Feedback Control and Counting Statistics in Quantum Transport Tobias Brandes (Institut für Theoretische Physik, TU Berlin)

Size: px
Start display at page:

Download "Feedback Control and Counting Statistics in Quantum Transport Tobias Brandes (Institut für Theoretische Physik, TU Berlin)"

Transcription

1 Feedback Control and Counting Statistics in Quantum Transport Tobias Brandes (Institut für Theoretische Physik, TU Berlin) Quantum Transport Example: particle counting. Moments, cumulants, generalized density operators. Quantum dots. Feedback control Introduction, various kinds of feedback control. Wiseman-Milburn control. Information and thermodynamics, Maxwell demon control. (Talk on Tuesday) Time-versus-number feedback control. A recent experiment with quantum dots. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

2 Feedback control Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

3 Feedback control Centrifugal governor, Boulton and Watt Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

4 Feedback control Centrifugal governor, Boulton and Watt Stochastic cooling of particle collider beam, S. van der Meer (1972), Nobel Prize (1984) - discovery of W and Z bosons. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

5 Feedback control Centrifugal governor, Boulton and Watt Photodetector signal corrects laser diode pump current, S. Machida, Y. Yamamoto (1986). Stochastic cooling of particle collider beam, S. van der Meer (1972), Nobel Prize (1984) - discovery of W and Z bosons. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

6 Feedback control Centrifugal governor, Boulton and Watt Photodetector signal corrects laser diode pump current, S. Machida, Y. Yamamoto (1986). Stochastic cooling of particle collider beam, S. van der Meer (1972), Nobel Prize (1984) - discovery of W and Z bosons. Feedback control of a single-atom trajectory, A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P. W. H. Pinkse, K. Murr and G. Rempe (2009). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

7 Feedback control Challenge for Quantum Systems Unitary dynamics versus measurement process. How to model the feedback loop? H. M. Wiseman, G. J. Milburn, Quantum measurement and Control (2009) Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

8 Passive versus active feedback (Passive) Coherent feedback control of quantum transport C. Emary, J. Gough, PRB 90, (2014). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

9 Passive versus active feedback (Passive) Coherent feedback control of quantum transport C. Emary, J. Gough, PRB 90, (2014). (Passive) Cavity in waveguide J. Kabuss, D. O. Krimer, S. Rotter, K. Stannigel, A. Knorr, and A. Carmele, PRA 92, (2015). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

10 Passive versus active feedback (Passive) Coherent feedback control of quantum transport (Active): feedback control of electron counting statistics. C. Emary, J. Gough, PRB 90, (2014). (Passive) Cavity in waveguide TB; Phys. Rev. Lett. 105, (2010); T. Wagner, P. Strasberg, J. C. Bayer, E. P. Rugeramigabo, TB, R. J. Haug; nature J. Kabuss, D. O. Krimer, S. Rotter, K. nanotechnology (2016). Stannigel, A. Knorr, and A. Carmele, PRA 92, (2015). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

11 Active feedback master equation General setup Open system Hamiltonian. H = H S + H res + H T. HS system. Hres reservoir. H T system-reservoir coupling. G. Schaller, Open Quantum Systems Far From Equilibibrium (2014) Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

12 Active feedback master equation Quantum jumps n-resolved density operator ρ(t) n=0 ρ(n) (t) Stochastic trajectories {x n } = x n,..., x 1 : jumps of type l i at time t i. path integral ρ (n) (t) = M l 1 =1,...,l n=1 t 0 t2 dt n... dt 1 ρ(t {x n }). 0 Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

13 Active feedback master equation Without feedback n-resolved density operator ρ(t) n=0 ρ(n) (t) Stochastic trajectories {x n } = x n,..., x 1 : jumps of type l i at time t i. path integral ρ (n) (t) = M l 1 =1,...,l n=1 t 0 t2 dt n... dt 1 ρ(t {x n }). 0 Without feedback: ρ(t {x n }) S t tn J ln S tn t n 1 J ln 1...J l1 S t1 ρ in. Reduced density matrix ρ(t) = Lρ(t), L L 0 + J, S t e L 0t. Moelmer, Zoller, Hegerfeldt, Carmichael, s Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

14 Active feedback master equation With feedback n-resolved density operator ρ(t) n=0 ρ(n) (t) Stochastic trajectories {x n } = x n,..., x 1 : jumps of type l i at time t i. path integral ρ (n) (t) = With feedback: M l 1 =1,...,l n=1 t 0 t2 dt n... dt 1 ρ(t {x n }). 0 ρ(t {x n }) = S(t {x n })J ln (t n {x n 1 })S(t n {x n 1 })... J l2 (t 2 {x 1 })S(t 2 {x 1 })J l1 (t 1 )S(t 1 )ρ in. Future time evolution conditioned upon full trajectory. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

