Description of 3-PG. Peter Sands. CSIRO Forestry and Forest Products and CRC for Sustainable Production Forestry

Size: px
Start display at page:

Download "Description of 3-PG. Peter Sands. CSIRO Forestry and Forest Products and CRC for Sustainable Production Forestry"

Transcription

1 Description of 3-PG Peter Sands CSIRO Forestry and Forest Products and CRC for Sustainable Production Forestry 1

2 What is 3-PG? Simple, process-based model to predict growth and development of even-aged stands. Uses basic mean-monthly climatic data, and simple site factors and soil descriptors. Generates: foliage, woody tissue and root biomass, conventional stand attributes (volume, BA, stocking), soil water content and water usage. Runs on monthly time step. Parameterised using stand-level data. 2

3 Main Components of 3-PG Production of biomass Based on environmental modification of light use efficiency and constant ratio of NPP to GPP. Biomass partitioning Affected by growing conditions and tree size. Stem morality Based on self-thinning rule. Soil water balance A single soil layer model with evapotranspiration determined from Penman-Monteith equation. Stand properties Determined from biomass pools and assumptions about specific leaf area, branchbark fraction, and wood density. 3

4 Structure and Causal Influences Interception Water balance Rain Soil water Conductance Evaporation branch & bark ratio Volume growth stem volume VPD Root turnover FR PhysMod Canopy production Tav PAR Intercepted PAR GPP NPP Respiration LAI SLA Root Foliage biomas biomass wood density Biomass partitioning Above ground woody biomass p FS DBH Litterfall Stem mass Mortality Stem mortality Meaning of elements Input data State variable Internal variable Fixed parameter Explicitly time-dependent parameter Physical flow with rate Causal influence: = causes increase = causes decrease = has optimum Stocking 4

5 Biomass Production and Intercepted Solar Radiation Observation shows: above-ground production linearly related to intercepted radiation gross production proportional to intercepted radiation. Slope of these relationships is light use efficiency ε (g DM MJ -1 ). This finding is the basis for many simple models. Above-ground production (t ha -1 yr -1 ) Above-ground production (t ha -1 yr -1 ) E. globulus age x nutrition Gippsland, Vic. Assorted species four s ites Esperance, Tas. y = x R 2 = Intercepted radiation (GJ m -2 yr -1 ) y = x R 2 = Intercepted radiation (GJ m -2 yr -1 ) 5

6 Light use efficiency Light Use Efficiency is affected by climatic factors (e.g. temperature) and site factors (e.g. soil-water status) varies seasonally, but annual values more stable. This concept forms basis of many simple models, e.g. GrowEst PlantGro 3-PG grasslands; based on T & soil water; multiplicative many crops; many environmental & site factors; law of the minimum trees; based on T, VPD, soil water & nutrition; mainly multiplicative 6

7 Calculating Intercepted Radiation Beer s law determines light transmitted through canopy. Thus radiation intercepted by the canopy is: = (1 kl ) int 0 Q e Q 100 Note diminishing returns from high leaf area indices Intercepted radiation (%) Canopy LAI 7

8 Gross Canopy Production Putting these together, total gross production by the canopy is P = α (1 e kl ) Q g C where canopy quantum efficiency α C (mol mol -1 ) or light use efficiency ε, g DM MJ -1 : measure efficiency of conversion of solar radiation into biomass depend on environmental and site factors. 0 8

9 Net Canopy Production Respiration assumed to be constant fraction of gross canopy production. Thus net canopy production is: P n = YP g kl = α Y(1 e ) Q C 0 where Y This is a contentious assumption, which greatly simplifies treatment of respiration. 9

10 Growth Modifiers in 3-PG Each environmental factor is represented by a growth modifier = function of factor which varies between 0 (total limitation) and 1 (no limitation). Factor Vapor pressure deficit Soil water Temperature Frost Site nutrition Stand age Modifier f VPD (D) f SW (θ) f T (T av ) f F (d f ) f N (FR) f age (t) Parameters k D θ max,c θ,n θ T min, T opt, T max k F f N0 n age, r age 10

11 Effects on Canopy Production All modifiers affect canopy production: α = f f f min{ f, f } f α C T F N VPD SW age Cx where α Cx is maximum canopy quantum efficiency. In 3-PG the combination of modifiers ϕ = min{ fvpd, fsw } fage also affects canopy conductance, and is called PhysMod in the program. 11

12 Temperature Growth Modifier f T (T a ) f T ( T ) a T T T T a min max a = Topt T min Tmax T opt ( T T ) ( T T ) max opt opt min where 1.0 T a = mean monthly daily temperature T min = minimum temperature for growth T opt = optimum temperature for growth T max = maximum temperature for growth Temperature modifier (f T) T min = 7.5, T opt = 15, T max = Mean temperature 12

13 Frost Growth Modifier f F (d F ) f ( d ) = 1 k ( d /30) F F F F where d F = number of frost days in month k F = number of days of production lost for each day of frost. Frost modifier (ff) k F = Days of frost in month 13

14 Soil-water Growth Modifier f SW (θ) f SW ( θ ) 1 = 1 (1 θ / θ )/ [ c ] x θ n θ where θ = current available soil water θ x = maximum available soil water c θ = relative water deficit for 50% reduction. n θ = power determining shape of soil water response. Soil water growth modifier (f SW) Sand Sandy-loam 0.2 Clay-loam Clay Relative available soil water 14

15 VPD Growth Modifier f VPD (d) k D f ( D) = e D VPD 1.0 where D = current vapor pressure deficit k D = strength of VPD response. VPD growth modifier (f VPD) k D = Vapor pressure deficit (mbar) 15

16 Age-related Growth Modifier f age (t) f age () t 1 = n 1 ( t/ r t ) age age x where t t x = current stand age = likely maximum stand age r age = relative stand age for 50% growth reduction n age = power determining strength of growth reduction Age-related modifier n age = 4, r age = Relative stand age 16

