A Graphical Characterization of Lattice Conditional Independence Models

Size: px
Start display at page:

Download "A Graphical Characterization of Lattice Conditional Independence Models"

Transcription

1 A Grphil Chrteriztion of Lttie Conitionl Inepenene Moels Steen A. Anersson, Dvi Mign, Mihel D. Perlmn *, n Christopher M. Triggs Inin University, University of Wshington, n University of Aukln Astrt Lttie onitionl inepenene (LCI) moels for multivrite norml t reently hve een introue for the nlysis of non-monotone missing t ptterns n of nonneste epenent liner regression moels ( seemingly unrelte regressions). It is shown here tht the lss of LCI moels oinies with sulss of the lss of grphil Mrkov moels etermine y yli igrphs (ADGs), nmely, the sulss of trnsitive ADG moels. An expliit grphtheoreti hrteriztion of those ADGs tht re Mrkov equivlent to some trnsitive ADG is otine. This hrteriztion llows one to etermine whether speifi ADG D is Mrkov equivlent to some trnsitive ADG, hene to some LCI moel, in polynomil time, without n exhustive serh of the (possily superexponentilly lrge) equivlene lss [D]. These results o not require the existene or positivity of joint ensities. 1. Introution: Grphil Mrkov Moels. The use of irete grphs to represent possile epenenies mong sttistil vriles tes k to the work of Sewll Wright (1921) in popultion genetis n hs sine generte onsierle reserh tivity in the soil, nturl, engineering, n omputtionl sienes. Both irete n unirete grphs hve foun extensive pplitions: the former s "pth igrms" for struturl eqution moels in psyhometris n eonometris, s "Byesin networks" for expert systems in rtifiil intelligene, n s "influene igrms" in opertions reserh n mngement siene, the ltter s moels of epenene for sptil stohsti proesses, imge nlysis, n ontingeny tles. The ooks y Perl (1988), Whittker [W] (1990), Spirtes, Glymour, n Sheines (1993), Ewrs (1995), Cox n Wermuth (1996), Luritzen [L] (1996), n Jensen (1996) niely esrie these evelopments. Sine 1980, prtiulr ttention hs een irete to grphil Mrkov moels etermine y onitionl inepenene reltions mong the vriles, i.e., y the Mrkov properties speifie y the grph (f. Figure 1.1). Grphil Mrkov moels Reserh supporte in prt y the U. S. Ntionl Siene Fountion n Ntionl Seurity Ageny. *Aress for orresponene: Deprtment of Sttistis, Box , University of Wshington, Settle, WA , USA. (mihel@stt.wshington.eu) 1

2 etermine y yli irete grphs (ADGs), formlly efine in Setion 2, mit espeilly simple sttistil nlysis. In prtiulr, ADG moels mit onvenient reursive ftoriztions of their joint proility ensity funtions (pf) (Luritzen et l (1990)), provie n elegnt frmework for Byesin nlysis (Spiegelhlter n Luritzen (1990)), n, in expert system pplitions, llow simple usl interprettions (Luritzen n Spiegelhlter (1988)). In the multivrite norml n multinomil ses, the likelihoo funtion (LF) (i.e., oth the joint proility ensity funtion n the prmeter spe) ftorizes reursively, whih yiels expliit mximum likelihoo estimtes (MLE) n likelihoo rtio tests (LRT) - f. [W] (1990), [L] (1996), n Anersson n Perlmn [AP] (1996). The only unirete grphil (UG) moels tht provie these onvenienes re the eomposle moels, those UG moels tht hve the sme Mrkov properties s ADG moels (Wermuth n Luritzen (1993), Dwi n Luritzen (1993), Anersson, Mign, n Perlmn [AMP] (1996)). Figure 1.1. Four yli igrphs with the vertex set V {,, }. The first three grphs re Mrkov equivlent: eh speifies the single onitionl inepenene X X X revite s, while the joint pf ftors s f(,, ) = f()f( )f( ) f( )f()f( ) f( )f( )f(). The fourth grph speifies the inepenene n the ftoriztion f()f(, )f(). For these resons, ADG moels hve eome populr ross wie rnge of pplitions; see, for exmple, Luritzen n Spiegelhlter (1988), Perl (1988), Nepolitn (1990), Spiegelhlter n Luritzen (1990), Spiegelhlter et l (1993), Mign n Rftery (1994), n York et l (1995). Inee, the tive Unertinty in Artifiil Intelligene ommunity fouses muh of its effort on ADG moels. Lttie onitionl inepenene (LCI) moels were introue y [AP] (1988, 1993) uner the itionl ssumption of multivrite normlity, motivte y nlogy with the lttie struture of lne ANOVA esigns (f. Anersson (1990)). In n LCI moel, formlly efine in Setions 4 n 7, onitionl inepenene reltions mong the vriles re speifie y the intersetion properties of finite istriutive lttie (f. Figure 1.2). LCI moels shre the esirle sttistil properties of ADG moels: the LF ftors reursively, gin yieling expliit MLEs n LRTs in the multinomil n multivrite norml ses ([AP] (1993, 1995, 1995), Perlmn n Wu [PW] (1996)). 2