15 Active feedback master equation Feedback protocols 0 Open loop control, J l (t {x n }) = J l (t). 1 Feedback conditioned on the previous jump, J l (t {x n }) = J lln (t t n ). Wiseman-Milburn quantum feedback control, Jlln (t t n ) = e K l J l. Wiseman, Milburn ( 90s); Pöltl, Emary TB (2011); Schaller, Kiesslich, Emary, TB (2011); Kiesslich, Emary, Schaller, TB (2012); Daryanoosh, Wiseman, TB (2016). Waiting time feedback control TB, Emary (2016). Delayed quantum control, Emary (2013). 2 Time-versus-number feedback, J l (t {x n }) = J l (t, n). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

16 Wiseman-Milburn feedback Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

17 Wiseman-Milburn feedback The idea Dissipation originates from quantum jumps. Fight dissipation by acting immediately after each jump: feedback control. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

18 Wiseman-Milburn feedback Counting fields and feedback ρ = (L 0 + e iχ J )ρ, counting field χ. (R. J. Cook 1981). FEEDBACK: complex number e iχ superoperator e K (Wiseman, s). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

19 Wiseman-Milburn feedback Stabilization: the effective Hamiltonian (C. Emary, 2011) Quantum jump ρ J ρ. Non-jump ρ e L 0τ ρ. Mixes up everything. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

20 Wiseman-Milburn feedback Stabilization: the effective Hamiltonian Quantum jump ρ J ρ. Non-jump ρ e L0τ ρ. Mixes up everything. FEEDBACK IDEA: No mixing if L 0 ρ k = λ k ρ k. Compensate quantum jumps by rotation into ρ k via e K J ρ = ρ k. eigenvalue problem to determine K in L 0 e K J ρ k = λ k ρ k. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

21 Wiseman-Milburn feedback Stabilization: the effective Hamiltonian Effective, non-hermitian Hamiltonian H eff via L 0 ρ = i(h eff ρ ρh eff ). Eigenstates ρ k = Ψ k Ψ k of L 0 are pure density matrices. The Ψ k are (right) eigenstates of H eff. (Non-hermitian part of H eff contains the back-action of the measurement process.) Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

22 Wiseman-Milburn feedback: charge qubit C. Pöltl, C. Emary, TB; Phys. Rev. B 84, (2011). Γ L T C Γ R µ L Effective Hamiltonian ǫ L ǫ R H eff H S iγ L iγ R 2 R R µ R Pure eigenstates 0 0, ψ ± ψ ± Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

23 Wiseman-Milburn feedback: charge qubit Control Stabilization Electron tunnels into L which is instantaneously rotated into ψ + (alternatively, ψ ). effective single level system, decay rate γ (±) R 2Iε ± C L Γ L T C Γ R Γ L γ (j) R µ L µ L ǫ L ǫ R Stabilized µ R µ R Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

24 Wiseman-Milburn feedback: charge qubit Controlled master equation C L Γ L T C Γ R ρ = (L 0 + C L J L + J R ) µ L C L e 2iθ C n 0 Σ, Σρ [σ, ρ] ǫ L ǫ R µ R Rotation in Liouville-space about angle θ C around direction n 0 = (sin θ, 0, cos θ), Pauli matrix vector σ. Every qubit rotation as possible control operation, J. Wang and H. M. Wiseman, Phys. Rev. A 64, (2001). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

25 Wiseman-Milburn feedback: charge qubit Controlled master equation C L Γ L T C Γ R ρ = (L 0 + C L J L + J R ) µ L C L e 2iθ C n 0 Σ, Σρ [σ, ρ] ǫ L ǫ R µ R Rotation in Liouville-space about angle θ C around direction n 0 = (sin θ, 0, cos θ), Pauli matrix vector σ. Every qubit rotation as possible control operation, J. Wang and H. M. Wiseman, Phys. Rev. A 64, (2001). Project out empty state (Γ L ). Bloch representation of stationary state ρ stat = ( σ x, σ y, σ z ). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

26 Wiseman-Milburn feedback: charge qubit Right eigenvalues of H eff : ε 0 = i Γ L 2, ε = 1 ( iγr 16TC 2 4 ) Γ2 R Bloch sphere σ z Eigenstates of the free Liouvillian For Γ R >4T C : σ x =0, σ y = 4T C Γ R, σ z = For Γ R <4T C : 16T 2 σ C Γ 2 R x =, σ y = Γ R, 4T C 4T C Γ 2 R 16T 2 C Γ R σ z =0 ρ σ y ρ wo ρ ++ σ x Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

27 Maxwell demon type feedback Introduction Maxwell s thought experiment Two volumes of gas in equilibrium separated by sliding door. Demon opens/closes door, separates fast from slow gas molecules. Decrease of entropy.... to show that the second law of thermodynamics has only a statistical certainty. Concept of a transport device that acts like Maxwell s demon. Colloquium: The physics of Maxwell s demon and information; K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

28 Maxwell demon type feedback Single electron transistor Modify tunnel rates, e.g. Γ R, depending on dot occupation. G. Schaller, C. Emary, G. Kießlich, TB; Phys. Rev. B 84, (2011). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

29 Maxwell demon type feedback Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

30 Maxwell demon type feedback Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n Without feedback: Identical microscopic forward and backward rates Γ = Γ. Local detailed balance condition with affinity A, γ γ = ea, A µ L µ R k B T Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

