1-2 Vector and scalar potentials

Size: px
Start display at page:

Download "1-2 Vector and scalar potentials"

Transcription

1 1-2 Vector and scalar potentials z a f a r q a q J y x f Maxwell's equations μ (1) ε (2) ρ (3) (4) - Derivation of E and H field by source current J Approach 1 : take (1) and plug into (2) μ ε μ μ (5) Electric field E due to current J source problem However, (5) cannot be solved easily(analytically).

2 Approach 2 : Since, define a magnetic vector potential as (6) Substitute B in (1) by (6) ω (7) (7) can be written as ω Φ (8) Φ : scalar potential take the curl of (6) in both sides : μ ωμ ε μ ωμ ε ω Φ μ (9) Simplify (9) : μ ωμ ε Φ (10) In order to define a unique : Both and must be defined. is defined by (6), is defined from (10) as ωμ ε Φ (11) Lorentz condition Using (11), (10) can be written as

3 μ (12) convenient form to be solved The vector potential A is derived from (12) ; Take the divergence of (8) and use (11) and (3) : ω Φ Φ Φ ρε (13) Once and Φ are obtained, then is given as ω Φ ω ω μ ε (14) Now H is derived either from (1) or from (6) μ (1) (6)

4 For a point source(infinitesimal current element) z a f a r q a q Idl y f x spherical coordinate system is used for convenience : coordinate ; (r, q, f) differential length; (dr, rdq, rdf) where differential volume ; r 2 dr dq df differential area on the sphere ; r 2 dq df use solid angle ; area on the sphere/r 2 (c.f. radian ; arc length/r ) differential area in solid angle ; dq df

5 1-3. Radiation from a short current element(short dipole) z a f a r q a q Idl y f x Fig 1.5 The short current filament Current element (short dipole) : component only μ (15) μ π (16) retarded potential : Use Spherical coordinate : θ θ θ (17) μ π θ θ θ (18) μ

6 θ π φ (19) and from equation or (14) μ ε π θ π θ θ θ θ (20) 1) In the region where r>> λ : radiation field in the far zone. θ π θ (21a) θ π φ (21b) (22a) (22b) where, free space intrinsic admittance. Note that and are function of r and θ and independent of φ. Symmetry Complex Poynting vector for the radiation field θ π (23)

7 2) near-zone field and For << 1 θ φ π θ θ θ (25) Since << 1, ε with ω Then πε θ θ θ (26) 1-4. Some basic antenna parameters 1) Radiation Pattern The relative distribution of radiated power as a function of direction ( φθ ) in space. E-plane pattern : as a function of θ with φ = constant H-plane pattern : as a function of φ with θ = constant

8 Half power beam width(hpbw) for E- and H-plane patterns θ θ π (27) for current element z z (a) y x (b) (c) Fig. 2.6 radiation patterns : E-plane and H-plane 2) Directivity and Gain The variation of the intensity with direction in space : The intensity of radiation = power radiated per unit solid angle;

9 Ω for current element θ π (28) Definition of Directivity function θφ θφ Ω π π Ω (29) for current element : total radiated power π θ θ θ φ π (30) θφ θ (31) at θ π Gain of the antenna G is defined as Ω π π Ω (32) η θφ η : efficiency of the antenna η where, : radiation resistance : antenna input resistance

10 3) Radiation Resistance Equivalent resistance which would dissipate the same amount of power as the antenna radiates when the current in that resistance equals the input current at the antenna terminals Radiation resistance of shor dipole π π λ (35) Review i) Radiation pattern three dimensional quantities involving the variation of field(power) as a function of spherical coordinate q and f.

11 * two-dimensional plots a) and b) : plotted as a function of q in cylindrical coordinate system. c) : in the rectangular coordinate system.

12 - Half Power Beam Width(HPBW) and First Null Beamwidth(FNBW) ii) Beam Area(Beam Solid Angle)

13 iii) Antenna Gain d directional P o (W/W ) omidirectional directivity = P d / P o gain = P d / P in where P in : input power iv) Radiation resistance antenna as a circuit element I P d (W/W ) dissipating power P d = I 2 R rad R rad : radiation resistance

14 1-5. Radiation from a small current loop(magnetic dipole) z y x Fig. 2.6 small current loop of radius r 0, area π with current I : Magnetic dipole moment π (36) Current element at φ is given as φ and φ φ φ Vector potential for the differential element ; where Therefore μ φ π φ φ φ φ