3 {,,} {,} {,} {} Ø Figure 1.2. A finite istriutive lttie, represente s ring K of susets of {,, } I (f. 7). The LCI moel L(K) speifies the onitionl inepenene {,} {,} {}, or equivlently,, n the joint pf ftors s f(,, ) = f( )f()f( ). In the multivrite norml n multinomil ses, LCI moels re preisely suite for the nlysis of non-monotone missing t ptterns ([AP] (1991), [PW] (1996)). Suppose, for exmple, tht X 1,...,X n is smple from p-vrite norml istriution with unknown men n ovrine, n tht for eh j = 1,...,n only suvetor (X j ) Kj is oserve, where, for K {1,...,p}, X K := (X i i K). The set S :=(K j j = 1,...,n) is the oserve t pttern. It is well known tht if S is monotone, i.e., totlly orere uner inlusion, then the likelihoo funtion (LF) se on the oserve t ftors reursively into prout of onitionl norml LFs, llowing expliit likelihoo nlysis y stnr liner methos (Anerson (1957)). If S is non-monotone, however, no suh ftoriztion exists. In this se, if we let K K(S) e the ring of susets of {1,...,p} generte y S n impose the prsimonious set of CI onstrints etermine y the LCI moel L(K) ( 7), then the joint LF oes ftor reursively n expliit likelihoo nlysis y stnr liner methos is gin possile. (For exmple, if p = 3 n S = {{1,2}, {1,3}, {1,2,3}}, then K = {ø, {1}, {1,2}, {1,3}, {1,2,3}} hs the form shown in Figure 1.2 n the CI onstrint speifie y L(K) is just ) Similrly, LCI moels re preisely suite for the nlysis of fmily of non-neste, epenent univrite regression moels ([AP] (1994)), whih inlues Zellner's (1962) well-known seemingly unrelte regressions moel s speil se. Anlogously to the missing t prolem, if the fmily {U 1,..., U p } of regression suspes is neste, then uner the ssumption of normlity the joint LF ftors reursively n stnr liner regression methos pply. No suh reursive ftoriztion exists in the non-neste se, ut the poset forme y the regression suspes {U 1,..., U p } uner inlusion etermines (see 7) ring K of susets of {1,..., p} suh tht if the CI onstrints etermine y the LCI moel L(K) re impose, then the LF ftors reursively n mits n expliit likelihoo nlysis. Furthermore, this set of CI onstrints is prsimonious (miniml) not only with respet to the lss of ll LCI moels tht llow reursive ftoriztion for the omine regression prolem ut lso with respet to the 3

