Hardwiring Maxwell s Demon Tobias Brandes (Institut für Theoretische Physik, TU Berlin)

Size: px
Start display at page:

Download "Hardwiring Maxwell s Demon Tobias Brandes (Institut für Theoretische Physik, TU Berlin)"

Transcription

1 Hardwiring Maxwell s Demon Tobias Brandes (Institut für Theoretische Physik, TU Berlin) Introduction. Feedback loops in transport by hand. by hardwiring : thermoelectric device. Maxwell demon limit. Co-workers: Gernot Schaller, Philipp Strasberg (TU Berlin), Massimiliano Esposito (Luxembourg). Tobias Brandes (Berlin) 1 / 10

2 Introduction: Maxwell s demon Thought experiment (Maxwell 1867) Two volumes of gas in equilibrium seperated by sliding door. Demon opens/closes door in order to separate fast from slow gas molecules. Decrease of entropy.... to show that the second law of thermodynamics has only a statistical certainty. Tobias Brandes (Berlin) 2 / 10

3 Introduction: Maxwell s demon Szilard engine (1929) Figure from M. B. Plenio, V. Vitelli (2001) Completely converts heat k b T ln 2 into work. Landauer (1961): demon has a memory. Colloquium: The physics of Maxwell s demon and information; K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009). Tobias Brandes (Berlin) 2 / 10

4 Introduction: Maxwell s demon Maxwell s demon as a feedback control mechanism Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, Nature Physics 6, 988 (2010). Non-equilibrium feedback manipulation of a Brownian particle. Tobias Brandes (Berlin) 2 / 10

5 Introduction: feedback control Open loop and closed loop (feedback) control SYSTEM Open-loop control SYSTEM Closed-loop control ('coherent', passive) Measurement Device SYSTEM Closed-loop control (measurement based, active) Tobias Brandes (Berlin) 3 / 10

6 Feedback control of transport through nanostructures Tobias Brandes (Berlin) 4 / 10

7 Feedback control of transport through nanostructures Electron Statistics in Quantum Dots Full Counting Statistics Probability p(n, t) of n electrons after time t. C. Flindt, C. Fricke, F. Hohls, T. Novotný, K. Netocný, T. Brandes, and R. J. Haug; PNAS 106, (2009). Tobias Brandes (Berlin) 4 / 10

8 Feedback controlled tunnel barrier Single electron transistor Modify tunnel rates, e.g. Γ R, depending on dot occupation. G. Schaller, C. Emary, G. Kießlich, TB; Phys. Rev. B 84, (2011). Tobias Brandes (Berlin) 5 / 10

9 Feedback controlled tunnel barrier Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n Tobias Brandes (Berlin) 5 / 10

10 Feedback controlled tunnel barrier Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n Without feedback: Identical microscopic forward and backward rates Γ = Γ. Local detailed balance condition with affinity A, γ γ = ea, A µ L µ R k B T Tobias Brandes (Berlin) 5 / 10

11 Feedback controlled tunnel barrier Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n With feedback: Different forward and backward rates Γ Γ ( by hand ) Violates local detailed balance condition, γ γ = ea+ln Γ Γ, A µ L µ R k B T Tobias Brandes (Berlin) 5 / 10

12 Feedback controlled tunnel barrier Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n Elevate (violated) local detailed balance to modified exchange fluctuation theorem p n (t) p n (t) = e(a+ln Γ Γ )n, A µ L µ R k B T. Tobias Brandes (Berlin) 5 / 10

13 Feedback controlled tunnel barrier Single junction: Interpretation Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n(t) p n (t) = e(a+ln Γ Γ)n, A µ L µ R k B T. Stationary charge current J = γ γ (set e = 1). With feedback Γ Γ finite J even for zero voltage drop. Tobias Brandes (Berlin) 5 / 10

14 Feedback controlled tunnel barrier Single junction: Interpretation Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n(t) p n (t) = e(a+ln Γ Γ)n, A µ L µ R k B T. Only n (number of transfered charges) thermodyn. relevant. Shannon entropy S n p n ln p n. Decompose Ṡ = Ṡe + Ṡi with Ṡi 0, J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976); M. Esposito, C. Van den Broek, Phys. Rev. E 82, (2010). lim t p n (t) p n (t) = t eṡi, Ṡ i = AJ + ln J, J γ γ Γ Γ Ṡ i = dissipated electric power per k B T plus information current. Tobias Brandes (Berlin) 5 / 10

15 Hardwiring the demon Key idea Microscopic model for larger system : SET + detector. Reduced SET dynamics described by effective model as above. Tobias Brandes (Berlin) 6 / 10