15 μ π π φ φφ (37) Approximations of R under λ ( ) and : θ φφ Drop which is small relative to and for leads to θ φφ and θ φφ By using these approximations, μ π π φ φ θ φφφ μ π π θ φ (38) μ μ φ φ θ π θ (39) and θ π φ (40) From (39) and (40)

16 small magnetic dipole is dual of the short dipole : the radiation pattern and directivity are not changed. Total radiated power : π π φ θ θθφ π π π θθθφ π (41) π λ (42) Ex. = 10cm at 1 MHz Ω

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe ANTENNAS Vector and Scalar Potentials Maxwell's Equations E = jωb H = J + jωd D = ρ B = (M) (M) (M3) (M4) D = εe B= µh For a linear, homogeneous, isotropic medium µ and ε are contant. Since B =, there

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

General review: - a) Dot Product

General review: - a) Dot Product General review: - a) Dot Product If θ is the angle between the vectors a and b, then a b = a b cos θ NOTE: Two vectors a and b are orthogonal, if and only if a b = 0. Properties of the Dot Product If a,

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

Solutions: Homework 5

Solutions: Homework 5 Ex. 5.1: Capacitor Solutions: Homework 5 (a) Consider a parallel plate capacitor with large circular plates, radius a, a distance d apart, with a d. Choose cylindrical coordinates (r,φ,z) and let the z

More information

3.4-7 First check to see if the loop is indeed electromagnetically small. Ie sinθ ˆφ H* = 2. ˆrr 2 sinθ dθ dφ =

3.4-7 First check to see if the loop is indeed electromagnetically small. Ie sinθ ˆφ H* = 2. ˆrr 2 sinθ dθ dφ = ECE 54/4 Spring 17 Assignment.4-7 First check to see if the loop is indeed electromagnetically small f 1 MHz c 1 8 m/s b.5 m λ = c f m b m Yup. (a) You are welcome to use equation (-5), but I don t like

More information

Radiation Integrals and Auxiliary Potential Functions

Radiation Integrals and Auxiliary Potential Functions Radiation Integrals and Auxiliary Potential Functions Ranga Rodrigo June 23, 2010 Lecture notes are fully based on Balanis [?]. Some diagrams and text are directly from the books. Contents 1 The Vector

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

A Dash of Maxwell s. In Part 4, we derived our third form of Maxwell s. A Maxwell s Equations Primer. Part 5 Radiation from a Small Wire Element

A Dash of Maxwell s. In Part 4, we derived our third form of Maxwell s. A Maxwell s Equations Primer. Part 5 Radiation from a Small Wire Element A Dash of Maxwell s by Glen Dash Ampyx LLC A Maxwell s Equations Primer Part 5 Radiation from a Small Wire Element In Part 4, we derived our third form of Maxwell s Equations, which we called the computational

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

Basics of Electromagnetics Maxwell s Equations (Part - I)

Basics of Electromagnetics Maxwell s Equations (Part - I) Basics of Electromagnetics Maxwell s Equations (Part - I) Soln. 1. C A. dl = C. d S [GATE 1994: 1 Mark] A. dl = A. da using Stoke s Theorem = S A. ds 2. The electric field strength at distant point, P,

More information

ELE3310: Basic ElectroMagnetic Theory

ELE3310: Basic ElectroMagnetic Theory A summary for the final examination EE Department The Chinese University of Hong Kong November 2008 Outline Mathematics 1 Mathematics Vectors and products Differential operators Integrals 2 Integral expressions

More information

Linear Wire Antennas. EE-4382/ Antenna Engineering

Linear Wire Antennas. EE-4382/ Antenna Engineering EE-4382/5306 - Antenna Engineering Outline Introduction Infinitesimal Dipole Small Dipole Finite Length Dipole Half-Wave Dipole Ground Effect Constantine A. Balanis, Antenna Theory: Analysis and Design

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

Electrodynamics Qualifier Examination

Electrodynamics Qualifier Examination Electrodynamics Qualifier Examination January 10, 2007 1. This problem deals with magnetostatics, described by a time-independent magnetic field, produced by a current density which is divergenceless,

More information

Electricity & Magnetism Qualifier

Electricity & Magnetism Qualifier Electricity & Magnetism Qualifier For each problem state what system of units you are using. 1. Imagine that a spherical balloon is being filled with a charged gas in such a way that the rate of charge

More information

III. Spherical Waves and Radiation

III. Spherical Waves and Radiation III. Spherical Waves and Radiation Antennas radiate spherical waves into free space Receiving antennas, reciprocity, path gain and path loss Noise as a limit to reception Ray model for antennas above a

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: PHYS 102 Exams Exam 2 PRINT (A) The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: It is connected to a battery with constant emf V.

