ELE3310: Basic ElectroMagnetic Theory

Size: px
Start display at page:

Download "ELE3310: Basic ElectroMagnetic Theory"

Transcription

1 A summary for the final examination EE Department The Chinese University of Hong Kong November 2008

2 Outline Mathematics 1 Mathematics Vectors and products Differential operators Integrals 2 Integral expressions Electromagnetism in the matter 3 Phasors and Plane Waves

3 Vectors in three dimensions Vectors and products Differential operators Integrals Definitions Notation: bold w (typewriting) or arrowed letter w (handwriting) Definition: a collection of three scalars (real numbers) w = (w x, w y, w z ) known as its Cartesian coordinates Characterization Amplitude: a scalar defined by w = p w 2 x + w 2 y + w 2 z Direction: a unit vector defined by a w = w/w Orthonormal bases Definition: a vector { basis is { a set of three{ unit vectors u, v and w v u u such that u w, v w and w v Example: the canonical basis of the 3D space a x, a y and a z Usage: any vector w can be expressed as w = w x a x + w y a y + w z a z Other coordinate systems: cylindrical and spherical

4 Scalar and Vector products Vectors and products Differential operators Integrals Scalar (dot) product Notation: u v this is a scalar number! Definition: u v = u x v x + u y v y + u z v z Characterization u v = 0 is equivalent to u v u v = u v cos`angle(u, v) Vector (cross) product Notation: u v this is a vector! Definition: u v = (u y v z u z v y )a x + (u z v x u x v z )a y + (u x v y u y v x )a z Characterization u v u v = 0 is equivalent to u // v u v is always to u and to v u v = u v sin`angle(u, v) v u

5 Vectors and products Differential operators Integrals Gradient Notation: f, using the nabla or del operator Definition: f = f x a x + f y a y + f z a z this operator acts on scalar functions! f returns a vector function! Characterization Always orthogonal to the equisurfaces 1 of f(x, y, z) Indicates the direction of steepest descent 2x Example: if f(x, y, z) = x 2 + y 2 + z 2, then f = 2y 2z 1 i.e., f(x, y, z) = constant

6 Vectors and products Differential operators Integrals Divergence Notation: div(u) (preferred) or u Definition: div(u) = ux x + uy y + uz z this operator acts on vector functions! div(u) returns a scalar function! Interpretation: if u is a velocity field, div(u) indicates by how much elementary volumes are expanded (div(u) > 0) or contracted (div(u) < 0) in the motion Example: if u(x, y, z) = xa x + ya y + za z, then div(u) = 3

7 Vectors and products Differential operators Integrals Rotational or curl Notation: u Definition: u = ( u z y ( uy + x uy z ) a x + ux y ) a z this operator acts on vector functions! u returns a vector function! ( u x z ) uz x a y 2 Interpretation: if u is understood as a velocity field, u indicates how much and around which direction, elementary volumes are rotating in the motion Example: if u(x, y, z) = }{{} Ω (xa x + ya y + za z ), then u = 2Ω constant vector

8 Vectors and products Differential operators Integrals Essential identities Divergence and curl It is always true that div( u) = 0 Conversely, if v is such that div(v) = 0, then there exists u such that v = u Gradient and curl It is always true that ( ϕ) = 0 Conversely, if v is such that v = 0, then there exists ϕ such that v = ϕ Laplace operator Can be applied to both scalar fields and vector fields. Notation: 2 u (vector) or 2 ϕ (scalar) Scalar case: 2 ϕ = 2 ϕ x ϕ y ϕ z 2 = div( ϕ) Vector case: 2 u = 2 u x a x + 2 u y a y + 2 u z a z

9 Vectors and products Differential operators Integrals Contours and line integrals A contour is a collection of points indexed by one parameter only. r = ( x(t), y(t), z(t) ) x(t) = cos(t) Example: a helix is obtained by y(t) = sin(t) z(t) = t A line integral is an expression of the form contour u(x, y, z) dl, where ( dx dl = dt a x + dy dt a y + dz ) dt a z dt A closed contour integral is denoted by and is called the circulation of the vector field u around this contour. In electromagnetism exercises, u is often in the same direction (or othogonal) as dl, with constant modulus. Thus, u dl = u length(contour) contour