17 Structure and Causal Influences Interception Water balance Rain Soil water Conductance Evaporation branch & bark ratio Volume growth stem volume VPD Root turnover FR PhysMod Canopy production Tav PAR Intercepted PAR GPP NPP Respiration LAI SLA Root Foliage biomas biomass wood density Biomass partitioning Above ground woody biomass p FS DBH Litterfall Stem mass Mortality Stem mortality Meaning of elements Input data State variable Internal variable Fixed parameter Explicitly time-dependent parameter Physical flow with rate Causal influence: = causes increase = causes decrease = has optimum Stocking 17

18 Biomass Partitioning NPP is partitioned into biomass pools (t DM ha -1 ): foliage (W F ), above-ground woody tissue (W S ) roots (W R ) Partitioning rates (η F, η R and η S ) depend on growth conditions and stand DBH. Litter-fall (γ F ) and root-turnover (γ R ) also taken into account. Thus: W = η P γ W F F n F F W = η P γ W R R n R R W = η P S S n 18

19 Root Partitioning Partitioning to roots affected by growth conditions through ϕ (PhysMod) and by soil fertility: where η R m = m 0 (1-m 0 )FR = η Rx = root partitioning under very poor conditions η Rn = root partitioning under optimal conditions ηrxη Rn ηrn ( ηrx ηrn) m ϕ Root partitioning ηrx = 0.8 ηrn = Growth conditions 19

20 Foliage and Stem Partitioning Above-ground partitioning based on foliage:stem partitioning ratio n p = η / η = ab FS F S B is diameter at breast height determined from an allometric relationship between stem mass and B a, b are coefficients determined from p FS at B = 2 and 20 cm. Then 1ηR η =, η = 1 p S F FS S FS p η 20

21 Above-ground Partitioning v Tree-size Increasing DBH decreases foliage partitioning and increases stem partitioning. Graphs show response when p FS (2) = 1, p FS (20) = 0.25, η R = Ratio of foliage:shoot partitioning Above-ground partitioning Stem Foliage Stem diameter Stem diameter 21

22 Root-turnover and Litter-fall Root-turnover is a constant fraction of root biomass (γ R = month -1 ). Litter-fall is age-dependent fraction of foliage biomass: γ Fxγ 0 1 F γ Fx γ F ( t) =, k = ln 1 kt γ ( γ γ ) e γ F0 Fx F0 t γ F F0 where γ F0 = litter-fall rate at age 0 γ Fx = maximum litter-fall rate t γf = age when γ F =½(γ F0 γ Fx ) Litter-fall rate/month γf0 = γ Fx = t γ F = Stand age (years) 22

23 Stem Mortality Based on self-thinning where average stem weight for current stocking w Sx (N) w Sx0 (1000/N) 3/2 (kg/tree) and w Sx0 = max. stem weight at 1000 trees ha -1. If at 1 then w S w Sx (N) no mortality If at 2 then w S >w Sx (N) self-thin to 2 N' = 1000( w / w ) W =γ Sx0 S ( N N') W N 2/3 S S S where γ S 0.2 is a parameter. Average stem mass (kg tree -1 ) w S w Sx (N) self-thinning line N' 2' N Stocking (trees ha -1 )

24 Structure and Causal Influences Interception Water balance Rain Soil water Conductance Evaporation branch & bark ratio Volume growth stem volume VPD Root turnover FR PhysMod Canopy production Tav PAR Intercepted PAR GPP NPP Respiration LAI SLA Root Foliage biomas biomass wood density Biomass partitioning Above ground woody biomass p FS DBH Litterfall Stem mass Mortality Stem mortality Meaning of elements Input data State variable Internal variable Fixed parameter Explicitly time-dependent parameter Physical flow with rate Causal influence: = causes increase = causes decrease = has optimum Stocking 24

25 Soil Water Balance Soil water balance model based on single soil layer. Uses monthly time steps. Inputs: rainfall and irrigation Losses are: interception = fixed % of rainfall evapotranspiration determined using Penman-Monteith equation excess over field capacity lost as run off 25

26 Evapotranspiration Evapotranspiration is calculated using the Penman- Monteith equation. Directly affected by VPD and radiation. Canopy conductance: determined by LAI affected by growth conditions VPD, soil water and age. Boundary layer conductance: is assumed constant (0.2 m s -1 ) 26

27 Calculation of Stomatal Conductance Canopy conductance is affected by VPD, soil water and stand age through ϕ (= PhysMod in 3-PG code), and increases with canopy LAI: g C = g Cx ϕ min{l/l gc, 1} where ϕ = min{f VPD, f SW } f age g Cx = maximum conductance L gc = LAI at max. conductance Canopy conductance (m s -1 ) g Cx L gc Canopy leaf area index (L) 27

28 Structure and Causal Influences Interception Water balance Rain Soil water Conductance Evaporation branch & bark ratio Volume growth stem volume VPD Root turnover FR PhysMod Canopy production Tav PAR Intercepted PAR GPP NPP Respiration LAI SLA Root Foliage biomas biomass wood density Biomass partitioning Above ground woody biomass p FS DBH Litterfall Stem mass Mortality Stem mortality Meaning of elements Input data State variable Internal variable Fixed parameter Explicitly time-dependent parameter Physical flow with rate Causal influence: = causes increase = causes decrease = has optimum Stocking 28

OCN 401. Photosynthesis

OCN 401. Photosynthesis OCN 401 Photosynthesis Photosynthesis Process by which carbon is reduced from CO 2 to organic carbon Provides all energy for the biosphere (except for chemosynthesis at hydrothermal vents) Affects composition

More information

Spatial Heterogeneity of Ecosystem Fluxes over Tropical Savanna in the Late Dry Season

Spatial Heterogeneity of Ecosystem Fluxes over Tropical Savanna in the Late Dry Season Spatial Heterogeneity of Ecosystem Fluxes over Tropical Savanna in the Late Dry Season Presentation by Peter Isaac, Lindsay Hutley, Jason Beringer and Lucas Cernusak Introduction What is the question?