4 lrger ( 4) lss of ll ADG moels tht llow suh reursive ftoriztion ([AP] (1996)). In this sense, LCI moels form istinguishe sulss ( 4) of the lss of ADG moels. These onsiertions hve rise the following question: wht is the ext reltion etween the lsses of LCI n ADG moels? AMP n Triggs [AMPT] (1995) showe tht if onsiertion is restrite to multivrite istriutions with positive joint ensities, then the lss of LCI moels oinies with sulss of the lss of ADG moels, nmely, the sulss etermine y ll trnsitive ADGs (see Setion 3). The first purpose of the present pper is to show tht this restrition on the ensities n e roppe; in ft, not even the existene of joint ensities nee e ssume. This result, evelope in Setions 2-4, ppers s Theorem 4.1. Next we onsier the question of whether speifi ADG D etermines sttistil moel tht oinies with some LCI moel, i.e., whether D is Mrkov equivlent to some LCI moel. One my pply stnr polynomil-time lgorithm 1 to etermine whether D is trnsitive; if so, then the nswer is yes, y Theorem 4.1. If D is not trnsitive, however, the nswer is not neessrily no, for the following reson. Wheres t most one unirete grph n e ssoite with given grphil Mrkov moel, there my e severl (often mny) ADGs tht etermine the sme Mrkov moel - see Figure 1.1 n Setion 5 for exmples. The fmily of ll ADGs with given set of verties is nturlly prtitione into Mrkov-equivlene lsses, eh lss eing ssoite with unique sttistil moel. Although D my not e trnsitive, its Mrkov-equivlene lss my ontin trnsitive ADG, in whih se D is Mrkov equivlent to some LCI moel. Thus, in orer to etermine whether speifi ADG D is Mrkov equivlent to some LCI moel, one must nswer the following more omplex question: oes the Mrkovequivlene lss [D ] ontin t lest one trnsitive ADG? This n e eie y exhustive serh of ll memers of [D] (see Setion 5), ut sine [D] n e superexponentilly lrge, exhustive serh of [D] is omputtionlly unfesile for lrge grphs. The seon min purpose of this pper is to provie omputtionlly fesile hrteriztion, se on the essentil grph D*, of those D suh tht [D] ontins t lest one trnsitive ADG n therefore is Mrkov equivlent to some LCI moel. [AMP] (1996) show tht for eh ADG D, the equivlene lss [D] n e uniquely represente y ertin Mrkov-equivlent hin grph 2 D*, the essentil grph 3 1 Suh lgorithms require t most O(n 3 ) opertions, where n is the numer of verties. 2 Chin grphs (= iyli grphs) my hve oth irete n unirete eges ut my ontin no (prtilly) irete yles; they inlue oth ADGs n UGs s speil ses. 4

5 ssoite with the equivlene lss. They present n expliit hrteriztion of those grphs G suh tht G = D* for some ADG D, then pply this hrteriztion to otin polynomil-time lgorithm 4 for onstruting D* from D. These results re reviewe in Setion 5 of the present pper. In Setion 6, we hrterize those essentil grphs D* tht re Mrkov equivlent to some trnsitive ADG n show tht this hrteriztion n e verifie in polynomil time. Comine with the lgorithm for onstruting D* from D, this estlishes the omputtionl fesiility of etermining whether speifi ADG moel is Mrkov equivlent to some LCI moel. Also, we present n orienttion lgorithm tht proues Mrkov-equivlent trnsitive ADG from D* if one exists. In the sttistil pplitions of LCI moels reviewe ove, the finite istriutive lttie etermining the LCI moel is presente s ring of susets. In Setion 7 we relte this representtion to the generl efinition of n LCI moel given in Setion 4. Some si efinitions, n terminology onerning grphs re summrize in the Appenix, whih the reer is invite to review first. The representtion of n LCI moel s trnsitive ADG moel ws first suggeste y Steffen Luritzen, whom we thnk for mny helpful suggestions. 2. Grphil Mrkov Moels Determine y Ayli Digrphs. The initil isussion in this setion follows Luritzen et l. (1990) n [AP] (1996). We onsier multivrite proility istriutions P on prout proility spe X (X V), where V is finite inex set n eh X is suffiiently regulr to ensure the existene of regulr onitionl proility istriutions. Suh istriution is onveniently represente y rnom vrite X := (X V) X. For ny suset A V, we efine X A := (X A). Often we revite X n X A y n A, respetively, n efine X onstnt. For three pirwise isjoint susets A, B, n C of V, we write A B C [P] if X A n X B re onitionlly inepenent given X C uner P. If A, B, n C re not isjoint, then A B C [P] is efine to men [A\(B C)] [B\(A C)] C [P]. A grphil Mrkov moel is efine y olletion of onitionl inepenenies mong the omponent rnom vrites (X V), whih olletion is represente y n yli irete grph (ADG) D (V, E) with vertex set V in the following (equivlent) wys: 3 The essentil grph ssoite with n (equivlene lss of) ADG(s) ws first introue y Verm n Perl (1990) s the omplete pttern ssoite with the ADG. 4 Chikering (1995) n Meek (1995) lso hve otine polynomil-time lgorithms for this onstrution. 5