10 Vectors and products Differential operators Integrals Surfaces and surface integrals A surface is a collection of points indexed by two parameters. x(s, t) = sin(s) cos(t) Example of a sphere: y(s, t) = sin(s) sin(t) z(s, t) = cos(s) A surface integral is an expression of the form surface u ds where ds is the elementary surface vector orthogonal to the surface A surface integral is called the flux of the vector field u across this surface In electromagnetism exercises, u is often in the same direction (or othogonal) as ds, with constant modulus. Thus, u ds = u area(surface) surface

11 Vectors and products Differential operators Integrals Stokes theorem Transformation of a closed contour line integral into a surface integral i.e., the transformation of a circulation into a flux: contour u dl = supported surface u ds Green s divergence theorem Transformation of a closed surface integral into a volume integral: surface u ds = div(u) dxdydz enclosed volume

12 Integral expressions Electromagnetism in the matter Static electric field E(x, y, z) satisfies two differential equations E = 0 and div(e) = ρ ε 0 if ρ(x, y, z) is the local density of charges. Equivalently, E(x, y, z) satisfies two integral equations C E dl = 0 and charges inside S E ds = S ε }{{ 0 } Gauss Law

13 Integral expressions Electromagnetism in the matter Static magnetic field The magnetic flux density B(x, y, z) satisfies two differential equations B = µ 0 J and div(b) = 0 if J(x, y, z) is the local density of currents. Equivalently, B(x, y, z) satisfies two integral equations B dl = µ 0 current through C and B ds = 0 C S }{{} Ampère s circuital law

14 Integral expressions Electromagnetism in the matter Static electric potential E(x, y, z) is related to its potential V (x, y, z) by E = V V satisfies 2 V = ρ/ε 0. Static magnetic potential B(x, y, z) is related to its vector potential A(x, y, z) by B = A A is chosen so that div(a) = 0 and satisfies 2 A = µ 0 J.

15 Integral expressions Electromagnetism in the matter Coulomb s Law Explicit expressions of V and E ρ(r ) V (r) = 4πε 0 r r dx dy dz ρ(r ) r r E(r) = 4πε 0 r r 3 dx dy dz Biot-Savart Law Explicit expressions of A and B for circuits (I = current intensity) A(r) = µ 0I dl 4π circuit r r B(r) = µ 0I 4π circuit dl (r r ) r r 3

16 Integral expressions Electromagnetism in the matter Constitutive equations Linear relations characterizing the reaction of the matter to the electromagnetic field Displacement field: modification of E caused by electric dipoles div(d) = ρ free replaces div(e) = ρ/ε 0, where D = εe Magnetic field intensity: modification of E caused by magnetic dipoles H = J free replaces B = µ 0 J, where H = B/µ Ohm s law: resistance of the matter to the motion of charged particles J = σ E }{{} conductivity

17 Integral expressions Electromagnetism in the matter Boundary conditions Continuities/discontinuities of the electromagnetic field across the interface between different matters Perfect conductor (ρ s = surface charge density) E = 0 and ρ = 0, inside the conductor E = ρ s ε a n, on the surface of the conductor }{{} direction normal to the interface Perfect dielectric (no free charges/currents): continuity of the tangential (to the interface) components of E and of H the normal (to the interface) components of εe and of µh Conditions still valid for time-varying electromagnetic fields

18 Phasors and Plane Waves Maxwell s Equations Four differential equations coupling E(x, y, z, t) and H(x, y, z, t) and valid in the matter Faraday s law {}}{ E = (µh) t div(εe) = ρ }{{} Gauss s law Ampère s circuital law {}}{ H = J + (εe) t div(µh) = 0 }{{} no magnetic charges Reminder: Displacement electric field D and magnetic flux density B are related to E and H through the constitutive relations D = εe and B = µh

19 Phasors and Plane Waves The equation of continuity States the conservation of the electric charge in a moving volume Differential equation: div(j) + ρ t = 0 Integral equation S J ds = d dt inside S ρ(x, y, z, t) dxdydz i.e., the current flow through S is exactly balanced by the variation of electric charge inside S. It is the inconsistency of the statics equations with the equation of continuity that led J.C. Maxwell to state his famous relations.