More information

TREE WATER USE PATTERNS ARE MAINLY DRIVEN BY ENVIRONMENTAL VARIABLES AND TREE STRUCTURAL PARAMETERS IN HUMID TEMPERATE DECIDUOUS HARDWOOD FORESTS

TREE WATER USE PATTERNS ARE MAINLY DRIVEN BY ENVIRONMENTAL VARIABLES AND TREE STRUCTURAL PARAMETERS IN HUMID TEMPERATE DECIDUOUS HARDWOOD FORESTS TREE WATER USE PATTERNS ARE MAINLY DRIVEN BY ENVIRONMENTAL VARIABLES AND TREE STRUCTURAL PARAMETERS IN HUMID TEMPERATE DECIDUOUS HARDWOOD FORESTS Virginia Hernandez-Santana, Heidi Asbjornsen Presented

More information

GEOG415 Mid-term Exam 110 minute February 27, 2003

GEOG415 Mid-term Exam 110 minute February 27, 2003 GEOG415 Mid-term Exam 110 minute February 27, 2003 1 Name: ID: 1. The graph shows the relationship between air temperature and saturation vapor pressure. (a) Estimate the relative humidity of an air parcel

More information

DETAILED DESCRIPTION OF CENW 3.1

DETAILED DESCRIPTION OF CENW 3.1 DETAILED DESCRIPTION OF CENW 3.1 MIKO U.F. KIRSCHBAUM Landcare Research, Private Bag 11052, Palmerston North, New Zealand [Miko Kirschbaum s home page] [Back to Growth Modelling Studies] INTRODUCTION The

More information

Carbon Input to Ecosystems

Carbon Input to Ecosystems Objectives Carbon Input Leaves Photosynthetic pathways Canopies (i.e., ecosystems) Controls over carbon input Leaves Canopies (i.e., ecosystems) Terminology Photosynthesis vs. net photosynthesis vs. gross

More information

Nutrient Cycling in Land Vegetation and Soils

Nutrient Cycling in Land Vegetation and Soils Nutrient Cycling in Land Vegetation and Soils OCN 401 - Biogeochemical Systems 13 September 2012 Reading: Schlesinger, Chapter 6 Outline 1. The annual Intrasystem Nutrient Cycle 2. Mass balance of the

More information

Lecture notes: Interception and evapotranspiration

Lecture notes: Interception and evapotranspiration Lecture notes: Interception and evapotranspiration I. Vegetation canopy interception (I c ): Portion of incident precipitation (P) physically intercepted, stored and ultimately evaporated from vegetation

More information

Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation

Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation Supplementary Material Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation Guangqi Li 1,2, Laci M. Gerhart 3, Sandy P. Harrison 1,2, Joy K. Ward 4, John M. Harris

More information

Ecosystems. 1. Population Interactions 2. Energy Flow 3. Material Cycle

Ecosystems. 1. Population Interactions 2. Energy Flow 3. Material Cycle Ecosystems 1. Population Interactions 2. Energy Flow 3. Material Cycle The deep sea was once thought to have few forms of life because of the darkness (no photosynthesis) and tremendous pressures. But

More information

Mycorrhizal Fungi. Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells

Mycorrhizal Fungi. Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells Mycorrhizal Fungi Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells Mycorrhizae transfer nutrients to roots (important in infertile

More information

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Reinder A.Feddes Jos van Dam Joop Kroes Angel Utset, Main processes Rain fall / irrigation Transpiration Soil evaporation

More information

Simulating Carbon and Water Balances in the Southern Boreal Forest. Omer Yetemen, Alan Barr, Andrew Ireson, Andy Black, Joe Melton

Simulating Carbon and Water Balances in the Southern Boreal Forest. Omer Yetemen, Alan Barr, Andrew Ireson, Andy Black, Joe Melton Simulating Carbon and Water Balances in the Southern Boreal Forest Omer Yetemen, Alan Barr, Andrew Ireson, Andy Black, Joe Melton Research Questions: How will climate change (changes in temperature and

More information

Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi- Source and Multi-Scale Data

Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi- Source and Multi-Scale Data RESEARCH ARTICLE Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi- Source and Multi-Scale Data Tianxiang Cui 1,2,3, Yujie Wang 4,5, Rui Sun 1,2,3 *, Chen Qiao 1,2,3,

More information

Nutrient Cycling in Land Vegetation and Soils

Nutrient Cycling in Land Vegetation and Soils Nutrient Cycling in Land Vegetation and Soils OCN 401 - Biogeochemical Systems 15 September 2016 Reading: Schlesinger & Bernhardt, Chapter 6 2016 Frank Sansone Outline 1. The annual Intrasystem Nutrient

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

Evapotranspiration. Rabi H. Mohtar ABE 325

Evapotranspiration. Rabi H. Mohtar ABE 325 Evapotranspiration Rabi H. Mohtar ABE 325 Introduction What is it? Factors affecting it? Why we need to estimate it? Latent heat of vaporization: Liquid gas o Energy needed o Cooling process Saturation

More information

Supplement of Upside-down fluxes Down Under: CO 2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest

Supplement of Upside-down fluxes Down Under: CO 2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest Supplement of Biogeosciences, 15, 3703 3716, 2018 https://doi.org/10.5194/bg-15-3703-2018-supplement Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement

More information

CLIMATOLOGICAL REPORT 2002

CLIMATOLOGICAL REPORT 2002 Range Cattle Research and Education Center Research Report RC-2003-1 February 2003 CLIMATOLOGICAL REPORT 2002 Range Cattle Research and Education Center R. S. Kalmbacher Professor, IFAS, Range Cattle Research

More information

PreLES an empirical model for daily GPP, evapotranspiration and soil water in a forest stand