31 Maxwell demon type feedback Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n With feedback: Different forward and backward rates Γ Γ ( by hand ) Violates local detailed balance condition, γ γ = ea+ln Γ Γ, A µ L µ R k B T Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

32 Maxwell demon type feedback Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n Elevate (violated) local detailed balance to modified exchange fluctuation theorem p n (t) p n (t) = e(a+ln Γ Γ )n, A µ L µ R k B T. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

33 Maxwell demon type feedback Single junction: Interpretation Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n(t) p n (t) = e(a+ln Γ Γ)n, A µ L µ R k B T. Stationary charge current J = γ γ (set e = 1). With feedback Γ Γ finite J even for zero voltage drop. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

34 Maxwell demon type feedback Single junction: Interpretation Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n(t) p n (t) = e(a+ln Γ Γ)n, A µ L µ R k B T. Only n (number of transfered charges) thermodyn. relevant. Shannon entropy S n p n ln p n. Decompose Ṡ = Ṡe + Ṡi with Ṡi 0, J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976); M. Esposito, C. Van den Broek, Phys. Rev. E 82, (2010). lim t p n (t) p n (t) = t eṡi, Ṡ i = AJ + ln J, J γ γ Γ Γ Ṡ i = dissipated electric power per k B T plus information current. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

35 Maxwell demon type feedback Single junction: Interpretation Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n(t) p n (t) = e(a+ln Γ Γ)n, A µ L µ R k B T. Information gain via feedback modifies exchange fluctuation relation. General scenario T. Sagawa and M. Ueda ( 08), J. M. P. Parrondo ( 11); D. Abreu, U. Seifert ( 12); T. Munakata, M. L. Rosinberg ( 12); H. Tasaki ( 13); J. M. Horowitz, M. Esposito ( 14); D. Hartich, A. C. Barato, U. Seifert ( 14); J. M. Horowitz ( 15); J. M. Horowitz, K. Jacobs ( 15) Example e β(w F ) I = 1 modified Jarzynski relation. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

36 Feedback controlled tunnel barrier Single electron transistor Rate equation ρ = Lρ, ρ = (ρ 0, ρ 1 ) T. Explicitely break local detailed balance: L = α=l,r ( Γα f α Γ α (1 f α )e iχ Γ α f α Γ α (1 f α ) ) G. Schaller, C. Emary, G. Kießlich, TB; Phys. Rev. B 84, (2011). Fluctuation relation (affinity A V /k B T, voltage V µ L µ R ) lim t p n (t) p n (t) = e ( A+ln Γ R Γ +ln Γ ) L n R Γ L. M. Esposito, G. Schaller; EPL 99, (2012). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

37 Feedback controlled tunnel barrier Single electron transistor Fluctuation relation (affinity A V /k B T, voltage V µ L µ R ) lim t p n (t) p n (t) = e ( A+ln Γ R Γ +ln Γ ) L n R Γ L. M. Esposito, G. Schaller; EPL 99, (2012). Term ln Γ R + ln Γ L Γ R Γ L as offset-voltage = V /k B T G. Schaller, C. Emary, G. Kießlich, TB; Phys. Rev. B 84, (2011). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

38 Hardwiring the demon Key idea Microscopic model for larger system : SET + detector. Reduced SET dynamics described by effective model as above. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

39 Hardwiring the demon Thermoelectric device V 1, T 1 V 2, T 2 I Energy to current converter. Different temperatures in different parts of the system. Energy-dependent tunnel rates. charge conducting quantum dot gate quantum dot V g, T g J g R. Sánchez, M. Büttiker, Phys. Rev. B 83, (2011); Europhys. Lett. 100, (2012). V1 C1 C2 C Vg Cg V2 Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

40 Hardwiring the demon Single level SET (bottom, two reservoirs L/R) and detector (top, one reservoir) States 0E, 0F, 1E, 1F. Energies 0, ɛ s, ɛ d, ɛ s + ɛ d + U. Energy dependent rates. P. Strasberg, G. Schaller, TB, M. Esposito, Phys. Rev. Lett. 110, (2013). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

41 Hardwiring the demon State of the demon P. Strasberg, G. Schaller, TB, M. Esposito, Phys. Rev. Lett. 110, (2013). E State of the SET Detector requirements: Fast ΓD, Γ U D Γ α, Γ U α. Precise U k B T D. SET requirements: Spatial asymmetry Γ U R Γ U L, Γ L Γ R. F Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

42 Maxwell demon limit Reduced SET dynamics Full rate equation ρ ij = i j W ij,i j ρ i j Separation of time scales for fast detector Γ D, Γ U D Γ α, Γ U α. Technical trick: use conditional stationary probabilities M. Esposito, Phys. Rev. E 85, (2012). SET rate equation ρ i = i V ii ρ i. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

43 Maxwell demon limit Reduced SET dynamics Full rate equation ρ ij = i j W ij,i j ρ i j Separation of time scales for fast detector Γ D, Γ U D Γ α, Γ U α. Technical trick: use conditional stationary probabilities M. Esposito, Phys. Rev. E 85, (2012). SET rate equation ρ i = i V ii ρ i. Reduced fluctuation theorem for SET with information current I lim t p n (t) = exp [An + I t], p n (t) I t ln f L Uf RΓ U L Γ R fr Uf LΓ U R Γ L n, A µ L µ R k B T. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