20 Phasors and Plane Waves Energy and power The electromagnetic field carries energy Energy density: W = εe2 2 + µh2 2 Power flow (Poynting vector): P = E H For a non-conductive dielectric medium div P + W t = 0 states that the electromagnetic power flux through a closed surface is exactly balanced by the variation of energy density inside this surface.

21 Phasors and Plane Waves Potentials µh = B(x, y, z) is still related to its vector potential A(x, y, z) by B = A However, now A is not chosen anymore so that div(a) = 0. E(x, y, z) is now related to the electric potential V (x, y, z) by E = V A t Additionally, when ε and µ are constant the magnetic vector potential is chosen so that div(a) + εµ V t = 0

22 Phasors and Plane Waves The wave equation In a medium with constant permittivity ε and permeability µ the potentials satisfy a (second order) wave propagation equation 2 A εµ 2 A t 2 = 0 2 V εµ 2 V t 2 = 0 The propagation velocity c is given by c = 1/ εµ.

23 Phasors and Plane Waves Phasors Considering an electromagnetic field at frequency ω, its spatial variations are characterized by a complex-valued vector E(x, y, z, t) = R { E(x, y, z)e jωt} H(x, y, z, t) = R { H(x, y, z)e jωt} Maxwell s equations for phasors E = jωµh H = J + jωεe div(εe) = ρ div(µh) = 0 Wave equation for phasors (with ρ = 0, J = σe and ε, µ constant) 2 E + k 2 E = 0 where k 2 = εµω 2 jσµω

24 Phasors and Plane Waves Plane waves A particular solution of Maxwell s equations for phasors E(x, y, z) = E 0 e }{{} jk r constant vector where k is a (possibly complex) vector. E and H are orthogonal, and transverse to the direction of propagation a k Electric field: k E = 0 Magnetic field: H = k E µω = 1 η a k E where η is the wave impedance. Polarizations Linear: E and H stay parallel to a real vector elliptical (left- or right-handed): E and H have a complex phase difference between their components

25 Phasors and Plane Waves Plane waves in lossy media Propagation constant: γ = jk = α Skin depth: δ = 1 α }{{} attenuation +j β }{{} phase Group velocity: u g = 1 dβ dω

26 Phasors and Plane Waves Interfaces Result of the incidence of a plane wave on a plane separating two media with different electromagnetic characteristics: Reflection: a plane wave propagating in the direction symmetric to incidence with respect to the interface (Snell s law of reflection) Transmission: a plane wave propagating in a direction depending on the relative propagation velocities between the two media (Snell s law of Standing waves: interferences between the incident and reflected waves in the direction normal to the interface Reflection/transmission coefficients: obtained by solving for the reflection and transmission EM fields using the boundary conditions at the interface

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

A Review of Basic Electromagnetic Theories

A Review of Basic Electromagnetic Theories A Review of Basic Electromagnetic Theories Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820)

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Ranga Rodrigo University of Moratuwa October 20, 2008 Compiled based on Lectures of Prof. (Mrs.) Indra Dayawansa. Ranga Rodrigo (University of Moratuwa) Antennas and Propagation

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR-621113 ELECTRICAL AND ELECTRONICS DEPARTMENT 2 MARK QUESTIONS AND ANSWERS SUBJECT CODE: EE 6302 SUBJECT NAME: ELECTROMAGNETIC THEORY

More information

Chapter 1 Mathematical Foundations

Chapter 1 Mathematical Foundations Computational Electromagnetics; Chapter 1 1 Chapter 1 Mathematical Foundations 1.1 Maxwell s Equations Electromagnetic phenomena can be described by the electric field E, the electric induction D, the

More information

Unit-1 Electrostatics-1

Unit-1 Electrostatics-1 1. Describe about Co-ordinate Systems. Co-ordinate Systems Unit-1 Electrostatics-1 In order to describe the spatial variations of the quantities, we require using appropriate coordinate system. A point

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Introduction to Electromagnetic Theory