More information

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is Magnetostatics 1. Currents 2. Relativistic origin of magnetic field 3. Biot-Savart law 4. Magnetic force between currents 5. Applications of Biot-Savart law 6. Ampere s law in differential form 7. Magnetic

More information

Electromagnetic Field Theory (EMT)

Electromagnetic Field Theory (EMT) Electromagnetic Field Theory (EMT) Lecture # 9 1) Coulomb s Law and Field Intensity 2) Electric Fields Due to Continuous Charge Distributions Line Charge Surface Charge Volume Charge Coulomb's Law Coulomb's

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 14, 2013 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted

More information

A) 4 B) 3 C) 2 D) 5 E) 6

A) 4 B) 3 C) 2 D) 5 E) 6 Coordinator: Saleem Rao Monday, January 01, 2018 Page: 1 Q1. A standing wave having three nodes is set up in a string fixed at both ends. If the frequency of the wave is doubled, how many antinodes will

More information

Plane Wave: Introduction

Plane Wave: Introduction Plane Wave: Introduction According to Mawell s equations a timevarying electric field produces a time-varying magnetic field and conversely a time-varying magnetic field produces an electric field ( i.e.

More information

PHYS General Physics for Engineering II FIRST MIDTERM

PHYS General Physics for Engineering II FIRST MIDTERM Çankaya University Department of Mathematics and Computer Sciences 2010-2011 Spring Semester PHYS 112 - General Physics for Engineering II FIRST MIDTERM 1) Two fixed particles of charges q 1 = 1.0µC and

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16 ECE 6345 Spring 5 Prof. David R. Jackson ECE Dept. Notes 6 Overview In this set of notes we calculate the power radiated into space by the circular patch. This will lead to Q sp of the circular patch.

More information

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMF(16EE214) Sem: II-B.Tech & II-Sem Course & Branch: B.Tech - EEE Year

More information

1 Electromagnetic concepts useful for radar applications

1 Electromagnetic concepts useful for radar applications Electromagnetic concepts useful for radar applications The scattering of electromagnetic waves by precipitation particles and their propagation through precipitation media are of fundamental importance

More information

The Steady Magnetic Field LECTURE 7

The Steady Magnetic Field LECTURE 7 The Steady Magnetic Field LECTURE 7 Learning Objectives Understand the Biot-Savart Law Understand the Ampere s Circuital Law Explain the Application of Ampere s Law Motivating the Magnetic Field Concept:

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

D. S. Weile Radiation

D. S. Weile Radiation Radiation Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Radiation Outline Outline Maxwell Redux Maxwell s Equation s are: 1 E = jωb = jωµh 2 H = J +

More information

Theory of Electromagnetic Fields

Theory of Electromagnetic Fields Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK Abstract We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to

More information

Phys 122 Lecture 3 G. Rybka

Phys 122 Lecture 3 G. Rybka Phys 122 Lecture 3 G. Rybka A few more Demos Electric Field Lines Example Calculations: Discrete: Electric Dipole Overview Continuous: Infinite Line of Charge Next week Labs and Tutorials begin Electric

More information

CHAPTER 11 RADIATION 4/13/2017. Outlines. 1. Electric Dipole radiation. 2. Magnetic Dipole Radiation. 3. Point Charge. 4. Synchrotron Radiation

CHAPTER 11 RADIATION 4/13/2017. Outlines. 1. Electric Dipole radiation. 2. Magnetic Dipole Radiation. 3. Point Charge. 4. Synchrotron Radiation CHAPTER 11 RADIATION Outlines 1. Electric Dipole radiation 2. Magnetic Dipole Radiation 3. Point Charge Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 4. Synchrotron Radiation

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism

NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism You may solve ALL FOUR problems if you choose. The points of the best three problems will be counted towards your final score

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

Physics 2102 Gabriela González. Marathon review of the course: 15 weeks in ~60 minutes!