44 Maxwell demon limit Reduced SET dynamics Full rate equation ρ ij = i j W ij,i j ρ i j Separation of time scales for fast detector Γ D, Γ U D Γ α, Γ U α. Technical trick: use conditional stationary probabilities M. Esposito, Phys. Rev. E 85, (2012). SET rate equation ρ i = i V ii ρ i. Reduced fluctuation theorem for SET with information current I lim t p n (t) = exp [An + I t], p n (t) I t ln f L Uf RΓ U L Γ R fr Uf LΓ U R Γ L n, A µ L µ R k B T. Reduction to previous model ( feedback by hand ): f U α /f α = 1 I t = (ln Γ U L Γ R/Γ U R Γ L)n Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

45 Maxwell demon limit Energetics: first law Cycle between system energies: ɛ d ɛ s + ɛ d + U ɛ s 0 ɛ d. Net energy U transferred from SET to detector. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

46 Maxwell demon limit Energetics: first law For ɛ S U, modification of first law I E L + I E R = I E D 0 negligible Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

47 Maxwell demon limit Summary of demon conditions Separation of time scales: Fast demon ΓD, Γ U D Γ α, Γ U α. Separation of energy scales: No back-action, precision: k B T U k B T D. Almost no work done: ɛ S U. Spatial/ energy lever condition Γα Γ U α, Γ L Γ (U) R, α = L,R. [( p n (t) lim t p n (t) exp A + ln ΓU L Γ ) ] R Γ U R Γ n, A µ L µ R L k B T. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

48 Maxwell demon limit Where is the demon? Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

49 Maxwell demon limit Where is the demon? Maxwell s demon A feedback mechanism that shuffles particles against a chemical or thermal gradient by adjusting barriers without requiring work. Hardwiring of the feedback mechanism. Information is really physical: rates in term ln ( Γ U L Γ R/Γ U R Γ L). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

50 Summary Transport master equations Example: particle counting. Moments, cumulants, generalized density operators. Quantum dots. Feedback control Introduction, various kinds of feedback control. Wiseman-Milburn control. Information and thermodynamics, Maxwell demon control. Co-workers: G. Schaller (Berlin); C. Emary (Newcastle); C. Pöltl (Strasbourg); M. Esposito, P. Strasberg (Luxembourg) Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School / 14

Hardwiring Maxwell s Demon Tobias Brandes (Institut für Theoretische Physik, TU Berlin)

Hardwiring Maxwell s Demon Tobias Brandes (Institut für Theoretische Physik, TU Berlin) Hardwiring Maxwell s Demon Tobias Brandes (Institut für Theoretische Physik, TU Berlin) Introduction. Feedback loops in transport by hand. by hardwiring : thermoelectric device. Maxwell demon limit. Co-workers:

More information

arxiv: v2 [cond-mat.stat-mech] 9 Jul 2012

arxiv: v2 [cond-mat.stat-mech] 9 Jul 2012 epl draft Stochastic thermodynamics for Maxwell demon feedbacks arxiv:1204.5671v2 [cond-mat.stat-mech] 9 Jul 2012 Massimiliano sposito 1 and Gernot Schaller 2 1 Complex Systems and Statistical Mechanics,

More information

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects Massimiliano Esposito Paris May 9-11, 2017 Introduction Thermodynamics in the 19th century: Thermodynamics in the 21th century:

More information

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Université Libre de Bruxelles Center for Nonlinear Phenomena and Complex Systems Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices Massimiliano Esposito

More information

Maxwell's Demon in Biochemical Signal Transduction

Maxwell's Demon in Biochemical Signal Transduction Maxwell's Demon in Biochemical Signal Transduction Takahiro Sagawa Department of Applied Physics, University of Tokyo New Frontiers in Non-equilibrium Physics 2015 28 July 2015, YITP, Kyoto Collaborators

More information

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements.

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements. Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements Stony Brook University, SUNY Dmitri V Averin and iang Deng Low-Temperature Lab, Aalto University Jukka

More information

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg The physics of information: from Maxwell s demon to Landauer Eric Lutz University of Erlangen-Nürnberg Outline 1 Information and physics Information gain: Maxwell and Szilard Information erasure: Landauer

More information

Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits

Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits Jukka Pekola, Low Temperature Laboratory Aalto University, Helsinki, Finland Jonne Koski, now ETH Olli-Pentti Saira, now Caltech Ville

More information

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies Massimiliano Esposito Beijing, August 15, 2016 Introduction Thermodynamics in the 19th century: Thermodynamics in

More information

LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators

LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators Fluctuation relations U. Seifert, Rep. Prog. Phys. 75, 126001 (2012) Fluctuation relations in a circuit Experiment on a double

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

PHYS 414 Problem Set 4: Demonic refrigerators and eternal sunshine

PHYS 414 Problem Set 4: Demonic refrigerators and eternal sunshine PHYS 414 Problem Set 4: Demonic refrigerators and eternal sunshine In a famous thought experiment discussing the second law of thermodynamics, James Clerk Maxwell imagined an intelligent being (a demon