PreLES an empirical model for daily GPP, evapotranspiration and soil water in a forest stand PreLES an empirical model for daily GPP, evapotranspiration and soil water in a forest stand Mikko Peltoniemi 1,2,3, Annikki Mäkelä 1 & Minna Pulkkinen 1 Nordflux model comparison workshop, May 23, 2011,

More information

The role of soil moisture in influencing climate and terrestrial ecosystem processes

The role of soil moisture in influencing climate and terrestrial ecosystem processes 1of 18 The role of soil moisture in influencing climate and terrestrial ecosystem processes Vivek Arora Canadian Centre for Climate Modelling and Analysis Meteorological Service of Canada Outline 2of 18

More information

Lecture 3A: Interception

Lecture 3A: Interception 3-1 GEOG415 Lecture 3A: Interception What is interception? Canopy interception (C) Litter interception (L) Interception ( I = C + L ) Precipitation (P) Throughfall (T) Stemflow (S) Net precipitation (R)

More information

Zachary Holden - US Forest Service Region 1, Missoula MT Alan Swanson University of Montana Dept. of Geography David Affleck University of Montana

Zachary Holden - US Forest Service Region 1, Missoula MT Alan Swanson University of Montana Dept. of Geography David Affleck University of Montana Progress modeling topographic variation in temperature and moisture for inland Northwest forest management Zachary Holden - US Forest Service Region 1, Missoula MT Alan Swanson University of Montana Dept.

More information

Temperature and light as ecological factors for plants

Temperature and light as ecological factors for plants PLB/EVE 117 Plant Ecology Fall 2005 1 Temperature and light as ecological factors for plants I. Temperature as an environmental factor A. The influence of temperature as an environmental factor is pervasive

More information

Range Cattle Research and Education Center January CLIMATOLOGICAL REPORT 2012 Range Cattle Research and Education Center.

Range Cattle Research and Education Center January CLIMATOLOGICAL REPORT 2012 Range Cattle Research and Education Center. 1 Range Cattle Research and Education Center January 2013 Research Report RC-2013-1 CLIMATOLOGICAL REPORT 2012 Range Cattle Research and Education Center Brent Sellers Weather conditions strongly influence

More information

Evapotranspiration. Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere

Evapotranspiration. Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere Evapotranspiration Evaporation (E): In general, the change of state from liquid to gas Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere

More information

LECTURE 13: RUE (Radiation Use Efficiency)

LECTURE 13: RUE (Radiation Use Efficiency) LECTURE 13: RUE (Radiation Use Efficiency) Success is a lousy teacher. It seduces smart people into thinking they can't lose. Bill Gates LECTURE OUTCOMES After the completion of this lecture and mastering

More information

Lungs of the Planet with Dr. Michael Heithaus

Lungs of the Planet with Dr. Michael Heithaus Lungs of the Planet with Dr. Michael Heithaus Problem Why do people call rain forests the lungs of the planet? Usually it is because people think that the rain forests produce most of the oxygen we breathe.

More information

Lungs of the Planet. 1. Based on the equations above, describe how the processes of photosynthesis and cellular respiration relate to each other.

Lungs of the Planet. 1. Based on the equations above, describe how the processes of photosynthesis and cellular respiration relate to each other. Lungs of the Planet Name: Date: Why do people call rain forests the lungs of the planet? Usually it is because people think that the rain forests produce most of the oxygen we breathe. But do they? To

More information

12 SWAT USER S MANUAL, VERSION 98.1

12 SWAT USER S MANUAL, VERSION 98.1 12 SWAT USER S MANUAL, VERSION 98.1 CANOPY STORAGE. Canopy storage is the water intercepted by vegetative surfaces (the canopy) where it is held and made available for evaporation. When using the curve

More information

Contents. 1. Evaporation

Contents. 1. Evaporation Contents 1 Evaporation 1 1a Evaporation from Wet Surfaces................... 1 1b Evaporation from Wet Surfaces in the absence of Advection... 4 1c Bowen Ratio Method........................ 4 1d Potential

More information

Range Cattle Research and Education Center January CLIMATOLOGICAL REPORT 2016 Range Cattle Research and Education Center.

Range Cattle Research and Education Center January CLIMATOLOGICAL REPORT 2016 Range Cattle Research and Education Center. 1 Range Cattle Research and Education Center January 2017 Research Report RC-2017-1 CLIMATOLOGICAL REPORT 2016 Range Cattle Research and Education Center Brent Sellers Weather conditions strongly influence

More information

Lecture 8: Snow Hydrology

Lecture 8: Snow Hydrology GEOG415 Lecture 8: Snow Hydrology 8-1 Snow as water resource Snowfall on the mountain ranges is an important source of water in rivers. monthly pcp (mm) 100 50 0 Calgary L. Louise 1 2 3 4 5 6 7 8 9 10

More information

LEAF AND CANOPY PHOTOSYNTHESIS MODELS FOR COCKSFOOT (DACTYLIS GLOMERATA L.) GROWN IN A SILVOPASTORAL SYSTEM

LEAF AND CANOPY PHOTOSYNTHESIS MODELS FOR COCKSFOOT (DACTYLIS GLOMERATA L.) GROWN IN A SILVOPASTORAL SYSTEM LEAF AND CANOPY PHOTOSYNTHESIS MODELS FOR COCKSFOOT (DACTYLIS GLOMERATA L.) GROWN IN A SILVOPASTORAL SYSTEM A case study of plant physiology and agronomy by Pablo L. Peri PhD - Forestry engineer Unidad

More information

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often?

2. Irrigation. Key words: right amount at right time What if it s too little too late? Too much too often? 2. Irrigation Key words: right amount at right time What if it s too little too late? 2-1 Too much too often? To determine the timing and amount of irrigation, we need to calculate soil water balance.