6 Definition 2.1. Let D e n ADG. A proility mesure P on X is si to stisfy: (i) the lol Mrkov property (LMP) reltive to D if, for every V, (2.1) (n()\p()) p() [P]; (ii) the glol Mrkov property (GMP) reltive to D if (2.2) A B S [P] whenever S seprtes A n B in (G n(a B S) ) m ; (iii) the well-numere Mrkov property (WNMP) reltive to D if, for eh k = 2,..., n, (2.3) k ({ 1,..., k-1 }\p( k )) p( k ) [P], where n = V n 1,..., n is well-numering of the memers of V, i.e., r < s r n( s ). Sine k p( k ) n p( k ) { 1,..., k-1 }, (2.3) is equivlent to (2.4) (p( k ) { k }) { 1,..., k-1 } p( k ) [P]. Figure 2.1. An ADG D with vertex set V {,,, }. The lol n glol Mrkov properties speify the two onitionl inepenenes n,. The term well-numering ppers s never-eresing in [AP] (1993). The following result omines Propositions 4 n 5 of Luritzen et l (1990): Theorem 2.1. Let D e n ADG. For ny proility istriution P on X, GMP LMP WNMP. It follows from Theorem 2.1 tht the WNMP oes not epen on the wellnumering hosen for V. Definition 2.2. Let D e n ADG. The set M X (D) of ll proility istriutions on X tht stisfy the three equivlent Mrkov properties LMP, GMP, n WNMP reltive to D is lle the Mrkov moel etermine y the ADG D, or, simply, the ADG moel etermine y D. 6

7 In pplitions n itionl prmetri ssumption, suh s multivrite normlity, is often impose on ADG moels, ut we shll not o so here. Mny exmples of speifi ADG moels pper in the referenes ite in Setion 1. It is gin emphsize tht ifferent ADGs n etermine the sme Mrkov moel. In orer to relte ADG n LCI moels in Setion 4, we now introue new Mrkov-type property etermine y n ADG D (V, E). A suset A V is lle nestrl in D if A whenever V, A, n in D. The nestrl ring A(D) is efine to e the olletion of ll nestrl susets of D. Clerly, A(D) is ring of susets of V, i.e., A(D) is lose uner unions n intersetions, hene A(D) is finite istriutive lttie uner these set opertions, n, V A(D). For ny suset A V, n(a) enotes the smllest nestrl set ontining A: n(a) = { for some A}. Definition 2.3. Let D e n ADG. A proility istriution P on X is si to stisfy the lttie onitionl inepenene property (LCIP) reltive to D if, for every pir A, B A(D), (2.5) A B A B, or, equivlently, (2.6) (A\B) (B\A) A B. Definition 2.4. Let D e n ADG. The set L X (D) of ll proility istriutions on X tht stisfy the LCIP reltive to D is lle the lttie onitionl inepenene moel (LCI moel) etermine y D. Theorem 2.2. Let D e n ADG. For ny proility istriution P on X, GMP LCIP. Thus, M X (D) L X (D). Proof. For ny pir A, B A(D), the GMP will imply (2.6) provie tht (A\B) n (B\A) re seprte y A B in (D n((a\b) (B\A) (A B)) ) m = (D n(a B) ) m = (D A B ) m ; the seon equlity follows sine A B A(D). To estlish this seprtion, onsier pir A\B n B\A suh tht there exists pth { 1,..., n } in (D A B ) m. Then there must exist n jent pir k, k+1 suh tht k A \B n k+1 B. By the efinition of the morl grph, this jeny ours iff either (i) k k+1 D A B, (ii) k k+1 D A B, or (iii) k n k+1 in D A B for some D A B. In se (i), k B 7

8 sine B is nestrl, hene k A B ; similrly, k+1 A B in se (ii). In se (iii), either A or B, implying tht k+1 A B or k A B, respetively. In ll ses, therefore, the pth etween n must pss through A B, hene A B seprtes A\B n B\A in (D A B ) m. This ompletes the proof. Remrk 2.1. For nonsingulr multivrite norml istriutions, Theorem 2.2 ws estlishe (in somewht ifferent ut equivlent form) in Theorem 5.1 of [AMPT] (1995). Theorem 2.2 ws isovere inepenently y Koster (1996), Proposition Trnsitive Ayli Digrphs. An ADG D (V, E) is si to e trnsitive ADG ( TADG) if D n D D, where,, V. Equivlently, D is trnsitive if n()\{} = p() for ll V. An ADG D (V, E) eomes prtilly orere set ( poset) (V, ) uner the prtil orering efine y if n(). Uner this prtil orering, < iff n()\{}, i.e., iff there is irete pth from to in D. Thus, D is trnsitive iff < D, in whih se the two reltions re equivlent: < D. Therefore, finite posets n TADGs re ientil mthemtil ojets. Theorem 3.1. Let D e TADG. For ny proility istriution P on X, LCIP WNMP. Thus, for TADG, GMP LMP WNMP LCIP n M X (D) = L X (D). Proof. Assume tht P stisfies the LCIP reltive to D. To verify (2.4), use the trnsitivity of D to rewrite (2.4) s (3.1) n( k ) { 1,..., k-1 } n( k )\{ k } [P]. But n( k ) n { 1,..., k-1 } re nestrl sets whose intersetion is n( k )\{ k }, so (3.1) is implie y the LCIP. The seon sttement then follows from Theorems 2.1 n 2.2. Figure 3.1. A trnsitive ADG D with vertex set V {,,, }. The moel M X (D) L X (D) speifies the single onitionl inepenene. Note tht A(D) {Ø, {}, {, }, {, }, {,, }, {,,, }} is isomorphi to the lttie L in Figure ompre to (4.1). 8