More information

Information Thermodynamics on Causal Networks

Information Thermodynamics on Causal Networks 1/39 Information Thermodynamics on Causal Networks FSPIP 2013, July 12 2013. Sosuke Ito Dept. of Phys., the Univ. of Tokyo (In collaboration with T. Sagawa) ariv:1306.2756 The second law of thermodynamics

More information

Simple quantum feedback. of a solid-state qubit

Simple quantum feedback. of a solid-state qubit e Vg qubit (SCPB) V Outline: detector (SET) Simple quantum feedback of a solid-state qubit Alexander Korotkov Goal: keep coherent oscillations forever qubit detector controller fidelity APS 5, LA, 3//5.....3.4

More information

Quantum error correction for continuously detected errors

Quantum error correction for continuously detected errors Quantum error correction for continuously detected errors Charlene Ahn, Toyon Research Corporation Howard Wiseman, Griffith University Gerard Milburn, University of Queensland Quantum Information and Quantum

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

MICROREVERSIBILITY AND TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS AND THERMODYNAMICS

MICROREVERSIBILITY AND TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS AND THERMODYNAMICS MICROREVERSIBILITY AND TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS AND THERMODYNAMICS Pierre GASPARD Université Libre de Bruxelles, Brussels, Belgium David ANDRIEUX, Brussels & Yale Massimiliano

More information

A Simple Model of Quantum Trajectories. Todd A. Brun University of Southern California

A Simple Model of Quantum Trajectories. Todd A. Brun University of Southern California A Simple Model of Quantum Trajectories Todd A. Brun University of Southern California Outline 1. Review projective and generalized measurements. 2. A simple model of indirect measurement. 3. Weak measurements--jump-like

More information

COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS

COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS Kavli Institute for Theoretical Physics, Santa Barbara, 2013 John Gough Quantum Structures, Information and Control, Aberystwyth Papers J.G. M.R. James, Commun.

More information

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012 arxiv:119.658v2 cond-mat.stat-mech] 16 Mar 212 Fluctuation theorems in presence of information gain and feedback Sourabh Lahiri 1, Shubhashis Rana 2 and A. M. Jayannavar 3 Institute of Physics, Bhubaneswar

More information

AN INTRODUCTION CONTROL +

AN INTRODUCTION CONTROL + AN INTRODUCTION CONTROL + QUANTUM CIRCUITS AND COHERENT QUANTUM FEEDBACK CONTROL Josh Combes The Center for Quantum Information and Control, University of New Mexico Quantum feedback control Parameter

More information

arxiv: v2 [cond-mat.mes-hall] 23 Jun 2011

arxiv: v2 [cond-mat.mes-hall] 23 Jun 2011 Charge Qubit Purification by an Electronic Feedback Loop Gerold Kießlich, Gernot Schaller, Clive Emary, and Tobias Brandes Institut für Theoretische Physik, Hardenbergstraße 36, Technische Universität

More information

Quantum Transport through Coulomb-Blockade Systems

Quantum Transport through Coulomb-Blockade Systems Quantum Transport through Coulomb-Blockade Systems Björn Kubala Institut für Theoretische Physik III Ruhr-Universität Bochum COQUSY6 p.1 Overview Motivation Single-electron box/transistor Coupled single-electron

More information

Emergent Fluctuation Theorem for Pure Quantum States

Emergent Fluctuation Theorem for Pure Quantum States Emergent Fluctuation Theorem for Pure Quantum States Takahiro Sagawa Department of Applied Physics, The University of Tokyo 16 June 2016, YITP, Kyoto YKIS2016: Quantum Matter, Spacetime and Information

More information

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS QUANTUM MEASUREMENT THEORY AND ITS APPLICATIONS KURT JACOBS University of Massachusetts at Boston fg Cambridge WW UNIVERSITY PRESS Contents Preface page xi 1 Quantum measurement theory 1 1.1 Introduction

More information

Contrasting measures of irreversibility in stochastic and deterministic dynamics

Contrasting measures of irreversibility in stochastic and deterministic dynamics Contrasting measures of irreversibility in stochastic and deterministic dynamics Ian Ford Department of Physics and Astronomy and London Centre for Nanotechnology UCL I J Ford, New J. Phys 17 (2015) 075017

More information

Einselection without pointer states -

Einselection without pointer states - Einselection without pointer states Einselection without pointer states - Decoherence under weak interaction Christian Gogolin Universität Würzburg 2009-12-16 C. Gogolin Universität Würzburg 2009-12-16

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Ultrafast Universal Quantum Control of a Quantum Dot Charge Qubit Using Landau-Zener-Stückelberg Interference Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao,

More information

Wiseman-Milburn Control for the Lipkin-Meshkov-Glick Model

Wiseman-Milburn Control for the Lipkin-Meshkov-Glick Model Wiseman-Milburn Control for the Lipkin-Meshkov-Glick Model Sven Zimmermann, 1 Wassilij Kopylov, 1, and Gernot Schaller 1 1 Institut für Theoretische Physik, Technische Universität Berlin, D-1063 Berlin,