16 Hardwiring the demon Thermoelectric device V 1, T 1 V 2, T 2 I Energy to current converter. Different temperatures in different parts of the system. Energy-dependent tunnel rates. charge conducting quantum dot gate quantum dot V g, T g J g R. Sánchez, M. Büttiker, Phys. Rev. B 83, (2011); Europhys. Lett. 100, (2012). V1 C1 C2 C Vg Cg V2 Tobias Brandes (Berlin) 6 / 10

17 Hardwiring the demon Single level SET (bottom, two reservoirs L/R) and detector (top, one reservoir) States 0E, 0F, 1E, 1F. Energies 0, ɛ s, ɛ d, ɛ s + ɛ d + U. Energy dependent rates. P. Strasberg, G. Schaller, TB, M. Esposito, Phys. Rev. Lett. 110, (2013). Tobias Brandes (Berlin) 6 / 10

18 Hardwiring the demon State of the demon P. Strasberg, G. Schaller, TB, M. Esposito, Phys. Rev. Lett. 110, (2013). E State of the SET Detector requirements: Fast ΓD, Γ U D Γ α, Γ U α. Precise U k B T D. SET requirements: Spatial asymmetry Γ U R Γ U L, Γ L Γ R. F Tobias Brandes (Berlin) 6 / 10

19 Hardwiring the demon Stochastic thermodynamics of bipartite systems J. M. Horowitz and M. Esposito, arxiv: (2014). Tobias Brandes (Berlin) 6 / 10

20 Maxwell demon limit Reduced SET dynamics Full rate equation ρ ij = i j W ij,i j ρ i j Separation of time scales for fast detector Γ D, Γ U D Γ α, Γ U α. Technical trick: use conditional stationary probabilities M. Esposito, Phys. Rev. E 85, (2012). SET rate equation ρ i = i V ii ρ i. Tobias Brandes (Berlin) 7 / 10

21 Maxwell demon limit Reduced SET dynamics Full rate equation ρ ij = i j W ij,i j ρ i j Separation of time scales for fast detector Γ D, Γ U D Γ α, Γ U α. Technical trick: use conditional stationary probabilities M. Esposito, Phys. Rev. E 85, (2012). SET rate equation ρ i = i V ii ρ i. Reduced fluctuation theorem for SET with information current I lim t p n (t) = exp [An + I t], p n (t) I t ln f L Uf RΓ U L Γ R fr Uf LΓ U R Γ L n, A µ L µ R k B T. Tobias Brandes (Berlin) 7 / 10

22 Maxwell demon limit Reduced SET dynamics Full rate equation ρ ij = i j W ij,i j ρ i j Separation of time scales for fast detector Γ D, Γ U D Γ α, Γ U α. Technical trick: use conditional stationary probabilities M. Esposito, Phys. Rev. E 85, (2012). SET rate equation ρ i = i V ii ρ i. Reduced fluctuation theorem for SET with information current I lim t p n (t) = exp [An + I t], p n (t) I t ln f L Uf RΓ U L Γ R fr Uf LΓ U R Γ L n, A µ L µ R k B T. Reduction to previous model ( feedback by hand ): f U α /f α = 1 I t = (ln Γ U L Γ R/Γ U R Γ L)n Tobias Brandes (Berlin) 7 / 10

23 Maxwell demon limit Energetics: first law Cycle between system energies: ɛ d ɛ s + ɛ d + U ɛ s 0 ɛ d. Net energy U transferred from SET to detector. Tobias Brandes (Berlin) 7 / 10

24 Maxwell demon limit Energetics: first law For U ɛ S, modification of first law I E L + I E R = I E D 0 negligible Tobias Brandes (Berlin) 7 / 10

25 Maxwell demon limit Summary of demon conditions Separation of time scales: Fast demon ΓD, Γ U D Γ α, Γ U α. Separation of energy scales: No back-action, precision: k B T U k B T D. Almost no work done: ɛ S U. Spatial/ energy lever condition Γα Γ U α, Γ L Γ (U) R, α = L,R. [( p n (t) lim t p n (t) exp A + ln ΓU L Γ ) ] R Γ U R Γ n, A µ L µ R L k B T. Tobias Brandes (Berlin) 7 / 10

26 Maxwell demon limit Where is the demon? Tobias Brandes (Berlin) 7 / 10

27 Maxwell demon limit Where is the demon? Maxwell s demon A feedback mechanism that shuffles particles against a chemical or thermal gradient by adjusting barriers without requiring work. Hardwiring of the feedback mechanism. Information is really physical: rates in term ln ( Γ U L Γ R/Γ U R Γ L). Tobias Brandes (Berlin) 7 / 10

28 Summary Minimal microscopic model for measurement-based feedback: Based on stochastic thermodynamics of four-state model. Approaches ideal Maxwell demon in well-defined parameter limit. Open questions: Hardwiring of Wiseman-Milburn feedback. Thermodynamics and quantum coherence. Interacting feedback schemes. Tobias Brandes (Berlin) 8 / 10