Introduction to Electromagnetic Theory Introduction to Electromagnetic Theory Lecture topics Laws of magnetism and electricity Meaning of Maxwell s equations Solution of Maxwell s equations Electromagnetic radiation: wave model James Clerk

More information

A Brief Revision of Vector Calculus and Maxwell s Equations

A Brief Revision of Vector Calculus and Maxwell s Equations A Brief Revision of Vector Calculus and Maxwell s Equations Debapratim Ghosh Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay e-mail: dghosh@ee.iitb.ac.in

More information

EE6302 ELCTROMAGNETIC THEORY UNIT I ELECTROSTATICS I

EE6302 ELCTROMAGNETIC THEORY UNIT I ELECTROSTATICS I 13 EE630 ELCTROMAGNETIC THEORY UNIT I ELECTROSTATICS I 1. Define Scalar and Vector Scalar: Scalar is defined as a quantity that is characterized only by magnitude. Vector: Vector is defined as a quantity

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

Basics of Electromagnetics Maxwell s Equations (Part - I)

Basics of Electromagnetics Maxwell s Equations (Part - I) Basics of Electromagnetics Maxwell s Equations (Part - I) Soln. 1. C A. dl = C. d S [GATE 1994: 1 Mark] A. dl = A. da using Stoke s Theorem = S A. ds 2. The electric field strength at distant point, P,

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis Antennas and Propagation : Basic Electromagnetic Analysis Outline Vector Potentials, Wave Equation Far-field Radiation Duality/Reciprocity Transmission Lines Antennas and Propagation Slide 2 Antenna Theory

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

Antenna Theory (Engineering 9816) Course Notes. Winter 2016

Antenna Theory (Engineering 9816) Course Notes. Winter 2016 Antenna Theory (Engineering 9816) Course Notes Winter 2016 by E.W. Gill, Ph.D., P.Eng. Unit 1 Electromagnetics Review (Mostly) 1.1 Introduction Antennas act as transducers associated with the region of

More information

Part IB Electromagnetism

Part IB Electromagnetism Part IB Electromagnetism Theorems Based on lectures by D. Tong Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Lecture notes for ELECTRODYNAMICS.

Lecture notes for ELECTRODYNAMICS. Lecture notes for 640-343 ELECTRODYNAMICS. 1 Summary of Electrostatics 1.1 Coulomb s Law Force between two point charges F 12 = 1 4πɛ 0 Q 1 Q 2ˆr 12 r 1 r 2 2 (1.1.1) 1.2 Electric Field For a charge distribution:

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-ELECTRICITY AND MAGNETISM 1. Electrostatics (1-58) 1.1 Coulomb s Law and Superposition Principle 1.1.1 Electric field 1.2 Gauss s law 1.2.1 Field lines and Electric flux 1.2.2 Applications 1.3

More information

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Daniel Sjöberg Department of Electrical and Information Technology September 2, 2014 Outline 1 Maxwell s equations 2 Vector analysis 3 Boundary

More information

Electromagnetic Field Theory 1 (fundamental relations and definitions)

Electromagnetic Field Theory 1 (fundamental relations and definitions) (fundamental relations and definitions) Lukas Jelinek lukas.jelinek@fel.cvut.cz Department of Electromagnetic Field Czech Technical University in Prague Czech Republic Ver. 216/12/14 Fundamental Question

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 7: Dynamic fields Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Maxwell s equations Maxwell

More information

Reflection/Refraction

Reflection/Refraction Reflection/Refraction Page Reflection/Refraction Boundary Conditions Interfaces between different media imposed special boundary conditions on Maxwell s equations. It is important to understand what restrictions

More information

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK III SEMESTER EE 8391 ELECTROMAGNETIC THEORY Regulation 2017 Academic Year

More information

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange Index A. see Magnetic vector potential. Acceptor, 193 Addition of complex numbers, 19 of vectors, 3, 4 Admittance characteristic, 251 input, 211 line, 251 Ampere, definition of, 427 Ampere s circuital

More information

General review: - a) Dot Product

General review: - a) Dot Product General review: - a) Dot Product If θ is the angle between the vectors a and b, then a b = a b cos θ NOTE: Two vectors a and b are orthogonal, if and only if a b = 0. Properties of the Dot Product If a,