9 4. Lttie Conitionl Inepenene Moels. The generl lss of LCI moels is now efine n shown to oinie with the lss of ll grphil Mrkov moels etermine y TADGs. We refer to Dvey n Priestley (1990), Ch. 8, for review of the funmentl ulity etween finite istriutive ltties n finite posets. Let L L(, ) e finite istriutive lttie with minimum element 0. The suset J(L) of join-irreuile elements of L is efine s follows: J(L) := {j L j 0, j = k l j = k or j = l}. Then (J(L), ) eomes finite poset uner the prtil orering inherite from L: j k iff j k = j. A suset A J(L) is nestrl if j A whenever j J(L), k A, n j k. Note tht the ring A((J(L), )) of ll nestrl susets of the poset (J(L), ) is ientil to the nestrl ring A((J(L), E < )), where (J(L), E < ) is the TADG given y E < := {(j, k) J(L) J(L) j < k}. This justifies the use of the sme nottion "n( )" for posets (see (4.1)) n for ADGs. Birkhoff's Theorem (f. Dvey n Priestley (1990), 8.17) sttes tht the mpping (4.1) L A((J(L), )) l n(l) := {j J(L) j l} etermines lttie isomorphism etween the finite istriutive lttie L n the ring A((J(L), )). This implies, in prtiulr, tht for every pir l, m L, (4.2) n(l m) = n(l) n(m). When onvenient, we shll ientify n(l) with l for l L. A generl LCI moel etermine y the finite istriutive lttie L onsists of fmily of multivrite proility istriutions P on prout proility spe X (X j j J(L)) inexe y J(L), where gin eh X j is suffiiently regulr to ensure the existene of regulr onitionl proility istriutions. It is gin onvenient to represent suh istriution y rnom vrite X := (X j j J(L)) X. For ny suset J J(L), efine X J := (X j j J), revite X j n X J y j n J, respetively, n efine X onstnt. 9

10 Definition 4.1. Let L e finite istriutive lttie. A proility mesure P on X is si to stisfy the lttie onitionl inepenene property (LCIP) reltive to L if, for every l, m L, (4.3) n(l) n(m) n(l m) [P]; y ientifying n(l) with l, (4.3) n e expresse in the simpler form (4.4) l m l m [P]. Definition 4.2. Let L e finite istriutive lttie. The set L X (L) of ll proility istriutions on X tht stisfy the LCIP reltive to L is lle the lttie onitionl inepenene (LCI) moel etermine y L. Ø Figure 4.1. A finite istriutive lttie L. The LCI moel L X (L) speifies the onitionl inepenene. Here J(L) = {,,, } n the TADG (J(L), E < ) is isomorphi to the TADG D in Figure 3.1. Theorem 4.1. The lss of LCI moels oinies with the lss of TADG moels. Proof. For generl LCI moel L X (L), where X = (X j j J(L)), we hve (4.5) L X (L) = L X ((J(L), E < )) = M X ((J(L), E < )). The first equlity is estlishe y pplying Definition 2.3 to L X ((J(L), E < )), then invoking the ientity of A((J(L), E < )) n A((J(L), )) n the isomorphism (4.1); n y pplying Definition 4.1 (using (4.3)) to L X (L), then invoking (4.2). The seon equlity follows immeitely from Theorem 3.1. Thus, the LCI moel L X (L) n e expresse s the TADG moel M X ((J(L), E < )). Conversely, onsier TADG moel M X (D), where D (V, E) is TADG n where X = (X V). Then (4.6) M X (D) = L X (D) = L X (A(D)); 10