29 Master Equation General setup Open system Hamiltonian. H = H S + H res + H T. HS system. Hres reservoir. H T system-reservoir coupling. Reduced density matrix ρ(t), Liouvillian L, Born-Markov approximation ρ(t) = Lρ(t), L L 0 + J Tobias Brandes (Berlin) 9 / 10

30 Master Equation Quantum jumps Jump-resolved ( n-resolved ) Master equation ρ(t) = ρ n (t) = n=0 n=0 t 0 t2 dt n... dt 1 ρ c (t; t n,..., t 1 ) 0 ρ c (t; t n,..., t 1 ) e L 0 (t t n) J e L 0 (t n t n 1 ) J...J e L 0 t 1 ρ 0 Non-unitary free time-evolution, interrupted by n quantum jumps at times t i. Tobias Brandes (Berlin) 9 / 10

31 Master Equation Feedback conditioned on quantum jumps Scheme 1 Rotate state vector by upgrading counting field χ in ρ = (L0 + e iχ J )ρ to superoperator K, H. Wiseman, G. Milburn (1990s). Scheme 2 Effectively modulate system reservoir coupling Maxwell demon. Tobias Brandes (Berlin) 9 / 10

32 Alternative scheme Model with phonons 1 0,05 0,5 0 electron current -0,05 0-0,1-0,05 0 0,05 0,1-0, bias voltage T. Krause, G. Schaller, TB, Phys. Rev. B 84, (2011). Electrons and phonons at different temperatures. Incomplete fluctuation theorem with shift term current at zero bias. See also O. Entin-Wohlman, Y. Imry, and A. Aharony, Phys. Rev. B 82, (2010). Tobias Brandes (Berlin) 10 / 10

33 Thermodynamics of Wiseman-Milburn Feedback Feedback conditioned on quantum jumps Scheme 1 Rotate state vector by upgrading counting field χ in ρ = (L0 + e iχ J )ρ to superoperator K, H. Wiseman, G. Milburn (1990s). Scheme 2 Effectively modulate system reservoir coupling Maxwell demon. Tobias Brandes (Berlin) 11 / 10

34 Thermodynamics of Wiseman-Milburn Feedback Qubit model: absorption and emission of photons Master equation ρ = Lρ. Feedback couples coherences to populations. ( ) Lp 0 L = L cp L c Tobias Brandes (Berlin) 11 / 10

Feedback Control and Counting Statistics in Quantum Transport Tobias Brandes (Institut für Theoretische Physik, TU Berlin)

Feedback Control and Counting Statistics in Quantum Transport Tobias Brandes (Institut für Theoretische Physik, TU Berlin) Feedback Control and Counting Statistics in Quantum Transport Tobias Brandes (Institut für Theoretische Physik, TU Berlin) Quantum Transport Example: particle counting. Moments, cumulants, generalized

More information

arxiv: v2 [cond-mat.stat-mech] 9 Jul 2012

arxiv: v2 [cond-mat.stat-mech] 9 Jul 2012 epl draft Stochastic thermodynamics for Maxwell demon feedbacks arxiv:1204.5671v2 [cond-mat.stat-mech] 9 Jul 2012 Massimiliano sposito 1 and Gernot Schaller 2 1 Complex Systems and Statistical Mechanics,

More information

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects Massimiliano Esposito Paris May 9-11, 2017 Introduction Thermodynamics in the 19th century: Thermodynamics in the 21th century:

More information

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg The physics of information: from Maxwell s demon to Landauer Eric Lutz University of Erlangen-Nürnberg Outline 1 Information and physics Information gain: Maxwell and Szilard Information erasure: Landauer

More information

Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits

Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits Jukka Pekola, Low Temperature Laboratory Aalto University, Helsinki, Finland Jonne Koski, now ETH Olli-Pentti Saira, now Caltech Ville

More information

LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators

LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators Fluctuation relations U. Seifert, Rep. Prog. Phys. 75, 126001 (2012) Fluctuation relations in a circuit Experiment on a double

More information

Maxwell's Demon in Biochemical Signal Transduction

Maxwell's Demon in Biochemical Signal Transduction Maxwell's Demon in Biochemical Signal Transduction Takahiro Sagawa Department of Applied Physics, University of Tokyo New Frontiers in Non-equilibrium Physics 2015 28 July 2015, YITP, Kyoto Collaborators

More information

PHYS 414 Problem Set 4: Demonic refrigerators and eternal sunshine

PHYS 414 Problem Set 4: Demonic refrigerators and eternal sunshine PHYS 414 Problem Set 4: Demonic refrigerators and eternal sunshine In a famous thought experiment discussing the second law of thermodynamics, James Clerk Maxwell imagined an intelligent being (a demon

More information

Information Thermodynamics on Causal Networks

Information Thermodynamics on Causal Networks 1/39 Information Thermodynamics on Causal Networks FSPIP 2013, July 12 2013. Sosuke Ito Dept. of Phys., the Univ. of Tokyo (In collaboration with T. Sagawa) ariv:1306.2756 The second law of thermodynamics

More information

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Université Libre de Bruxelles Center for Nonlinear Phenomena and Complex Systems Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Massimiliano Esposito

More information

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies Massimiliano Esposito Beijing, August 15, 2016 Introduction Thermodynamics in the 19th century: Thermodynamics in

More information

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements.