More information

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMF(16EE214) Sem: II-B.Tech & II-Sem Course & Branch: B.Tech - EEE Year

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

Field and Wave Electromagnetic

Field and Wave Electromagnetic Field and Wave Electromagnetic Chapter7 The time varying fields and Maxwell s equation Introduction () Time static fields ) Electrostatic E =, id= ρ, D= εe ) Magnetostatic ib=, H = J, H = B μ note) E and

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

toroidal iron core compass switch battery secondary coil primary coil

toroidal iron core compass switch battery secondary coil primary coil Fundamental Laws of Electrostatics Integral form Differential form d l C S E 0 E 0 D d s V q ev dv D ε E D qev 1 Fundamental Laws of Magnetostatics Integral form Differential form C S dl S J d s B d s

More information

Chapter 7. Time-Varying Fields and Maxwell s Equations

Chapter 7. Time-Varying Fields and Maxwell s Equations Chapter 7. Time-arying Fields and Maxwell s Equations Electrostatic & Time arying Fields Electrostatic fields E, D B, H =J D H 1 E B In the electrostatic model, electric field and magnetic fields are not

More information

TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva

TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva Part 1. Introduction Basic Physics and Mathematics for Electromagnetics. Lecture

More information

UNIT-III Maxwell's equations (Time varying fields)

UNIT-III Maxwell's equations (Time varying fields) UNIT-III Maxwell's equations (Time varying fields) Faraday s law, transformer emf &inconsistency of ampere s law Displacement current density Maxwell s equations in final form Maxwell s equations in word

More information

ST.JOSEPH COLLEGE OF ENGINEERING,DEPARTMENT OF ECE

ST.JOSEPH COLLEGE OF ENGINEERING,DEPARTMENT OF ECE EC6403 -ELECTROMAGNETIC FIELDS CLASS/SEM: II ECE/IV SEM UNIT I - STATIC ELECTRIC FIELD Part A - Two Marks 1. Define scalar field? A field is a system in which a particular physical function has a value

More information

ELECTROMAGNETIC FIELDS AND WAVES

ELECTROMAGNETIC FIELDS AND WAVES ELECTROMAGNETIC FIELDS AND WAVES MAGDY F. ISKANDER Professor of Electrical Engineering University of Utah Englewood Cliffs, New Jersey 07632 CONTENTS PREFACE VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN

More information

Electromagnetic Theory: PHAS3201, Winter 2008 Preliminaries D. R. Bowler drb/teaching.

Electromagnetic Theory: PHAS3201, Winter 2008 Preliminaries D. R. Bowler   drb/teaching. Electromagnetic Theory: PHA3201, Winter 2008 Preliminaries D. R. Bowler david.bowler@ucl.ac.uk http://www.cmmp.ucl.ac.uk/ drb/teaching.html 1 yllabus The course can be split into three main areas: electric

More information

송석호 ( 물리학과 )

송석호 ( 물리학과 ) http://optics.hanyang.ac.kr/~shsong 송석호 ( 물리학과 ) Field and Wave Electromagnetics, David K. Cheng Reviews on (Week 1). Vector Analysis 3. tatic Electric Fields (Week ) 4. olution of Electrostatic Problems

More information

Theory of Electromagnetic Nondestructive Evaluation

Theory of Electromagnetic Nondestructive Evaluation EE 6XX Theory of Electromagnetic NDE: Theoretical Methods for Electromagnetic Nondestructive Evaluation 1915 Scholl Road CNDE Ames IA 50011 Graduate Tutorial Notes 2004 Theory of Electromagnetic Nondestructive

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Daniel Sjöberg Department of Electrical and Information Technology September 3, 2013 Outline 1 Maxwell s equations 2 Vector analysis 3 Boundary

More information

Engineering Electromagnetic Fields and Waves

Engineering Electromagnetic Fields and Waves CARL T. A. JOHNK Professor of Electrical Engineering University of Colorado, Boulder Engineering Electromagnetic Fields and Waves JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CHAPTER