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

Rydberg Quantum Simulation Ground State Preparation by Master Equation

Rydberg Quantum Simulation Ground State Preparation by Master Equation Rydberg Quantum Simulation Ground State Preparation by Master Equation Henri Menke 5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany (Talk: January 29, 2015,

More information

Chapter 2: Interacting Rydberg atoms

Chapter 2: Interacting Rydberg atoms Chapter : Interacting Rydberg atoms I. DIPOLE-DIPOLE AND VAN DER WAALS INTERACTIONS In the previous chapter, we have seen that Rydberg atoms are very sensitive to external electric fields, with their polarizability

More information

Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production

Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production entropy Article Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production Qian Zeng and Jin Wang,2, * State Key Laboratory of Electroanalytical Chemistry,

More information

arxiv: v2 [quant-ph] 1 Oct 2017

arxiv: v2 [quant-ph] 1 Oct 2017 Stochastic thermodynamics of quantum maps with and without equilibrium Felipe Barra and Cristóbal Lledó Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago,

More information

Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System

Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System Tiago Barbin Batalhão SUTD, Singapore Work done while at UFABC, Santo André, Brazil Singapore, January 11th, 2017

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

arxiv: v2 [cond-mat.stat-mech] 3 Jun 2018

arxiv: v2 [cond-mat.stat-mech] 3 Jun 2018 Marginal and Conditional Second Laws of Thermodynamics Gavin E. Crooks 1 and Susanne Still 2 1 Theoretical Institute for Theoretical Science 2 University of Hawai i at Mānoa Department of Information and

More information

Jyrki Piilo. Lecture II Non-Markovian Quantum Jumps. Turku Centre for Quantum Physics Non-Markovian Processes and Complex Systems Group

Jyrki Piilo. Lecture II Non-Markovian Quantum Jumps. Turku Centre for Quantum Physics Non-Markovian Processes and Complex Systems Group UNIVERSITY OF TURKU, FINLAND Lecture II Non-Markovian Quantum Jumps Jyrki Piilo Turku Centre for Quantum Physics Non-Markovian Processes and Complex Systems Group Contents Lecture 1 1. General framework:

More information

arxiv: v2 [cond-mat.stat-mech] 28 Mar 2013

arxiv: v2 [cond-mat.stat-mech] 28 Mar 2013 Distribution of Entropy Production in a Single-Electron Box arxiv:303.6405v2 [cond-mat.stat-mech] 28 Mar 203 J. V. Koski, T. Sagawa, 2 O.-P. Saira,,3 Y. Yoon, A. Kutvonen, 4 P. Solinas,,4 M. Möttönen,,5

More information

Thermal Fluctuation-Induced Electricity Generation across a. Non-Ideal Diode

Thermal Fluctuation-Induced Electricity Generation across a. Non-Ideal Diode Thermal Fluctuation-Induced Electricity Generation across a Non-Ideal Diode Guoan Tai, 1,2 Jinsong Liu, 1,3 Tian Zeng, 1,3 Jizhou Kong, 1,4 and Fuyong Lv 5 1 The State Key Laboratory of Mechanics and Control

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Superconducting qubit oscillator circuit beyond the ultrastrong-coupling regime S1. FLUX BIAS DEPENDENCE OF THE COUPLER S CRITICAL CURRENT The circuit diagram of the coupler in circuit I is shown as the

More information

Methodology for the digital simulation of open quantum systems

Methodology for the digital simulation of open quantum systems Methodology for the digital simulation of open quantum systems R B Sweke 1, I Sinayskiy 1,2 and F Petruccione 1,2 1 Quantum Research Group, School of Physics and Chemistry, University of KwaZulu-Natal,

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

Classical and quantum simulation of dissipative quantum many-body systems

Classical and quantum simulation of dissipative quantum many-body systems 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 Classical and quantum simulation of dissipative quantum many-body systems

More information

Quantum Feedback Stabilized Solid-State Emitters

Quantum Feedback Stabilized Solid-State Emitters FOPS 2015 Breckenridge, Colorado Quantum Feedback Stabilized Solid-State Emitters Alexander Carmele, Julia Kabuss, Sven Hein, Franz Schulze, and Andreas Knorr Technische Universität Berlin August 7, 2015

More information

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

Quantum control of dissipative systems. 1 Density operators and mixed quantum states Quantum control of dissipative systems S. G. Schirmer and A. I. Solomon Quantum Processes Group, The Open University Milton Keynes, MK7 6AA, United Kingdom S.G.Schirmer@open.ac.uk, A.I.Solomon@open.ac.uk

More information

Optimal quantum driving of a thermal machine

Optimal quantum driving of a thermal machine Optimal quantum driving of a thermal machine Andrea Mari Vasco Cavina Vittorio Giovannetti Alberto Carlini Workshop on Quantum Science and Quantum Technologies ICTP, Trieste, 12-09-2017 Outline 1. Slow

More information

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization Diego Porras Outline Spin-boson trapped ion quantum simulators o Rabi Lattice/Jahn-Teller models o Gauge symmetries