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements. Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements Stony Brook University, SUNY Dmitri V Averin and iang Deng Low-Temperature Lab, Aalto University Jukka

More information

Thermal Fluctuation-Induced Electricity Generation across a. Non-Ideal Diode

Thermal Fluctuation-Induced Electricity Generation across a. Non-Ideal Diode Thermal Fluctuation-Induced Electricity Generation across a Non-Ideal Diode Guoan Tai, 1,2 Jinsong Liu, 1,3 Tian Zeng, 1,3 Jizhou Kong, 1,4 and Fuyong Lv 5 1 The State Key Laboratory of Mechanics and Control

More information

Emergent Fluctuation Theorem for Pure Quantum States

Emergent Fluctuation Theorem for Pure Quantum States Emergent Fluctuation Theorem for Pure Quantum States Takahiro Sagawa Department of Applied Physics, The University of Tokyo 16 June 2016, YITP, Kyoto YKIS2016: Quantum Matter, Spacetime and Information

More information

Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems

Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems physica status solidi Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems Philipp Stegmann *,1 and Jürgen König 1 1 Theoretische Physik, Universität Duisburg-Essen

More information

arxiv: v2 [cond-mat.mes-hall] 23 Jun 2011

arxiv: v2 [cond-mat.mes-hall] 23 Jun 2011 Charge Qubit Purification by an Electronic Feedback Loop Gerold Kießlich, Gernot Schaller, Clive Emary, and Tobias Brandes Institut für Theoretische Physik, Hardenbergstraße 36, Technische Universität

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Information and Physics Landauer Principle and Beyond

Information and Physics Landauer Principle and Beyond Information and Physics Landauer Principle and Beyond Ryoichi Kawai Department of Physics University of Alabama at Birmingham Maxwell Demon Lerner, 975 Landauer principle Ralf Landauer (929-999) Computational

More information

arxiv: v1 [cond-mat.stat-mech] 8 Jul 2013

arxiv: v1 [cond-mat.stat-mech] 8 Jul 2013 Maxwell s Refrigerator: An Exactly Solvable Model Dibyendu Mandal 1, H. T. Quan,3 and Christopher Jarzynski,4 1 Department of Physics, University of Maryland, College Park, Maryland 074, U.S.A. Department

More information

Quantum heat engine using energy quantization in potential barrier

Quantum heat engine using energy quantization in potential barrier Quantum heat engine using energy quantization in potential barrier Sibasish Ghosh Optics and Quantum Information Group The Institute of Mathematical Sciences C.I.T. Campus, Taramani Chennai 600113. [In

More information

Second law, entropy production, and reversibility in thermodynamics of information

Second law, entropy production, and reversibility in thermodynamics of information Second law, entropy production, and reversibility in thermodynamics of information Takahiro Sagawa arxiv:1712.06858v1 [cond-mat.stat-mech] 19 Dec 2017 Abstract We present a pedagogical review of the fundamental

More information

Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System

Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System Tiago Barbin Batalhão SUTD, Singapore Work done while at UFABC, Santo André, Brazil Singapore, January 11th, 2017

More information

Simple quantum feedback. of a solid-state qubit

Simple quantum feedback. of a solid-state qubit e Vg qubit (SCPB) V Outline: detector (SET) Simple quantum feedback of a solid-state qubit Alexander Korotkov Goal: keep coherent oscillations forever qubit detector controller fidelity APS 5, LA, 3//5.....3.4

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Quantum Transport through Coulomb-Blockade Systems

Quantum Transport through Coulomb-Blockade Systems Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron

More information

Methodology for the digital simulation of open quantum systems

Methodology for the digital simulation of open quantum systems Methodology for the digital simulation of open quantum systems R B Sweke 1, I Sinayskiy 1,2 and F Petruccione 1,2 1 Quantum Research Group, School of Physics and Chemistry, University of KwaZulu-Natal,

More information

AN INTRODUCTION CONTROL +

AN INTRODUCTION CONTROL + AN INTRODUCTION CONTROL + QUANTUM CIRCUITS AND COHERENT QUANTUM FEEDBACK CONTROL Josh Combes The Center for Quantum Information and Control, University of New Mexico Quantum feedback control Parameter

More information

Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production

Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production entropy Article Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production Qian Zeng and Jin Wang,2, * State Key Laboratory of Electroanalytical Chemistry,

More information

Even if you're not burning books, destroying information generates heat.