More information

1 Fundamentals of laser energy absorption

1 Fundamentals of laser energy absorption 1 Fundamentals of laser energy absorption 1.1 Classical electromagnetic-theory concepts 1.1.1 Electric and magnetic properties of materials Electric and magnetic fields can exert forces directly on atoms

More information

Chapter 7. Time-Varying Fields and Maxwell s Equation

Chapter 7. Time-Varying Fields and Maxwell s Equation Chapter 7. Time-Varying Fields and Maxwell s Equation Electrostatic & Time Varying Fields Electrostatic fields E, D B, H =J D H 1 E B In the electrostatic model, electric field and magnetic fields are

More information

Mathematical Notes for E&M Gradient, Divergence, and Curl

Mathematical Notes for E&M Gradient, Divergence, and Curl Mathematical Notes for E&M Gradient, Divergence, and Curl In these notes I explain the differential operators gradient, divergence, and curl (also known as rotor), the relations between them, the integral

More information

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity Daniel Sjöberg Department of Electrical and Information Technology Spring 2018 Outline 1 Basic reflection physics 2 Radar cross section definition

More information

Radiation Integrals and Auxiliary Potential Functions

Radiation Integrals and Auxiliary Potential Functions Radiation Integrals and Auxiliary Potential Functions Ranga Rodrigo June 23, 2010 Lecture notes are fully based on Balanis [?]. Some diagrams and text are directly from the books. Contents 1 The Vector

More information

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used B( t) E = dt D t H = J+ t D =ρ B = 0 D=εE B=µ H () F

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

ELECTROMAGNETIC FIELD

ELECTROMAGNETIC FIELD UNIT-III INTRODUCTION: In our study of static fields so far, we have observed that static electric fields are produced by electric charges, static magnetic fields are produced by charges in motion or by

More information

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001). Overview in Images 5 nm K.S. Min et al. PhD Thesis K.V. Vahala et al, Phys. Rev. Lett, 85, p.74 (000) J. D. Joannopoulos, et al, Nature, vol.386, p.143-9 (1997) T.Thio et al., Optics Letters 6, 197-1974

More information

Chapter Three: Propagation of light waves

Chapter Three: Propagation of light waves Chapter Three Propagation of Light Waves CHAPTER OUTLINE 3.1 Maxwell s Equations 3.2 Physical Significance of Maxwell s Equations 3.3 Properties of Electromagnetic Waves 3.4 Constitutive Relations 3.5

More information

Short Introduction to (Classical) Electromagnetic Theory

Short Introduction to (Classical) Electromagnetic Theory Short Introduction to (Classical) Electromagnetic Theory (.. and applications to accelerators) Werner Herr, CERN (http://cern.ch/werner.herr/cas/cas2013 Chavannes/lectures/em.pdf) Why electrodynamics?

More information

(Autonomous/ Affiliated to Anna University, Chennai) COIMBATORE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

(Autonomous/ Affiliated to Anna University, Chennai) COIMBATORE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (Autonomous/ Affiliated to Anna University, Chennai) COIMBATORE-641 032 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Semester III Academic Year: 2015-2016 Regulations 2014 COURSE PLAN Vision To

More information

remain essentially unchanged for the case of time-varying fields, the remaining two

remain essentially unchanged for the case of time-varying fields, the remaining two Unit 2 Maxwell s Equations Time-Varying Form While the Gauss law forms for the static electric and steady magnetic field equations remain essentially unchanged for the case of time-varying fields, the

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture 18 Basic Laws of Electromagnetics We saw in the earlier lecture

More information

Chapter 3 - Vector Calculus

Chapter 3 - Vector Calculus Chapter 3 - Vector Calculus Gradient in Cartesian coordinate system f ( x, y, z,...) dr ( dx, dy, dz,...) Then, f f f f,,,... x y z f f f df dx dy dz... f dr x y z df 0 (constant f contour) f dr 0 or f

More information

3.1 The Helmoltz Equation and its Solution. In this unit, we shall seek the physical significance of the Maxwell equations, summarized