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

A Rough Introduction to Quantum Feedback Control

A Rough Introduction to Quantum Feedback Control A Rough Introduction to Quantum Feedback Control Howard Wiseman Centre for Quantum Dynamics, School of Science, Griffith University, Brisbane H. M. Wiseman, KITP 2009 Quantum Feedback: Past, Present and

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

Nonequilibrium thermodynamics at the microscale

Nonequilibrium thermodynamics at the microscale Nonequilibrium thermodynamics at the microscale Christopher Jarzynski Department of Chemistry and Biochemistry and Institute for Physical Science and Technology ~1 m ~20 nm Work and free energy: a macroscopic

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains .. Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains Vladimir M. Stojanović Condensed Matter Theory Group HARVARD UNIVERSITY September 16, 2014 V. M. Stojanović (Harvard)

More information

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors Joël Peguiron Department of Physics and Astronomy, University of Basel, Switzerland Work done with Milena Grifoni at Kavli

More information

Thermodynamic Computing. Forward Through Backwards Time by RocketBoom

Thermodynamic Computing. Forward Through Backwards Time by RocketBoom Thermodynamic Computing 1 14 Forward Through Backwards Time by RocketBoom The 2nd Law of Thermodynamics Clausius inequality (1865) S total 0 Total Entropy increases as time progresses Cycles of time R.Penrose

More information

Efficiency at Maximum Power in Weak Dissipation Regimes

Efficiency at Maximum Power in Weak Dissipation Regimes Efficiency at Maximum Power in Weak Dissipation Regimes R. Kawai University of Alabama at Birmingham M. Esposito (Brussels) C. Van den Broeck (Hasselt) Delmenhorst, Germany (October 10-13, 2010) Contents

More information

Quantum Transport in Ultracold Atoms. Chih-Chun Chien ( 簡志鈞 ) University of California, Merced

Quantum Transport in Ultracold Atoms. Chih-Chun Chien ( 簡志鈞 ) University of California, Merced Quantum Transport in Ultracold Atoms Chih-Chun Chien ( 簡志鈞 ) University of California, Merced Outline Introduction to cold atoms Atomtronics simulating and complementing electronic devices using cold atoms

More information

Information and Physics Landauer Principle and Beyond

Information and Physics Landauer Principle and Beyond Information and Physics Landauer Principle and Beyond Ryoichi Kawai Department of Physics University of Alabama at Birmingham Maxwell Demon Lerner, 975 Landauer principle Ralf Landauer (929-999) Computational

More information

Entropy Production and Fluctuation Relations in NonMarkovian Systems

Entropy Production and Fluctuation Relations in NonMarkovian Systems Entropy Production and Fluctuation Relations in NonMarkovian Systems Tapio Ala-Nissilä Department of Applied Physics and COMP CoE, Aalto University School of Science (formerly Helsinki University of Technology),

More information

Open Quantum Systems

Open Quantum Systems Open Quantum Systems Basics of Cavity QED There are two competing rates: the atom in the excited state coherently emitting a photon into the cavity and the atom emitting incoherently in free space Basics

More information

OIST, April 16, 2014

OIST, April 16, 2014 C3QS @ OIST, April 16, 2014 Brian Muenzenmeyer Dissipative preparation of squeezed states with ultracold atomic gases GW & Mäkelä, Phys. Rev. A 85, 023604 (2012) Caballar et al., Phys. Rev. A 89, 013620

More information

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Gloria Platero Instituto de Ciencia de Materiales (ICMM), CSIC, Madrid, Spain María Busl (ICMM), Rafael Sánchez,Université de Genève Toulouse,

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Quantum feedback control of solid-state qubits

Quantum feedback control of solid-state qubits Quantum feedback control of solid-state qubits The system we consider: qubit + detector qubit H e Vg V I(t) detector I(t) I(t) Double-quantum-qot (DQD) and quantum point contact (QPC) e Cooper-pair box

More information

Transitionless quantum driving in open quantum systems

Transitionless quantum driving in open quantum systems Shortcuts to Adiabaticity, Optimal Quantum Control, and Thermodynamics! Telluride, July 2014 Transitionless quantum driving in open quantum systems G Vacanti! R Fazio! S Montangero! G M Palma! M Paternostro!

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

Fluctuation theorem in systems in contact with different heath baths: theory and experiments.

Fluctuation theorem in systems in contact with different heath baths: theory and experiments. Fluctuation theorem in systems in contact with different heath baths: theory and experiments. Alberto Imparato Institut for Fysik og Astronomi Aarhus Universitet Denmark Workshop Advances in Nonequilibrium

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

C/CS/Phy191 Problem Set 6 Solutions 3/23/05

C/CS/Phy191 Problem Set 6 Solutions 3/23/05 C/CS/Phy191 Problem Set 6 Solutions 3/3/05 1. Using the standard basis (i.e. 0 and 1, eigenstates of Ŝ z, calculate the eigenvalues and eigenvectors associated with measuring the component of spin along

More information

Non-Equilibrium Master Equations

Non-Equilibrium Master Equations Non-Equilibrium Master Equations Vorlesung gehalten im Rahmen des GRK 1558 Wintersemester 214/215 Technische Universität Berlin Dr. Gernot Schaller February 12, 215 2 Contents 1 An introduction to Master