Even if you're not burning books, destroying information generates heat. Even if you're not burning books, destroying information generates heat. Information and Thermodynamics: Experimental verification of Landauer's erasure principle with a colloidal particle Antoine Bérut,

More information

arxiv: v1 [cond-mat.stat-mech] 6 Jul 2015

arxiv: v1 [cond-mat.stat-mech] 6 Jul 2015 Santa Fe Institute Working Paper 15-07-XXX arxiv.org:1507.xxxx [cond-mat.stat-mech] Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets arxiv:1507.01537v1 [cond-mat.stat-mech] 6 Jul

More information

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS QUANTUM MEASUREMENT THEORY AND ITS APPLICATIONS KURT JACOBS University of Massachusetts at Boston fg Cambridge WW UNIVERSITY PRESS Contents Preface page xi 1 Quantum measurement theory 1 1.1 Introduction

More information

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012 arxiv:119.658v2 cond-mat.stat-mech] 16 Mar 212 Fluctuation theorems in presence of information gain and feedback Sourabh Lahiri 1, Shubhashis Rana 2 and A. M. Jayannavar 3 Institute of Physics, Bhubaneswar

More information

Beyond the Second Law of Thermodynamics

Beyond the Second Law of Thermodynamics Beyond the Second Law of Thermodynamics C. Van den Broeck R. Kawai J. M. R. Parrondo Colloquium at University of Alabama, September 9, 2007 The Second Law of Thermodynamics There exists no thermodynamic

More information

arxiv: v2 [cond-mat.stat-mech] 3 Jun 2018

arxiv: v2 [cond-mat.stat-mech] 3 Jun 2018 Marginal and Conditional Second Laws of Thermodynamics Gavin E. Crooks 1 and Susanne Still 2 1 Theoretical Institute for Theoretical Science 2 University of Hawai i at Mānoa Department of Information and

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Thermodynamic Computing. Forward Through Backwards Time by RocketBoom

Thermodynamic Computing. Forward Through Backwards Time by RocketBoom Thermodynamic Computing 1 14 Forward Through Backwards Time by RocketBoom The 2nd Law of Thermodynamics Clausius inequality (1865) S total 0 Total Entropy increases as time progresses Cycles of time R.Penrose

More information

arxiv: v2 [quant-ph] 22 Jan 2018

arxiv: v2 [quant-ph] 22 Jan 2018 1 Information is not a thermodynamic resource 1 Robert Alicki, Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Poland arxiv:1801.05237v2 [quant-ph] 22 Jan 2018 The so-called information-thermodynamics

More information

Efficiency at Maximum Power in Weak Dissipation Regimes

Efficiency at Maximum Power in Weak Dissipation Regimes Efficiency at Maximum Power in Weak Dissipation Regimes R. Kawai University of Alabama at Birmingham M. Esposito (Brussels) C. Van den Broeck (Hasselt) Delmenhorst, Germany (October 10-13, 2010) Contents

More information

Introduction to Fluctuation Theorems

Introduction to Fluctuation Theorems Hyunggyu Park Introduction to Fluctuation Theorems 1. Nonequilibrium processes 2. Brief History of Fluctuation theorems 3. Jarzynski equality & Crooks FT 4. Experiments 5. Probability theory viewpoint

More information

arxiv: v1 [quant-ph] 30 Jul 2012

arxiv: v1 [quant-ph] 30 Jul 2012 Thermodynamic Wor Gain from Entanglement arxiv:1207.6872v1 [quant-ph] 30 Jul 2012 Ken Funo, 1 Yu Watanabe, 2 and asahito Ueda 1 1 Department of Physics, The University of Toyo, 7-3-1 Hongo, unyo-u, Toyo,

More information

Non-Markovian Quantum Dynamics of Open Systems: Foundations and Perspectives

Non-Markovian Quantum Dynamics of Open Systems: Foundations and Perspectives Non-Markovian Quantum Dynamics of Open Systems: Foundations and Perspectives Heinz-Peter Breuer Universität Freiburg QCCC Workshop, Aschau, October 2007 Contents Quantum Markov processes Non-Markovian

More information

Fundamental work cost of quantum processes

Fundamental work cost of quantum processes 1607.03104 1709.00506 Fundamental work cost of quantum processes Philippe Faist 1,2, Renato Renner 1 1 Institute for Theoretical Physics, ETH Zurich 2 Institute for Quantum Information and Matter, Caltech

More information

Spin Filtering: how to write and read quantum information on mobile qubits

Spin Filtering: how to write and read quantum information on mobile qubits Spin Filtering: how to write and read quantum information on mobile qubits Amnon Aharony Physics Department and Ilse Katz Nano institute Ora Entin-Wohlman (BGU), Guy Cohen (BGU) Yasuhiro Tokura (NTT) Shingo

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS

COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS Kavli Institute for Theoretical Physics, Santa Barbara, 2013 John Gough Quantum Structures, Information and Control, Aberystwyth Papers J.G. M.R. James, Commun.