3.1 The Helmoltz Equation and its Solution. In this unit, we shall seek the physical significance of the Maxwell equations, summarized Unit 3 TheUniformPlaneWaveand Related Topics 3.1 The Helmoltz Equation and its Solution In this unit, we shall seek the physical significance of the Maxwell equations, summarized at the end of Unit 2,

More information

Lecture contents Review: Few concepts from physics Electric field

Lecture contents Review: Few concepts from physics Electric field 1 Lecture contents Review: Few concepts from physics Electric field Coulomb law, Gauss law, Poisson equation, dipole, capacitor Conductors and isolators 1 Electric current Dielectric constant Overview

More information

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length. Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

Summary of time independent electrodynamics

Summary of time independent electrodynamics hapter 10 Summary of time independent electrodynamics 10.1 Electrostatics Physical law oulomb s law charges as origin of electric field Superposition principle ector of the electric field E(x) in vacuum

More information

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L 8.03 Lecture 1 Systems we have learned: Wave equation: ψ = ψ v p x There are three different kinds of systems discussed in the lecture: (1) String with constant tension and mass per unit length ρ L T v

More information

Chapter 2 Basics of Electricity and Magnetism

Chapter 2 Basics of Electricity and Magnetism Chapter 2 Basics of Electricity and Magnetism My direct path to the special theory of relativity was mainly determined by the conviction that the electromotive force induced in a conductor moving in a

More information

INTRODUCTION TO ELECTRODYNAMICS

INTRODUCTION TO ELECTRODYNAMICS INTRODUCTION TO ELECTRODYNAMICS Second Edition DAVID J. GRIFFITHS Department of Physics Reed College PRENTICE HALL, Englewood Cliffs, New Jersey 07632 CONTENTS Preface xi Advertisement 1 1 Vector Analysis

More information

Indiana University Physics P331: Theory of Electromagnetism Review Problems #3

Indiana University Physics P331: Theory of Electromagnetism Review Problems #3 Indiana University Physics P331: Theory of Electromagnetism Review Problems #3 Note: The final exam (Friday 1/14 8:00-10:00 AM will be comprehensive, covering lecture and homework material pertaining to

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

Magnetostatic fields! steady magnetic fields produced by steady (DC) currents or stationary magnetic materials.

Magnetostatic fields! steady magnetic fields produced by steady (DC) currents or stationary magnetic materials. ECE 3313 Electromagnetics I! Static (time-invariant) fields Electrostatic or magnetostatic fields are not coupled together. (one can exist without the other.) Electrostatic fields! steady electric fields

More information

UNIT-I Static Electric fields

UNIT-I Static Electric fields UNIT-I Static Electric fields In this chapter we will discuss on the followings: Coulomb's Law Electric Field & Electric Flux Density Gauss's Law with Application Electrostatic Potential, Equipotential

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Principles of Mobile Communications

Principles of Mobile Communications Communication Networks 1 Principles of Mobile Communications University Duisburg-Essen WS 2003/2004 Page 1 N e v e r s t o p t h i n k i n g. Wave Propagation Single- and Multipath Propagation Overview:

More information

Electrostatics. Chapter Maxwell s Equations

Electrostatics. Chapter Maxwell s Equations Chapter 1 Electrostatics 1.1 Maxwell s Equations Electromagnetic behavior can be described using a set of four fundamental relations known as Maxwell s Equations. Note that these equations are observed,

More information

Class 11 : Magnetic materials

Class 11 : Magnetic materials Class 11 : Magnetic materials Magnetic dipoles Magnetization of a medium, and how it modifies magnetic field Magnetic intensity How does an electromagnet work? Boundary conditions for B Recap (1) Electric

More information

Lecture 2. Introduction to FEM. What it is? What we are solving? Potential formulation Why? Boundary conditions

Lecture 2. Introduction to FEM. What it is? What we are solving? Potential formulation Why? Boundary conditions Introduction to FEM What it is? What we are solving? Potential formulation Why? Boundary conditions Lecture 2 Notation Typical notation on the course: Bolded quantities = matrices (A) and vectors (a) Unit

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

1 Electromagnetic concepts useful for radar applications

1 Electromagnetic concepts useful for radar applications Electromagnetic concepts useful for radar applications The scattering of electromagnetic waves by precipitation particles and their propagation through precipitation media are of fundamental importance