11 the first equlity follows from Theorem 3.1, while the seon follows from Definitions 2.3 n 4.1 (using (4.4)). Thus, M X (D) n e expresse s the LCI moel L X (A(D)). Remrk 4.1. In generl J(L) is smller tht L, so in (4.5), the TADG representtion is more eonomil thn the LCI representtion. Remrk 4.2. By Theorem 4.1, LCI moels inherit ll properties of ADG moels, in prtiulr the reursive ensity ftoriztion tht, for multivrite norml or multinomil istriutions, llows simple n expliit (non-itertive) sttistil nlysis. As note erlier, however, LCI moels omprise istinguishe sulss of ADG moels. Besies the fetures of LCI moels note in Setion 1, we here tht in the norml se, n LCI moel remins invrint uner the tion of sugroup (etermine y the prtiulr lttie) of the group of lok-tringulr mtries. This invrine les to n integrl representtion of lssil form for the istriution of the mximl invrint sttisti (= generlize eigenvlues) n to the istriution of the likelihoo rtio sttisti for testing one LCI moel ginst nother. See [AP] (1993, 1995) for etils. 5. Mrkov Equivlene of Ayli Digrphs; the Essentil Grph D*. As note in Setion 1, ifferent ADGs n etermine the sme grphil Mrkov moel. Definition 5.1. Two ADGs D 1 n D 2 re Mrkov equivlent on prout spe X inexe y V if M X (D 1 ) = M X (D 2 ). If D 1 n D 2 re Mrkov equivlent on every suh prout spe X, then D 1 n D 2 re lle Mrkov equivlent n we write D 1 ~ D 2. The Mrkov equivlene lss ontining D is enote y [D]. A well-known grph-theoreti riterion for the Mrkov equivlene of ADGs is stte in Theorem 5.1. This riterion ws first prove y Verm n Perl (1992), Corollry 3.2, - lso see [AMP] (1996), Theorem n inepenently y Fryenerg (1990), Theorem 5.6, for the more generl lss of hin grphs - lso see [AMP] (1996), Theorem 3.1. Theorem 5.1. Two ADGs re Mrkov equivlent if n only if they hve the sme skeleton n the sme immorlities (see Figure 5.1). 11

12 D 1 D 2 D 3 D 4 Figure 5.1: The four ADGs with the sme skeleton s D 1 n the immorlity (,, ). The ADGs D 1, D 2, n D 3 hve no other immorlities, hene re Mrkov equivlent y Theorem 5.1. The ADG D 4 hs the itionl immorlity (,, ), hene is not Mrkov equivlent to the others. Thus, [D 1 ] = {D 1, D 2, D 3 }. Sine n ADG with n verties n hve t most O(n 3 ) immorlities, Theorem 5.1 provies fesile riterion for eiing whether two given ADGs re Mrkov equivlent in polynomil time. However, it oes not iretly yiel hrteriztion of the entire equivlene lss [D] for given ADG D, hene oes not provie fesile riterion for eiing whether [D] ontins trnsitive ADG, i.e., whether D is Mrkov equivlent to some LCI moel. Consier, for exmple, the non-trnsitive ADG D 1 in Figure 5.2: oes [D 1 ] ontin trnsitive ADG? Theorem 5.1 oes not llow us to nswer this question y iret inspetion of D 1 ; inste, we must first etermine ll memers of [D 1 ] s follows, then hek eh memer for trnsitivity. Sine (,, ) is n immorlity in D 1, the rrows n re essentil in D 1, i.e., these rrows must our in every memer of [D 1 ]. The remining three eges of D 1 might e oriente in 2 3 = 8 possile wys, s shown in Figure 5.2. Of these 8 igrphs, only 5 re yli, n of these 5, only three (D 1, D 2, D 3 ) possess extly the sme immorlity s D 1, hene [D 1 ] = {D 1, D 2, D 3 }. Thus [D 1 ] oes ontin trnsitive ADG, nmely D 3. D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 12

