

Unit V: Mechanical Energy Unit V: Mechanical Energy Work In physics, we have two definitions of work. 1) Work is a transfer of energy. This means that energy changes forms or energy is transferred from one object to another object.

More information

Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

More information

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105 Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

More information

l1, l2, l3, ln l1 + l2 + l3 + ln

l1, l2, l3, ln l1 + l2 + l3 + ln Work done by a constant force: Consider an object undergoes a displacement S along a straight line while acted on a force F that makes an angle θ with S as shown The work done W by the agent is the product

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

Final Worksheet. Equation And Constant Summary

Final Worksheet. Equation And Constant Summary Equation And Constant Summary Final Worksheet These equations will be provided for you on the final. Know what they mean! Make notes on this page with which to study. v = d t t = d v d=vt If the speed

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information