Physics 2102 Gabriela González. Marathon review of the course: 15 weeks in ~60 minutes! Physics 2102 Gabriela González Marathon review of the course: 15 weeks in ~60 minutes! Fields: electric & magnetic electric and magnetic forces on electric charges potential energy, electric potential,

More information

General Physics (PHYC 252) Exam 4

General Physics (PHYC 252) Exam 4 General Physics (PHYC 5) Exam 4 Multiple Choice (6 points). Circle the one best answer for each question. For Questions 1-3, consider a car battery with 1. V emf and internal resistance r of. Ω that is

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG(HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2015/2016

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG(HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 OCD60 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG(HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 ENGINEERING ELECTROMAGNETISM MODULE NO: EEE6002 Date: Tuesday

More information

Tutorial 3 - Solutions Electromagnetic Waves

Tutorial 3 - Solutions Electromagnetic Waves Tutorial 3 - Solutions Electromagnetic Waves You can find formulas you require for vector calculus at the end of this tutorial. 1. Find the Divergence and Curl of the following functions - (a) k r ˆr f

More information

Lecture 2 : Curvilinear Coordinates

Lecture 2 : Curvilinear Coordinates Lecture 2 : Curvilinear Coordinates Fu-Jiun Jiang October, 200 I. INTRODUCTION A. Definition and Notations In 3-dimension Euclidean space, a vector V can be written as V = e x V x + e y V y + e z V z with

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

r,t r R Z j ³ 0 1 4π² 0 r,t) = 4π

r,t r R Z j ³ 0 1 4π² 0 r,t) = 4π 5.4 Lienard-Wiechert Potential and Consequent Fields 5.4.1 Potential and Fields (chapter 10) Lienard-Wiechert potential In the previous section, we studied the radiation from an electric dipole, a λ/2

More information

Consider a ring of radius a lying flat in the xy plane. Take the current in the ring to be I(t) = I 0 cos(ωt).

Consider a ring of radius a lying flat in the xy plane. Take the current in the ring to be I(t) = I 0 cos(ωt). Problem 1. A rotating magnet Consider a ring of radius a lying flat in the xy plane. Take the current in the ring to be I(t) = I 0 cos(ωt). (a) Determine the electric field close z axis for z a using the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Final Exam Equation Sheet Force Law: F q = q( E ext + v q B ext ) Poynting Vector: S = ( E B) / µ 0 Force on Current Carrying

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

Problem set 3. Electromagnetic waves

Problem set 3. Electromagnetic waves Second Year Electromagnetism Michaelmas Term 2017 Caroline Terquem Problem set 3 Electromagnetic waves Problem 1: Poynting vector and resistance heating This problem is not about waves but is useful to

More information

Phys 2025, First Test. September 20, minutes Name:

Phys 2025, First Test. September 20, minutes Name: Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 10-1 C / N m e

More information

Chapter 26. A capacitor is a device that one can use to store an electric potential energy.

Chapter 26. A capacitor is a device that one can use to store an electric potential energy. 223 Chapter 26 A capacitor is a device that one can use to store an electric potential energy. (Spring: mechanical potential energy) Useful in electronics and microelectronics (C: capacitance SI: farad)

More information

Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2012

Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2012 .... Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator Course, Sokendai Second

More information

Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow

Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow Section Table and Group Names Hand in one copy per group at the end

More information

Question 1. Question 2

Question 1. Question 2 Question 1 Figure 29-26 shows cross sections of two long straight wires; the left-hand wire carries current i 1 directly out of the page. The net magnetic field due to the two currents is to be zero at

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

Azimuthal eddy currents in a wire

Azimuthal eddy currents in a wire Problem 1. Azimuthal eddy currents in a wire A longitudinal AC magnetic field B(t) = ẑb o cos(ωt) is driven through the interior of a (solid) ohmic tube with length L and radius R L, drawn rather schematically

More information

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018 ENG018 SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING MODULE NO: EEE6002 Date: 17 January 2018 Time: 2.00 4.00 INSTRUCTIONS TO CANDIDATES: There are six questions.

More information

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis Antennas and Propagation : Basic Electromagnetic Analysis Outline Vector Potentials, Wave Equation Far-field Radiation Duality/Reciprocity Transmission Lines Antennas and Propagation Slide 2 Antenna Theory

More information

Time-harmonic form Phasor form. =0 (1.11d)

Time-harmonic form Phasor form. =0 (1.11d) Chapter 2 Wave in an Unbounded Medium Maxwell s Equations Time-harmonic form Phasor form (Real quantity) (complex quantity) B E = Eˆ = jωbˆ (1.11 a) t D= ρ Dˆ = ρ (1.11 b) D H = J + Hˆ = Jˆ+ jωdˆ ( 1.11