13 Figure 5.2: The 2 3 = 8 possile igrphs with the sme skeleton s D 1 n the immorlity (,, ). Of these 8, D 5, D 6, n D 7 re not yli, while D 4 n D 8 re yli ut possess the itionl immorlity (,, ), so [D 1 ] = {D 1, D 2, D 3 }. By ontrst, onsier the non-trnsitive ADG D:. Of the 2 3 = 8 ADGs with the sme skeleton s D, it is strightforwr to verify tht extly four hve one immorlity, hene re not Mrkov equivlent to D, while the remining four (inluing D itself) hve no immorlities n thus omprise the equivlene lss [D ]. Furthermore, no memer of [D] is trnsitive, hene the ADG moel etermine y D is not Mrkov equivlent to ny LCI moel. Sine the numer of possile orienttions of ll rrows tht o not prtiipte in ny immorlity of n ADG D grows exponentilly with the numer of suh rrows, hene super-exponentilly with the numer of verties, etermintion of the equivlene lss [D] y exhustive enumertion of possiilities rpily eomes omputtionlly infesile s the size of D inreses. A loser exmintion of the ADGs in Figure 5.2 revels, however, tht the rrow ours in every memer of [D 1 ], hene is n essentil rrow of D 1 even though it is not involve in ny immorlity of D 1. H we een le to ientify ll 3 essentil rrows of D 1 iretly from D 1 itself, it woul not hve een neessry to onsier D 5 - D 8 in orer to etermine [D 1 ]. On the other hn, it ppers neessry to etermine [D 1 ] efore we n ientify the essentil rrows of D 1. Fortuntely, this is not the se. [AMP] (1996) otin omputtionlly fesile polynomil-time lgorithm for etermining ll essentil rrows of n ADG D (Theorem 5.3 elow). This is one y first introuing n hrterizing the essentil grph D* ssoite with D (see Theorem 5.2). Questions suh s the existene of trnsitive memer of [D] n e nswere y polynomil-time inspetion of D* itself ( 6), without the nee for n exhustive serh of [D]. Definition 5.2. The essentil grph D* ssoite with D is the grph D* := (D D' ~ D), i.e., D* is the smllest grph lrger thn every D' [D]. (See Appenix for efinitions.) Thus, D* is the grph with the sme skeleton s D, ut where n ege is irete in D* iff it ours s irete ege ( rrow) with the sme orienttion in every D' [D]; ll other eges of D* re unirete. (See Figure 5.3 for exmples.) The irete eges ( 13

14 rrows) in D* re lle the essentil rrows of D. Clerly, every rrow tht prtiiptes in n immorlity in D is essentil, ut D my ontin other essentil rrows s well, e.g., the rrow in the seon grph in Figure 5.3 n the rrows n (verify!) in the thir grph in Figure 5.3. [AMP] (1996) show tht D* is hin grph tht is itself Mrkov equivlent to D, so tht D* ontins the sme sttistil informtion s D. Their omplete hrteriztion of essentil grphs, stte here s Theorem 5.2, involves further restritions on the onfigurtions of rrows n lines ( unirete eges) tht n our in D*. Figure 5.3: Four exmples of essentil grphs D*. In the first exmple, D is the ADG D 1 of Figure 5.1. In the seon, D is the ADG D 1 of Figure 5.2. In the thir, D = D* (see Corollry 5.2). In the fourth, D is the ADG. Definition 5.3. Let G e grph. An rrow G is strongly protete in G if ours in t lest one of the following four onfigurtions s n inue sugrph of G: (): (): (): 1 (): 2 ( 1 2 ). Theorem 5.2 (Chrteriztion of D*). A grph G (V, E) is equl to D* for some ADG D if n only if G stisfies the following four onitions: (i) G is hin grph; (ii) for every hin omponent τ of G, G τ is horl; (iii) the onfigurtion oes not our s n inue sugrph of G; (iv) every rrow G is strongly protete in G. Sine oth UGs n ADGs re hin grphs, Theorem 5.2 immeitely yiels the following two orollries. Corollry 5.1. Let G e UG. Then G = D* for some ADG D if n only if G is horl. 14