More information

Dynamik der Biosphäre. Exogene Dynamik, Biosphärenmodelle

Dynamik der Biosphäre. Exogene Dynamik, Biosphärenmodelle Dynamik der Biosphäre Exogene Dynamik, Biosphärenmodelle Wintersemester 2004/2005 Wolfgang Cramer Lehrstuhl "Globale Ökologie" http://www.pik-potsdam.de/~cramer -> "Teaching" Heute... Modellierung der

More information

Model description. Photosynthesis

Model description. Photosynthesis Supplemental Information for Modeling spatial and dynamic variation in growth, yield and yield stability of the bioenergy crops Miscanthus giganteus and Panicum virgatum across the conterminous USA. Model

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: The partial correlation coefficient of NDVI GS and GT for the first 15 years (1982-1996) and the last 15 years (1997-211) with five different definition of

More information

Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation

Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation Evaluating Irrigation Management Strategies Over 25 Years Prepared November 2003 Printed February 27, 2004 Prepared

More information

Benefits of NT over CT. Water conservation in the NT benefits from reduced ET and runoff, and increased infiltration.

Benefits of NT over CT. Water conservation in the NT benefits from reduced ET and runoff, and increased infiltration. Benefits of NT over CT Water conservation in the NT benefits from reduced ET and runoff, and increased infiltration. Weed control. Increased water and root penetration Uniform stands. Typically 4 to 8

More information

Introduction to ecosystem modelling (continued)

Introduction to ecosystem modelling (continued) NGEN02 Ecosystem Modelling 2015 Introduction to ecosystem modelling (continued) Uses of models in science and research System dynamics modelling The modelling process Recommended reading: Smith & Smith

More information

Ecosystem-Climate Interactions

Ecosystem-Climate Interactions Ecosystem-Climate Interactions Dennis Baldocchi UC Berkeley 2/1/2013 Topics Climate and Vegetation Correspondence Holdredge Classification Plant Functional Types Plant-Climate Interactions Canopy Microclimate

More information

Effects of rising temperatures and [CO 2 ] on physiology of tropical forests

Effects of rising temperatures and [CO 2 ] on physiology of tropical forests Effects of rising temperatures and [CO 2 ] on physiology of tropical forests We are happy to advise that reports of our impending demise may have been very much exaggerated Jon Lloyd and Graham Farquhar

More information

Remote sensing of the terrestrial ecosystem for climate change studies

Remote sensing of the terrestrial ecosystem for climate change studies Frontier of Earth System Science Seminar No.1 Fall 2013 Remote sensing of the terrestrial ecosystem for climate change studies Jun Yang Center for Earth System Science Tsinghua University Outline 1 Introduction

More information

GOTILWA+ An integrated model of forest growth

GOTILWA+ An integrated model of forest growth GOTILWA+ An integrated model of forest growth Carlos Gracia Santi Sabaté Anabel Sánchez Model documentation and User s guide Updated March, 2003 (draft document, version 5) 1 2 CONTENTS PART I: Model description...5

More information

2.4. Model Outputs Result Chart Growth Weather Water Yield trend Results Single year Results Individual run Across-run summary

2.4. Model Outputs Result Chart Growth Weather Water Yield trend Results Single year Results Individual run Across-run summary 2.4. Model Outputs Once a simulation run has completed, a beep will sound and the Result page will show subsequently. Other output pages, including Chart, Growth, Weather, Water, and Yield trend, can be

More information

Lecture 6: Precipitation Averages and Interception

Lecture 6: Precipitation Averages and Interception Lecture 6: Precipitation Averages and Interception Key Questions 1. How much and when does Whatcom County receive rain? 2. Where online can you find rainfall data for the state? 3. How is rainfall averaged

More information

Understanding how vines deal with heat and water deficit

Understanding how vines deal with heat and water deficit Understanding how vines deal with heat and water deficit Everard Edwards CSIRO AGRICULTURE & FOOD How hot is too hot? Cell death will occur in any vine tissue beyond a threshold (lethal) temperature cell

More information

Evaluation of a MODIS Triangle-based Algorithm for Improving ET Estimates in the Northern Sierra Nevada Mountain Range

Evaluation of a MODIS Triangle-based Algorithm for Improving ET Estimates in the Northern Sierra Nevada Mountain Range Evaluation of a MODIS Triangle-based Algorithm for Improving ET Estimates in the Northern Sierra Nevada Mountain Range Kyle R. Knipper 1, Alicia M. Kinoshita 2, and Terri S. Hogue 1 January 5 th, 2015

More information

Radiation transfer in vegetation canopies Part I plants architecture

Radiation transfer in vegetation canopies Part I plants architecture Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy medias Radiation transfer in vegetation canopies Part I plants architecture Autumn 2008 Prof. Emmanuel Boss, Dr.

More information

Assimilation of satellite fapar data within the ORCHIDEE biosphere model and its impacts on land surface carbon and energy fluxes

Assimilation of satellite fapar data within the ORCHIDEE biosphere model and its impacts on land surface carbon and energy fluxes Laboratoire des Sciences du Climat et de l'environnement Assimilation of satellite fapar data within the ORCHIDEE biosphere model and its impacts on land surface carbon and energy fluxes CAMELIA project

More information

Promoting Rainwater Harvesting in Caribbean Small Island Developing States Water Availability Mapping for Grenada Preliminary findings

Promoting Rainwater Harvesting in Caribbean Small Island Developing States Water Availability Mapping for Grenada Preliminary findings Promoting Rainwater Harvesting in Caribbean Small Island Developing States Water Availability Mapping for Grenada Preliminary findings National Workshop Pilot Project funded by The United Nations Environment

More information

EVAPORATION GEOG 405. Tom Giambelluca

EVAPORATION GEOG 405. Tom Giambelluca EVAPORATION GEOG 405 Tom Giambelluca 1 Evaporation The change of phase of water from liquid to gas; the net vertical transport of water vapor from the surface to the atmosphere. 2 Definitions Evaporation:

More information

Gapfilling of EC fluxes

Gapfilling of EC fluxes Gapfilling of EC fluxes Pasi Kolari Department of Forest Sciences / Department of Physics University of Helsinki EddyUH training course Helsinki 23.1.2013 Contents Basic concepts of gapfilling Example

More information

The remote sensed status and trend of ecosystem Services over Three-River Headwaters, Qing-Tibet Plateau, China, in

The remote sensed status and trend of ecosystem Services over Three-River Headwaters, Qing-Tibet Plateau, China, in Mapping and assessment of ecosystem services - science in action, International Scientific Conference on ecosystem services Sofia, Bulgaria 6-8 February 2017 The remote sensed status and trend of ecosystem

More information

Breeding for Drought Resistance in Cacao Paul Hadley

Breeding for Drought Resistance in Cacao Paul Hadley Breeding for Drought Resistance in Cacao Paul Hadley University of Reading Second American Cocoa Breeders Meeting, El Salvador, 9-11 September 215 9 September 215 University of Reading 26 www.reading.ac.uk

More information

ONE DIMENSIONAL CLIMATE MODEL

ONE DIMENSIONAL CLIMATE MODEL JORGE A. RAMÍREZ Associate Professor Water Resources, Hydrologic and Environmental Sciences Civil Wngineering Department Fort Collins, CO 80523-1372 Phone: (970 491-7621 FAX: (970 491-7727 e-mail: Jorge.Ramirez@ColoState.edu

More information

Data Analysis and Modeling with Stable Isotope Ratios. Chun-Ta Lai San Diego State University June 2008

Data Analysis and Modeling with Stable Isotope Ratios. Chun-Ta Lai San Diego State University June 2008 Data Analysis and Modeling with Stable Isotope Ratios Chun-Ta Lai San Diego State University June 2008 Leaf water is 18 O-enriched via transpiration δ 18 O vapor : -12 H 2 16 O H 2 18 O δ 18 O leaf : +8

More information

Variability of Reference Evapotranspiration Across Nebraska

Variability of Reference Evapotranspiration Across Nebraska Know how. Know now. EC733 Variability of Reference Evapotranspiration Across Nebraska Suat Irmak, Extension Soil and Water Resources and Irrigation Specialist Kari E. Skaggs, Research Associate, Biological

More information

Rangeland Carbon Fluxes in the Northern Great Plains

Rangeland Carbon Fluxes in the Northern Great Plains Rangeland Carbon Fluxes in the Northern Great Plains Wylie, B.K., T.G. Gilmanov, A.B. Frank, J.A. Morgan, M.R. Haferkamp, T.P. Meyers, E.A. Fosnight, L. Zhang US Geological Survey National Center for Earth

More information

Evapotranspiration. Andy Black. CCRN Processes Workshop, Hamilton, ON, Sept Importance of evapotranspiration (E)

Evapotranspiration. Andy Black. CCRN Processes Workshop, Hamilton, ON, Sept Importance of evapotranspiration (E) Evapotranspiration Andy Black CCRN Processes Workshop, Hamilton, ON, 12-13 Sept 213 Importance of evapotranspiration (E) This process is important in CCRN goals because 1. Major component of both terrestrial

More information

Global Biogeography. Natural Vegetation. Structure and Life-Forms of Plants. Terrestrial Ecosystems-The Biomes

Global Biogeography. Natural Vegetation. Structure and Life-Forms of Plants. Terrestrial Ecosystems-The Biomes Global Biogeography Natural Vegetation Structure and Life-Forms of Plants Terrestrial Ecosystems-The Biomes Natural Vegetation natural vegetation is the plant cover that develops with little or no human

More information

APPL ICATION OF SOME ACTUAL EVAPOTRANSPIRATION MODELS IN SIMULATION OF SOIL MOISTURE

APPL ICATION OF SOME ACTUAL EVAPOTRANSPIRATION MODELS IN SIMULATION OF SOIL MOISTURE 23 6 2001 11 RESOURCES SCIENCE Vol. 23 No. 6 Nov. 2001 1 2 (1. 100081 ;2. 100101) Penman Priestley2Taylor Penman2Menteith Shuttleworth2Wallace Penman Priestley2Taylor ; Shuttleworth2Wallace Penman2Menteith

More information

Carbon Assimilation and Its Variation among Plant Communities

Carbon Assimilation and Its Variation among Plant Communities Carbon Assimilation and Its Variation among Plant Communities Introduction By, Susan Boersma, Andrew Wiersma Institution: Calvin College Faculty Advisor: David Dornbos Currently, global warming remains

More information

Vegetation Remote Sensing

Vegetation Remote Sensing Vegetation Remote Sensing Huade Guan Prepared for Remote Sensing class Earth & Environmental Science University of Texas at San Antonio November 2, 2005 Outline Why do we study vegetation remote sensing?

More information

Carbon Budget of Ecosystem in Changbai Mountain Natural Reserve

Carbon Budget of Ecosystem in Changbai Mountain Natural Reserve 24 1 2003 1 ENV IRONMEN TAL SCIENCE Vol 24 No 1 Jan 2003 1 2 2 3 (11 100039 E2mail : zhangna @gscas1ac cn ; 21 100101 ; 31 100085) : EPPML 1995 [ NPP( ) ]11332 10 6 t a - 1 01540 10 6 t a - 1 01428 10

More information

Forest growth and species distribution in a changing climate

Forest growth and species distribution in a changing climate Tree Physiology 20, 309 322 2000 Heron Publishing Victoria, Canada Forest growth and species distribution in a changing climate MIKO U. F. KIRSCHBAUM CSIRO Forestry and Forest Products, PO Box E4008, Kingston

More information

METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance. Spring Semester 2011 February 8, 10 & 14, 2011

METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance. Spring Semester 2011 February 8, 10 & 14, 2011 METR 130: Lecture 2 - Surface Energy Balance - Surface Moisture Balance Spring Semester 2011 February 8, 10 & 14, 2011 Reading Arya, Chapters 2 through 4 Surface Energy Fluxes (Ch2) Radiative Fluxes (Ch3)

More information

Weathering is the process that breaks down rock and other substances at Earth s surface

Weathering is the process that breaks down rock and other substances at Earth s surface Chapter 8 Notes Weathering is the process that breaks down rock and other substances at Earth s surface Factors that contribute to weathering Heat Cold Water Ice O 2 & CO 2 in the atmosphere Examples of

More information

Eric. W. Harmsen 1, John Mecikalski 2, Pedro Tosado Cruz 1 Ariel Mercado Vargas 1

Eric. W. Harmsen 1, John Mecikalski 2, Pedro Tosado Cruz 1 Ariel Mercado Vargas 1 Estimating Evapotranspiration using Satellite Remote Sensing in Puerto Rico, Haiti and the Dominican Republic Eric. W. Harmsen 1, John Mecikalski 2, Pedro Tosado Cruz 1 Ariel Mercado Vargas 1 1. University

More information

ROBUST EVAPORATION ESTIMATES: RESULTS FROM A COLLABORATIVE PROJECT

ROBUST EVAPORATION ESTIMATES: RESULTS FROM A COLLABORATIVE PROJECT ROBUST EVAPORATION ESTIMATES: RESULTS FROM A COLLABORATIVE PROJECT MG MCGLINCHEY 1 AND NG INMAN-BAMBER 1 Swaziland Sugar Association Technical Services, Simunye, Swaziland CSIRO, Davies Lab, Townsville,

More information

Meteorology. Chapter 15 Worksheet 1

Meteorology. Chapter 15 Worksheet 1 Chapter 15 Worksheet 1 Meteorology Name: Circle the letter that corresponds to the correct answer 1) The Tropic of Cancer and the Arctic Circle are examples of locations determined by: a) measuring systems.

More information

Appendix B. Evaluation of Water Use for Zuni Tribe PPIW Appendix B AMEC Earth and Environmental

Appendix B. Evaluation of Water Use for Zuni Tribe PPIW Appendix B AMEC Earth and Environmental Appendix B AMEC s Independent Estimate of PPIW Crop Water Use Using the ASCE Standardized Reference Evapotranspiration via Direct Use of Weather Station Data, and Estimation of Crop Coefficients, and Net

More information

in this web service Cambridge University Press

in this web service Cambridge University Press Vegetation Dynamics Understanding ecosystem structure and function requires familiarity with the techniques, knowledge and concepts of the three disciplines of plant physiology, remote sensing and modelling.

More information

Evapotranspiration: Theory and Applications

Evapotranspiration: Theory and Applications Evapotranspiration: Theory and Applications Lu Zhang ( 张橹 ) CSIRO Land and Water Evaporation: part of our everyday life Evapotranspiration Global Land: P = 800 mm Q = 315 mm E = 485 mm Evapotranspiration

More information

Forestry and Forest Products

Forestry and Forest Products Forestry and Forest Products TECHNICAL REPORT No. 120 Carbon Isotope Discrimination Of Irrigated And Fertilised Eucalyptus grandis Grown In Different Climates. Ronni L. Korol, Miko U.F. Kirschbaum and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06059 SUPPLEMENTARY INFORMATION Plant Ozone Effects The first order effect of chronic ozone exposure is to reduce photosynthetic capacity 5,13,31 (e.g. by enhanced Rubisco degradation

More information

5B.1 DEVELOPING A REFERENCE CROP EVAPOTRANSPIRATION CLIMATOLOGY FOR THE SOUTHEASTERN UNITED STATES USING THE FAO PENMAN-MONTEITH ESTIMATION TECHNIQUE

5B.1 DEVELOPING A REFERENCE CROP EVAPOTRANSPIRATION CLIMATOLOGY FOR THE SOUTHEASTERN UNITED STATES USING THE FAO PENMAN-MONTEITH ESTIMATION TECHNIQUE DEVELOPING A REFERENCE CROP EVAPOTRANSPIRATION CLIMATOLOGY FOR THE SOUTHEASTERN UNITED STATES USING THE FAO PENMAN-MONTEITH ESTIMATION TECHNIQUE Heather A. Dinon*, Ryan P. Boyles, and Gail G. Wilkerson

More information

Review of ET o calculation methods and software

Review of ET o calculation methods and software Climate change and Bio-energy Unit (NRCB) Review of ET o calculation methods and software Technical report Delobel François February 2009 1 Table of Content List of figure... 4 1. Introduction... 8 2.

More information

Module 11: Meteorology Topic 3 Content: Climate Zones Notes

Module 11: Meteorology Topic 3 Content: Climate Zones Notes Introduction Latitude is such an important climate factor that you can make generalizations about a location's climate based on its latitude. Areas near the equator or the low latitudes are generally hot

More information

Biosphere Organization

Biosphere Organization Biosphere Organization What is a biome? Biomes refer to a large region or area characterized by the following: 1. A particular climate pattern of the annual temperature and precipitation distribution,

More information

Validation of MODIS Data for Localized Spatio- Temporal Evapotranspiration Mapping

Validation of MODIS Data for Localized Spatio- Temporal Evapotranspiration Mapping IOP Conference Series: Earth and Environmental Science OPEN ACCESS Validation of MODIS Data for Localized Spatio- Temporal Evapotranspiration Mapping To cite this article: M I Nadzri and M Hashim 2014

More information

Plant Ecophysiology in a Restoration Context

Plant Ecophysiology in a Restoration Context Objectives: How can the foundations of and theory in plant ecophysiological restoration ecology ecological restoration? Light and energy relations Photosynthesis Microclimate Belowground resource availability

More information

Thermal Crop Water Stress Indices

Thermal Crop Water Stress Indices Page 1 of 12 Thermal Crop Water Stress Indices [Note: much of the introductory material in this section is from Jackson (1982).] The most established method for detecting crop water stress remotely is