More information

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange Index A. see Magnetic vector potential. Acceptor, 193 Addition of complex numbers, 19 of vectors, 3, 4 Admittance characteristic, 251 input, 211 line, 251 Ampere, definition of, 427 Ampere s circuital

More information

Physics 3312 Lecture 9 February 13, LAST TIME: Finished mirrors and aberrations, more on plane waves

Physics 3312 Lecture 9 February 13, LAST TIME: Finished mirrors and aberrations, more on plane waves Physics 331 Lecture 9 February 13, 019 LAST TIME: Finished mirrors and aberrations, more on plane waves Recall, Represents a plane wave having a propagation vector k that propagates in any direction with

More information

Chapter 11. Radiation. How accelerating charges and changing currents produce electromagnetic waves, how they radiate.

Chapter 11. Radiation. How accelerating charges and changing currents produce electromagnetic waves, how they radiate. Chapter 11. Radiation How accelerating charges and changing currents produce electromagnetic waves, how they radiate. 11.1.1 What is Radiation? Assume a radiation source is localized near the origin. Total

More information

Worked Examples Set 2

Worked Examples Set 2 Worked Examples Set 2 Q.1. Application of Maxwell s eqns. [Griffiths Problem 7.42] In a perfect conductor the conductivity σ is infinite, so from Ohm s law J = σe, E = 0. Any net charge must be on the

More information

Exam 4 (Final) Solutions

Exam 4 (Final) Solutions PHY049 Spring 006 Prof. Darin Acosta Prof. Greg Stewart May 1, 006 Exam 4 (Final) Solutions 1. Four charges are arranged into a square with side length a=1 cm as shown in the figure. The charges (clockwise

More information

Lecture 3. Electric Field Flux, Gauss Law

Lecture 3. Electric Field Flux, Gauss Law Lecture 3. Electric Field Flux, Gauss Law Attention: the list of unregistered iclickers will be posted on our Web page after this lecture. From the concept of electric field flux to the calculation of

More information

2nd Year Electromagnetism 2012:.Exam Practice

2nd Year Electromagnetism 2012:.Exam Practice 2nd Year Electromagnetism 2012:.Exam Practice These are sample questions of the type of question that will be set in the exam. They haven t been checked the way exam questions are checked so there may

More information

Exam 2 Solutions. ε 3. ε 1. Problem 1

Exam 2 Solutions. ε 3. ε 1. Problem 1 Exam 2 Solutions Problem 1 In the circuit shown, R1=100 Ω, R2=25 Ω, and the ideal batteries have EMFs of ε1 = 6.0 V, ε2 = 3.0 V, and ε3 = 1.5 V. What is the magnitude of the current flowing through resistor

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

In this module, we discuss the basic approach for solving electromagnetic field quantities given a distribution of current in space.

In this module, we discuss the basic approach for solving electromagnetic field quantities given a distribution of current in space. In this module, we discuss the basic approach for solving electromagnetic field quantities given a distribution of current in space. Page 1 In a classical electromagnetic description of waves, both electric

More information

Magnetostatics and the vector potential

Magnetostatics and the vector potential Magnetostatics and the vector potential December 8, 2015 1 The divergence of the magnetic field Starting with the general form of the Biot-Savart law, B (x 0 ) we take the divergence of both sides with

More information

Series & Parallel Resistors 3/17/2015 1

Series & Parallel Resistors 3/17/2015 1 Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both

More information

Multipole Expansion for Radiation;Vector Spherical Harmonics

Multipole Expansion for Radiation;Vector Spherical Harmonics Multipole Expansion for Radiation;Vector Spherical Harmonics Michael Dine Department of Physics University of California, Santa Cruz February 2013 We seek a more systematic treatment of the multipole expansion

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

PHYS 1444 Section 02 Review #2

PHYS 1444 Section 02 Review #2 PHYS 1444 Section 02 Review #2 November 9, 2011 Ian Howley 1 1444 Test 2 Eq. Sheet Terminal voltage Resistors in series Resistors in parallel Magnetic field from long straight wire Ampére s Law Force on

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

ELECTRICITY AND MAGNETISM

ELECTRICITY AND MAGNETISM THIRD EDITION ELECTRICITY AND MAGNETISM EDWARD M. PURCELL DAVID J. MORIN Harvard University, Massachusetts Щ CAMBRIDGE Ell UNIVERSITY PRESS Preface to the third edition of Volume 2 XIII CONTENTS Preface

More information

Yell if you have any questions

Yell if you have any questions Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization 4.2. The Field of a Polarized Object 4.3. The Electric Displacement 4.4. Linear Dielectrics 4.5. Energy in dielectric systems 4.6. Forces on

More information

1. A ring of radius α has a charge distribution on it that varies as λ(θ) = λ 0 sin(θ), where λ 0 > 0, as shown in the figure.