More information

Worked Examples Set 2

Worked Examples Set 2 Worked Examples Set 2 Q.1. Application of Maxwell s eqns. [Griffiths Problem 7.42] In a perfect conductor the conductivity σ is infinite, so from Ohm s law J = σe, E = 0. Any net charge must be on the

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING : Electro Magnetic fields : A00 : II B. Tech I

More information

SUMMARY PHYSICS 707 Electrostatics. E(x) = 4πρ(x) and E(x) = 0 (1)

SUMMARY PHYSICS 707 Electrostatics. E(x) = 4πρ(x) and E(x) = 0 (1) SUMMARY PHYSICS 707 Electrostatics The basic differential equations of electrostatics are E(x) = 4πρ(x) and E(x) = 0 (1) where E(x) is the electric field and ρ(x) is the electric charge density. The field

More information

EECS 117. Lecture 22: Poynting s Theorem and Normal Incidence. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 22: Poynting s Theorem and Normal Incidence. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 22 p. 1/2 EECS 117 Lecture 22: Poynting s Theorem and Normal Incidence Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

Electromagnetic Theory (Hecht Ch. 3)

Electromagnetic Theory (Hecht Ch. 3) Phys 531 Lecture 2 30 August 2005 Electromagnetic Theory (Hecht Ch. 3) Last time, talked about waves in general wave equation: 2 ψ(r, t) = 1 v 2 2 ψ t 2 ψ = amplitude of disturbance of medium For light,

More information

Uniform Plane Waves. Ranga Rodrigo. University of Moratuwa. November 7, 2008

Uniform Plane Waves. Ranga Rodrigo. University of Moratuwa. November 7, 2008 Uniform Plane Waves Ranga Rodrigo University of Moratuwa November 7, 2008 Ranga Rodrigo (University of Moratuwa) Uniform Plane Waves November 7, 2008 1 / 51 Summary of Last Week s Lecture Basic Relations

More information

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electromagnetic I Chapter 3 Vector Calculus Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Differential Length, Area, and Volume This chapter deals with integration

More information

Relevant Electrostatics and Magnetostatics (Old and New)

Relevant Electrostatics and Magnetostatics (Old and New) Unit 1 Relevant Electrostatics and Magnetostatics (Old and New) The whole of classical electrodynamics is encompassed by a set of coupled partial differential equations (at least in one form) bearing the

More information

3. Maxwell's Equations and Light Waves

3. Maxwell's Equations and Light Waves 3. Maxwell's Equations and Light Waves Vector fields, vector derivatives and the 3D Wave equation Derivation of the wave equation from Maxwell's Equations Why light waves are transverse waves Why is the

More information

Maxwell s Equations. In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are.

Maxwell s Equations. In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are. Maxwell s Equations Introduction In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are D = ρ () E = 0 (2) B = 0 (3) H = J (4) In the integral

More information

Maxwell s Equations in Differential Form, and Uniform Plane Waves in Free Space

Maxwell s Equations in Differential Form, and Uniform Plane Waves in Free Space C H A P T E R 3 Maxwell s Equations in Differential Form, and Uniform Plane Waves in Free Space In Chapter 2, we introduced Maxwell s equations in integral form. We learned that the quantities involved

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe ANTENNAS Vector and Scalar Potentials Maxwell's Equations E = jωb H = J + jωd D = ρ B = (M) (M) (M3) (M4) D = εe B= µh For a linear, homogeneous, isotropic medium µ and ε are contant. Since B =, there

More information

UNIT-I Static Electric fields

UNIT-I Static Electric fields UNIT-I Static Electric fields In this chapter we will discuss on the followings: Coulomb's Law Electric Field & Electric Flux Density Gauss's Law with Application Electrostatic Potential, Equipotential

More information

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR Wave equation 1 u tu v u(, t f ( vt + g( + vt Helmholt equation U + ku jk U Ae + Be + jk Eponential Equation γ e + e + γ + γ Trig Formulas sin( + y sin cos y+ sin y cos cos( + y cos cos y sin sin y + cos

More information