More information

MICROREVERSIBILITY AND TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS AND THERMODYNAMICS

MICROREVERSIBILITY AND TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS AND THERMODYNAMICS MICROREVERSIBILITY AND TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS AND THERMODYNAMICS Pierre GASPARD Université Libre de Bruxelles, Brussels, Belgium David ANDRIEUX, Brussels & Yale Massimiliano

More information

Physical description of nature from a system-internal viewpoint. Abstract

Physical description of nature from a system-internal viewpoint. Abstract Physical description of nature from a system-internal viewpoint Lee Jinwoo 1, and Hajime Tanaka 2, 1 Department of Mathematics, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 139-701, Korea arxiv:1705.01234v1

More information

arxiv: v2 [cond-mat.stat-mech] 28 Mar 2013

arxiv: v2 [cond-mat.stat-mech] 28 Mar 2013 Distribution of Entropy Production in a Single-Electron Box arxiv:303.6405v2 [cond-mat.stat-mech] 28 Mar 203 J. V. Koski, T. Sagawa, 2 O.-P. Saira,,3 Y. Yoon, A. Kutvonen, 4 P. Solinas,,4 M. Möttönen,,5

More information

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Tillmann Kubis, Gerhard Klimeck Department of Electrical and Computer Engineering Purdue University, West Lafayette, Indiana

More information

arxiv: v1 [cond-mat.stat-mech] 10 Feb 2010

arxiv: v1 [cond-mat.stat-mech] 10 Feb 2010 Minimal model of a heat engine: An information theory approach Yun Zhou and Dvira Segal Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 8 Saint George St. Toronto, Ontario,

More information

Optimal quantum driving of a thermal machine

Optimal quantum driving of a thermal machine Optimal quantum driving of a thermal machine Andrea Mari Vasco Cavina Vittorio Giovannetti Alberto Carlini Workshop on Quantum Science and Quantum Technologies ICTP, Trieste, 12-09-2017 Outline 1. Slow

More information

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors Joël Peguiron Department of Physics and Astronomy, University of Basel, Switzerland Work done with Milena Grifoni at Kavli

More information

Entropy Production and Fluctuation Relations in NonMarkovian Systems

Entropy Production and Fluctuation Relations in NonMarkovian Systems Entropy Production and Fluctuation Relations in NonMarkovian Systems Tapio Ala-Nissilä Department of Applied Physics and COMP CoE, Aalto University School of Science (formerly Helsinki University of Technology),

More information

Relating Maxwell s Demon and Quantitative Analysis of Information Leakage for Practical Imperative Programs

Relating Maxwell s Demon and Quantitative Analysis of Information Leakage for Practical Imperative Programs Relating Maxwell s Demon and Quantitative Analysis of Information Leakage for Practical Imperative Programs Kushal Anjaria, Arun Mishra To cite this version: Kushal Anjaria, Arun Mishra. Relating Maxwell

More information

Coulomb blockade in metallic islands and quantum dots

Coulomb blockade in metallic islands and quantum dots Coulomb blockade in metallic islands and quantum dots Charging energy and chemical potential of a metallic island Coulomb blockade and single-electron transistors Quantum dots and the constant interaction

More information

Landauer s principle in the quantum domain

Landauer s principle in the quantum domain Landauer s principle in the quantum domain Janet Anders Dept of Physics & Astronomy University College London London WC1E 6BT, UK j.anders@ucl.ac.uk Saroosh Shabbir Stefanie Hilt Department of Physics

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

arxiv: v1 [physics.class-ph] 14 Apr 2012

arxiv: v1 [physics.class-ph] 14 Apr 2012 arxiv:1204.4895v1 [physics.class-ph] 14 Apr 2012 IS THE CLAUSIUS INEQUALITY A CONSEQUENCE OF THE SECOND LAW? ALEXEY V. GAVRILOV Abstract. We present an analysis of the foundations of the well known Clausius

More information

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition Kerson Huang CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group an Informa

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at

More information

Entropy and Free Energy in Biology

Entropy and Free Energy in Biology Entropy and Free Energy in Biology Energy vs. length from Phillips, Quake. Physics Today. 59:38-43, 2006. kt = 0.6 kcal/mol = 2.5 kj/mol = 25 mev typical protein typical cell Thermal effects = deterministic