More information

Hydrologic cycles Land Woods Hole, July 12-13, 2004

Hydrologic cycles Land Woods Hole, July 12-13, 2004 ydrologic cycles and Woods ole, July -, 00 Alan etts, Atmospheric esearch, VT [EMWF] akbetts@aol.com http://alanbetts.com/research ettsydrologicycle00.pdf Are we losing the ability to make essential improvements

More information

Physical Aspects of Surface Energy Balance and Earth Observation Systems in Agricultural Practice

Physical Aspects of Surface Energy Balance and Earth Observation Systems in Agricultural Practice Physical Aspects of Surface Energy Balance and Earth Observation Systems in Agricultural Practice Henk de Bruin During the visit to Pachacamac we contemplate about the 4 elements, fire, air, water and

More information

What other observations are needed in addition to Fs for a robust GPP estimate?

What other observations are needed in addition to Fs for a robust GPP estimate? What other observations are needed in addition to Fs for a robust GPP estimate? Luis Guanter Free University of Berlin, Germany With contributions from Joanna Joiner & Betsy Middleton NASA Goddard Space

More information

Assimilating terrestrial remote sensing data into carbon models: Some issues

Assimilating terrestrial remote sensing data into carbon models: Some issues University of Oklahoma Oct. 22-24, 2007 Assimilating terrestrial remote sensing data into carbon models: Some issues Shunlin Liang Department of Geography University of Maryland at College Park, USA Sliang@geog.umd.edu,

More information

Appendix A. Stemflow

Appendix A. Stemflow Appendix A Stemflow The amount of stemflow S f is directly related to P. Table A.1 shows the regression results for the four experimental sites at which stemflow was measured. To investigate a possible

More information

Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models

Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models Agricultural and Forest Meteorology 118 (2003) 21 47 Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models Vivek K. Arora Canadian Centre for

More information

Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences

Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences Environmental Plant Physiology Photosynthesis - Aging krreddy@ra.msstate.edu Department of Plant and Soil Sciences Photosynthesis and Environment Leaf and Canopy Aging Goals and Learning Objectives: To

More information

Photosynthesis - Aging Leaf Level. Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences

Photosynthesis - Aging Leaf Level. Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences Environmental Plant Physiology Photosynthesis and Environment Leaf and Canopy Aging krreddy@ra.msstate.edu Department of Plant and Soil Sciences Goals and Learning Objectives: To understand the effects

More information

Modelling Fuel Moisture Under Climate Change

Modelling Fuel Moisture Under Climate Change 18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 Abstract: Modelling Fuel Moisture Under Climate Change Matthews, S. 1,2, Nguyen, K. 3, and McGregor,

More information

Plant Water Stress Frequency and Periodicity in Western North Dakota

Plant Water Stress Frequency and Periodicity in Western North Dakota Plant Water Stress Frequency and Periodicity in Western North Dakota Llewellyn L. Manske PhD, Sheri Schneider, John A. Urban, and Jeffery J. Kubik Report DREC 10-1077 Range Research Program Staff North

More information

Evaluation of Methodologies to Estimate Reference Evapotranspiration in Florida

Evaluation of Methodologies to Estimate Reference Evapotranspiration in Florida Proc. Fla. State Hort. Soc. 123:189 195. 2010. Evaluation of Methodologies to Estimate Reference Evapotranspiration in Florida E.M. Gelcer 1, C.W. Fraisse* 1, and P.C. Sentelhas 2 1University of Florida,

More information

LECTURE 07: CROP GROWTH ANALYSIS

LECTURE 07: CROP GROWTH ANALYSIS http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ Password: LECTURE 07: CROP GROWTH ANALYSIS Leaf area was the main factor determining differences in yield in several crops. Watson

More information

HydroUmcal Interactions Between Atmosphere, Soil and Vernation (Proceedings of the Vienna Symposium, August 1991). IAHS Publ. no. 204,1991.

HydroUmcal Interactions Between Atmosphere, Soil and Vernation (Proceedings of the Vienna Symposium, August 1991). IAHS Publ. no. 204,1991. HydroUmcal Interactions Between Atmosphere, Soil and Vernation (Proceedings of the Vienna Symposium, August 1991). IAHS Publ. no. 204,1991. Theoretical and Experimental Analysis of the Relationship Between

More information

1 BASIC CONCEPTS AND MODELS

1 BASIC CONCEPTS AND MODELS 1 BASIC CONCEPTS AND ODELS 1.1 INTRODUCTION This Volume III in the series of textbooks is focused on applications of environmental isotopes in surface water hydrology. The term environmental means that

More information

POTENTIAL EVAPOTRANSPIRATION AND DRYNESS / DROUGHT PHENOMENA IN COVURLUI FIELD AND BRATEŞ FLOODPLAIN

POTENTIAL EVAPOTRANSPIRATION AND DRYNESS / DROUGHT PHENOMENA IN COVURLUI FIELD AND BRATEŞ FLOODPLAIN PRESENT ENVIRONMENT AND SUSTAINABLE DEVELOPMENT, VOL. 5, no.2, 2011 POTENTIAL EVAPOTRANSPIRATION AND DRYNESS / DROUGHT PHENOMENA IN COVURLUI FIELD AND BRATEŞ FLOODPLAIN Gigliola Elena Ureche (Dobrin) 1

More information

Eric. W. Harmsen 1, John Mecikalski 2, Vanessa Acaron 3 and Jayson Maldonado 3

Eric. W. Harmsen 1, John Mecikalski 2, Vanessa Acaron 3 and Jayson Maldonado 3 Estimating Ground-Level Solar Radiation and Evapotranspiration In Puerto Rico Using Satellite Remote Sensing Eric. W. Harmsen 1, John Mecikalski 2, Vanessa Acaron 3 and Jayson Maldonado 3 1 Department

More information