1. A ring of radius α has a charge distribution on it that varies as λ(θ) = λ 0 sin(θ), where λ 0 > 0, as shown in the figure. EACH OF THE LECTURE QUESTIONS 1-22 IS WORTH 5 POINTS I. COULOMB S LAW 1. A ring of radius α has a charge distribution on it that varies as λ(θ) = λ 0 sin(θ), where λ 0 > 0, as shown in the figure. What

More information

Moments of Inertia (7 pages; 23/3/18)

Moments of Inertia (7 pages; 23/3/18) Moments of Inertia (7 pages; 3/3/8) () Suppose that an object rotates about a fixed axis AB with angular velocity θ. Considering the object to be made up of particles, suppose that particle i (with mass

More information

Homework 1. Property LASER Incandescent Bulb

Homework 1. Property LASER Incandescent Bulb Homework 1 Solution: a) LASER light is spectrally pure, single wavelength, and they are coherent, i.e. all the photons are in phase. As a result, the beam of a laser light tends to stay as beam, and not

More information

Summary: Curvilinear Coordinates

Summary: Curvilinear Coordinates Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 10 1 Summary: Curvilinear Coordinates 1. Summary of Integral Theorems 2. Generalized Coordinates 3. Cartesian Coordinates: Surfaces of Constant

More information

Part IB Electromagnetism

Part IB Electromagnetism Part IB Electromagnetism Theorems Based on lectures by D. Tong Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras

Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 7 Gauss s Law Good morning. Today, I want to discuss two or three

More information

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used B( t) E = dt D t H = J+ t D =ρ B = 0 D=εE B=µ H () F

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

第 1 頁, 共 8 頁 Chap32&Chap33 1. Test Bank, Question 2 Gauss' law for magnetism tells us: the net charge in any given volume that the line integral of a magnetic around any closed loop must vanish the magnetic

More information

Physics 208: Electricity and Magnetism Final Exam, Secs May 2003 IMPORTANT. Read these directions carefully:

Physics 208: Electricity and Magnetism Final Exam, Secs May 2003 IMPORTANT. Read these directions carefully: Physics 208: Electricity and Magnetism Final Exam, Secs. 506 510 2 May 2003 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your full name: Sign your name: Please fill in your

More information

1 Fundamentals of laser energy absorption

1 Fundamentals of laser energy absorption 1 Fundamentals of laser energy absorption 1.1 Classical electromagnetic-theory concepts 1.1.1 Electric and magnetic properties of materials Electric and magnetic fields can exert forces directly on atoms

More information

Electromagnetic Theorems

Electromagnetic Theorems Electromagnetic Theorems Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Electromagnetic Theorems Outline Outline Duality The Main Idea Electric Sources

More information

PHYS 532 Lecture 10 Page Derivation of the Equations of Macroscopic Electromagnetism. Parameter Microscopic Macroscopic

PHYS 532 Lecture 10 Page Derivation of the Equations of Macroscopic Electromagnetism. Parameter Microscopic Macroscopic PHYS 532 Lecture 10 Page 1 6.6 Derivation of the Equations of Macroscopic Electromagnetism Parameter Microscopic Macroscopic Electric Field e E = Magnetic Field b B = Charge Density η ρ = Current

More information

Chapter 6. Maxwell s Equations, Macroscopic Electromagnetism, Conservation Laws

Chapter 6. Maxwell s Equations, Macroscopic Electromagnetism, Conservation Laws PHYS 532 Lecture 7 Page 1 Chapter 6. Maxwell s Equations, Macroscopic Electromagnetism, Conservation Laws 6.1 Maxwell Displacement Current and Maxwell Equations Differential equations for calculating fields

More information

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron - Potentials - Liénard-Wiechart Potentials - Larmor s Formula - Dipole Approximation - Beginning of Cyclotron & Synchrotron Maxwell s equations in a vacuum become A basic feature of these eqns is the existence

More information

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates CBE 6333, R. Levicky 1 Orthogonal Curvilinear Coordinates Introduction. Rectangular Cartesian coordinates are convenient when solving problems in which the geometry of a problem is well described by the

More information