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Schottky Rectifiers Zheng Yang (ERF 3017,

Schottky Rectifiers Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 Metal-Semiconductor Contact The work function

More information

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 xi Contents Preface Preface to the Third Edition Preface to the Second Edition Preface to the First Edition v vii viii ix 1 Introduction 1 I GENERAL THEORY OF OPEN QUANTUM SYSTEMS 5 Diverse limited approaches:

More information

Full counting statistics in quantum thermodynamics Absorption refrigerator at strong coupling

Full counting statistics in quantum thermodynamics Absorption refrigerator at strong coupling Full counting statistics in quantum thermodynamics Absorption refrigerator at strong coupling Dvira Segal Department of Chemistry University of Toronto Publications Method Full counting statistics for

More information

Transient Dissipation and Structural Costs of Physical Information Transduction

Transient Dissipation and Structural Costs of Physical Information Transduction Santa Fe Institute Working Paper 2017-01-01 arxiv.org:1612.08616 [cond-mat.stat-mech] Transient Dissipation and Structural Costs of Physical Information Transduction Alexander B. Boyd, 1, Dibyendu Mandal,

More information

Determination of the tunnel rates through a few-electron quantum dot

Determination of the tunnel rates through a few-electron quantum dot Determination of the tunnel rates through a few-electron quantum dot R. Hanson 1,I.T.Vink 1, D.P. DiVincenzo 2, L.M.K. Vandersypen 1, J.M. Elzerman 1, L.H. Willems van Beveren 1 and L.P. Kouwenhoven 1

More information

Spatio-Temporal Quantum Steering

Spatio-Temporal Quantum Steering The 8 th IWSSQC Dec. 14 (2016) Spatio-Temporal Quantum Steering Y. N. Chen*, C. M. Li, N. Lambert, Y. Ota, S. L. Chen, G. Y. Chen, and F. Nori, Phys. Rev. A 89, 032112 (2014) S. L. Chen, N. Lambert, C.

More information

Quantum error correction for continuously detected errors

Quantum error correction for continuously detected errors Quantum error correction for continuously detected errors Charlene Ahn, Toyon Research Corporation Howard Wiseman, Griffith University Gerard Milburn, University of Queensland Quantum Information and Quantum

More information

Quantum Thermodynamics

Quantum Thermodynamics Quantum Thermodynamics In this chapter we wish to give some insights to quantum thermodynamics. It can be seen as an introduction to the topic, however not a broad one but rather an introduction by examples.

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Thermodynamics of feedback controlled systems. Francisco J. Cao

Thermodynamics of feedback controlled systems. Francisco J. Cao Thermodynamics of feedback controlled systems Francisco J. Cao Open-loop and closed-loop control Open-loop control: the controller actuates on the system independently of the system state. Controller Actuation

More information

Forum for Electromagnetic Research Methods and Application Technologies (FERMAT)

Forum for Electromagnetic Research Methods and Application Technologies (FERMAT) Forum for Electromagnetic Research Methods and Application Technologies (FERMAT) Entanglement of two-level atoms above graphene Andrei Nemilentsau, Seyyed Ali Hassani, George Hanson Department of Electrical

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Einselection without pointer states -

Einselection without pointer states - Einselection without pointer states Einselection without pointer states - Decoherence under weak interaction Christian Gogolin Universität Würzburg 2009-12-16 C. Gogolin Universität Würzburg 2009-12-16

More information

Dispersion interactions with long-time tails or beyond local equilibrium

Dispersion interactions with long-time tails or beyond local equilibrium Dispersion interactions with long-time tails or beyond local equilibrium Carsten Henkel PIERS session Casimir effect and heat transfer (Praha July 2015) merci à : G. Barton (Sussex, UK), B. Budaev (Berkeley,

More information

Closed-loop analysis of a thermo-charged capacitor

Closed-loop analysis of a thermo-charged capacitor Closed-loop analysis of a thermo-charged capacitor arxiv:1407.6627v2 [physics.gen-ph] 4 May 2015 Germano D Abramo Istituto Nazionale di Astrofisica, Roma, Italy E mail: Germano.Dabramo@iaps.inaf.it Abstract

More information

Report on article Universal Quantum Simulator by Seth Lloyd, 1996

Report on article Universal Quantum Simulator by Seth Lloyd, 1996 Report on article Universal Quantum Simulator by Seth Lloyd, 1996 Louis Duvivier Contents 1 Context and motivations 1 1.1 Quantum computer.......................... 2 1.2 Quantum simulation.........................

More information

Interference: from quantum mechanics to nanotechnology

Interference: from quantum mechanics to nanotechnology Interference: from quantum mechanics to nanotechnology Andrea Donarini L. de Broglie P. M. A. Dirac A photon interferes only with itself Double slit experiment: (London, 1801) T. Young Phil. Trans. R.