More information

Hopping transport in disordered solids

Hopping transport in disordered solids Hopping transport in disordered solids Dominique Spehner Institut Fourier, Grenoble, France Workshop on Quantum Transport, Lexington, March 17, 2006 p. 1 Outline of the talk Hopping transport Models for

More information

arxiv: v1 [cond-mat.stat-mech] 8 Jul 2013

arxiv: v1 [cond-mat.stat-mech] 8 Jul 2013 Maxwell s Refrigerator: An Exactly Solvable Model Dibyendu Mandal 1, H. T. Quan,3 and Christopher Jarzynski,4 1 Department of Physics, University of Maryland, College Park, Maryland 074, U.S.A. Department

More information

Quantum heat engine using energy quantization in potential barrier

Quantum heat engine using energy quantization in potential barrier Quantum heat engine using energy quantization in potential barrier Sibasish Ghosh Optics and Quantum Information Group The Institute of Mathematical Sciences C.I.T. Campus, Taramani Chennai 600113. [In

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

arxiv: v3 [quant-ph] 30 Oct 2014

arxiv: v3 [quant-ph] 30 Oct 2014 Quantum feedback: theory, experiments, and applications Jing Zhang a,b,c, Yu-xi Liu d,b,c, Re-Bing Wu a,b,c, Kurt Jacobs e,c, Franco Nori c,f a Department of Automation, Tsinghua University, Beijing 100084,

More information

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Bijita Sarma and Amarendra K Sarma Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039,

More information

arxiv: v1 [cond-mat.stat-mech] 6 Jul 2015

arxiv: v1 [cond-mat.stat-mech] 6 Jul 2015 Santa Fe Institute Working Paper 15-07-XXX arxiv.org:1507.xxxx [cond-mat.stat-mech] Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets arxiv:1507.01537v1 [cond-mat.stat-mech] 6 Jul

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Applied Physics 150a: Homework #3

Applied Physics 150a: Homework #3 Applied Physics 150a: Homework #3 (Dated: November 13, 2014) Due: Thursday, November 20th, anytime before midnight. There will be an INBOX outside my office in Watson (Rm. 266/268). 1. (10 points) The

More information

Currents from hot spots

Currents from hot spots NANO-CTM Currents from hot spots Markus Büttiker, Geneva with Björn Sothmann, Geneva Rafael Sanchez, Madrid Andrew N. Jordan, Rochester Summer School "Energy harvesting at micro and nanoscales, Workshop

More information

Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems

Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems physica status solidi Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems Philipp Stegmann *,1 and Jürgen König 1 1 Theoretische Physik, Universität Duisburg-Essen

More information

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.!

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! How can one give a rigorous mathematical meaning to chemical

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Stochastic thermodynamics

Stochastic thermodynamics University of Ljubljana Faculty of Mathematics and Physics Seminar 1b Stochastic thermodynamics Author: Luka Pusovnik Supervisor: prof. dr. Primož Ziherl Abstract The formulation of thermodynamics at a

More information

Weak measurements: subensembles from tunneling to Let s Make a Quantum Deal to Hardy s Paradox

Weak measurements: subensembles from tunneling to Let s Make a Quantum Deal to Hardy s Paradox Weak measurements: subensembles from tunneling to Let s Make a Quantum Deal to Hardy s Paradox First: some more on tunneling times, by way of motivation... How does one discuss subensembles in quantum

More information

Quantum Mechanics II: Examples

Quantum Mechanics II: Examples Quantum Mechanics II: Examples Michael A. Nielsen University of Queensland Goals: 1. To apply the principles introduced in the last lecture to some illustrative examples: superdense coding, and quantum

More information

PRELIMINARY EXAMINATION Department of Physics University of Florida Part A, January, 2012, 09:00 12:00. Instructions

PRELIMINARY EXAMINATION Department of Physics University of Florida Part A, January, 2012, 09:00 12:00. Instructions Student ID Number: PRELIMINARY EXAMINATION Part A, January, 2012, 09:00 12:00 Instructions 1. You may use a calculator and CRC Math tables or equivalent. No other tables or aids are allowed or required.

More information

Quantum Dynamics. March 10, 2017

Quantum Dynamics. March 10, 2017 Quantum Dynamics March 0, 07 As in classical mechanics, time is a parameter in quantum mechanics. It is distinct from space in the sense that, while we have Hermitian operators, X, for position and therefore

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Open Quantum Systems and Markov Processes II

Open Quantum Systems and Markov Processes II Open Quantum Systems and Markov Processes II Theory of Quantum Optics (QIC 895) Sascha Agne sascha.agne@uwaterloo.ca July 20, 2015 Outline 1 1. Introduction to open quantum systems and master equations

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

arxiv:cond-mat/ v3 15 Jan 2001

arxiv:cond-mat/ v3 15 Jan 2001 Continuous quantum measurement of two coupled quantum dots using a point contact: A quantum trajectory approach Hsi-Sheng Goan 1, G. J. Milburn 1, H. M. Wiseman, and He Bi Sun 1 1 Center for Quantum Computer

More information