More information

Electronic transport and measurements in mesoscopic systems. S. Gurvitz. Weizmann Institute and NCTS. Outline:

Electronic transport and measurements in mesoscopic systems. S. Gurvitz. Weizmann Institute and NCTS. Outline: Electronic transport and measurements in mesoscopic systems S. Gurvitz Weizmann Institute and NCTS Outline: 1. Single-electron approach to electron transport. 2. Quantum rate equations. 3. Decoherence

More information

Currents from hot spots

Currents from hot spots NANO-CTM Currents from hot spots Markus Büttiker, Geneva with Björn Sothmann, Geneva Rafael Sanchez, Madrid Andrew N. Jordan, Rochester Summer School "Energy harvesting at micro and nanoscales, Workshop

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Schottky diodes. JFETs - MESFETs - MODFETs

Schottky diodes. JFETs - MESFETs - MODFETs Technische Universität Graz Institute of Solid State Physics Schottky diodes JFETs - MESFETs - MODFETs Quasi Fermi level When the charge carriers are not in equilibrium the Fermi energy can be different

More information

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio Non equilibrium thermodynamic transformations Giovanni Jona-Lasinio Kyoto, July 29, 2013 1. PRELIMINARIES 2. RARE FLUCTUATIONS 3. THERMODYNAMIC TRANSFORMATIONS 1. PRELIMINARIES Over the last ten years,

More information

Non-Equilibrium Master Equations

Non-Equilibrium Master Equations Non-Equilibrium Master Equations Vorlesung gehalten im Rahmen des GRK 1558 Wintersemester 214/215 Technische Universität Berlin Dr. Gernot Schaller February 12, 215 2 Contents 1 An introduction to Master

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Fluctuation theorems. Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009

Fluctuation theorems. Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009 Fluctuation theorems Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009 Outline Introduction Equilibrium systems Theoretical background Non-equilibrium systems Fluctuations and small

More information

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin Time-dependent single-electron transport: irreversibility and out-of-equilibrium Klaus Ensslin Solid State Physics Zürich 1. quantum dots 2. electron counting 3. counting and irreversibility 4. Microwave

More information

Zero and negative energy dissipation at information-theoretic erasure

Zero and negative energy dissipation at information-theoretic erasure In press at J. Computational Electronics. http://vixra.org/abs/1507.0221 http://arxiv.org/abs/1507.08906 Zero and negative energy dissipation at information-theoretic erasure Laszlo Bela Kish, Claes-Göran

More information

Temperature and Pressure Controls

Temperature and Pressure Controls Ensembles Temperature and Pressure Controls 1. (E, V, N) microcanonical (constant energy) 2. (T, V, N) canonical, constant volume 3. (T, P N) constant pressure 4. (T, V, µ) grand canonical #2, 3 or 4 are

More information

Demon Dynamics: Deterministic Chaos, the Szilard Map, & the Intelligence of Thermodynamic Systems.

Demon Dynamics: Deterministic Chaos, the Szilard Map, & the Intelligence of Thermodynamic Systems. Demon Dynamics: Deterministic Chaos, the Szilard Map, & the Intelligence of Thermodynamic Systems http://csc.ucdavis.edu/~cmg/ Jim Crutchfield Complexity Sciences Center Physics Department University of

More information

Büttiker s probe in molecular electronics: Applications to charge and heat transport

Büttiker s probe in molecular electronics: Applications to charge and heat transport Büttiker s probe in molecular electronics: Applications to charge and heat transport Dvira Segal Department of Chemistry University of Toronto Michael Kilgour (poster) Büttiker s probe in molecular electronics:

More information

Entropy and Free Energy in Biology

Entropy and Free Energy in Biology Entropy and Free Energy in Biology Energy vs. length from Phillips, Quake. Physics Today. 59:38-43, 2006. kt = 0.6 kcal/mol = 2.5 kj/mol = 25 mev typical protein typical cell Thermal effects = deterministic

More information

The Toric-Boson model and quantum memory at finite temperature

The Toric-Boson model and quantum memory at finite temperature The Toric-Boson model and quantum memory at finite temperature A.H., C. Castelnovo, C. Chamon Phys. Rev. B 79, 245122 (2009) Overview Classical information can be stored for arbitrarily long times because

More information

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle Bruce Turkington Univ. of Massachusetts Amherst An optimization principle for deriving nonequilibrium

More information

Quantum and Information Thermodynamics: A Unifying Framework based on Repeated Interactions

Quantum and Information Thermodynamics: A Unifying Framework based on Repeated Interactions Quantum and Information Thermodynamics: A nifying Framework based on Repeated Interactions Philipp trasberg, Gernot challer, and Tobias Brandes Institut für Theoretische Physik, Technische niversität Berlin,

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information