15 Corollry 5.2. Let G e igrph. Then G = D* for some ADG D if n only if G is n ADG n every rrow of G is strongly protete in G (note tht onfigurtion () nnot our sine G hs no unirete eges). In this se G = D = D*. The following results will e pplie in Setion 6. Proposition 5.1 ( Proposition 4.2 of [AMP] (1996)). A igrph D' is yli n equivlent to the ADG D if n only if D' is otine from D* y orienting the eges of eh (horl) hin omponent (D*) τ in ny perfet ( yli n morl) wy. Proposition 5.2 ( Proposition 4.3 of [AMP] (1996)). An ADG D is Mrkov equivlent 5 to its essentil grph D*. [AMP] (1996) presente n verifie the following polynomil-time lgorithm for onstruting the essentil grph D* ssoite with n ADG D. Theorem 5.3 (the Constrution Algorithm). Define G 0 := D. For i 1, onvert every rrow G i-1 tht is not strongly protete in G i-1 into line, otining grph G i. Stop fter k steps, where k 0 is the smllest nonnegtive integer suh tht G k = G k+1. Neessrily, k E. Then G k = D*. This lgorithm proues sequene G 0,, G k of grphs suh tht D G 0 G k = G k+1. Sine oth rrows of n immorlity re strongly protete, eh G i hs the sme immorlities s D n D*. Let n = V. Beuse the etermintion of the set of rrows tht re not strongly protete in G i-1 requires t most O(n 4 ) opertions, this lgorithm requires t most O( E n 4 ) opertions, lthough it n e implemente in more effiient fshion (f. Chikering (1995), Meek (1995)). 6. A Grphil Chrteriztion of LCI Moels. The following hrteriztion theorem les to fesile ( polynomil-time) lgorithm for eiing whether n ADG D is Mrkov equivlent to some LCI moel: Theorem 6.1. Let D (V, E) e n ADG. The Mrkov-equivlene lss [D] ontins t lest one trnsitive ADG (equivlently, D is Mrkov equivlent to some LCI moel) if 5 For the efinition of Mrkov equivlene of hin grphs, of whih UGs, ADGs, n essentil grphs re speil ses, see for exmple Appenix B of Anersson et l (1995). 15

16 n only if none of the following five onfigurtions ours s n inue sugrph of the ssoite essentil grph D*: (α): (β): (γ): (δ): (ε): The proof of Theorem 6.1 is omplishe y mens of the following lgorithm for orienting the unirete eges of generl essentil grph D* (V, E*). The Orienttion Algorithm. For eh vertex V, efine the egree ν() of in D* s follows: ν() := {' V ' D* or ' D*}. For eh hin omponent τ T (D*) suh tht τ 2, orient the (neessrily unirete) eges of (D*) τ s follows: Step 1.1: Define 1 1 (τ) := rgmx{ν() τ}. Step 1.2: Define τ 1 τ 1 (τ) := {' τ 1 ' (D*) τ } { 1 }. Step 1.3: ' τ 1 \{ 1 }, orient the ege 1 ' s 1 '. For i 2: Step i.1: Define i i (τ) := rgmx{ν() (τ 1 τ i-1 )\{ 1,, i-1 }}. Step i.2: Define τ i τ i (τ) := {' τ i ' (D*) τ }\{ 1,, i-1 }. Step i.3: ' τ i, orient the ege i ' s i '. Terminte the proeure fter Step k, where k := min{i { 1,, i } = τ 1 τ i }. Clerly, 1,, k re istint verties in τ, 1 τ 1, n i τ 1 τ i-1 τ for 2 i k, so k τ. Ft 1. k = τ. Proof. If k < τ, then σ := τ\{ 1,, k } Ø. Sine (D*) τ is onnete, there exists σ n i { 1,, k } suh tht i (D*) τ. But this implies tht τ i τ 1 τ k = { 1, 16

17 , k }, ontriting the ssumption tht σ. In view of Ft 1, { 1,, k } = τ 1 τ k = τ n ll eges in (D*) τ re oriente y this proeure. Therefore, y pplying this Orienttion Algorithm to every hin omponent τ T(D*) we otin igrph D' D* with the sme skeleton s D*. If j i (D') τ, then neessrily j < i. Also, for eh i { 2,, k }, i (τ 1 τ i-1 )\{ 1,, i-1 }, so there exists j < i suh tht j i (D') τ. Therefore, for eh i { 2,, k } there exists irete pth from 1 to i in (D') τ. Ft 2. The igrph (D') τ is yli. Proof. This is immeite from the first n thir sentenes of the preeing prgrph. Ft 3. The ADG (D') τ is morl. Proof. Suppose tht n immorlity i m j ours in (D') τ. By the lst sentene of the prgrph preeing Ft 2, there exist irete pths from 1 to i n from 1 to j in (D') τ. Sine i, j < m, neither pth ontins m. Beuse i n j re not jent in (D') τ, this ontrits the ft tht (D*) τ is horl (Theorem 5.2(ii)). Ft 4. (i) ν( 1 ) ν( i ) for i 2. (ii) If the onfigurtion m i ours in (D') j τ, then ν( m ) ν( j ). Proof. (i) is ovious. For (ii), y the efinition of m it suffies to show tht j (τ 1 τ m-1 )\{ 1,, m-1 }. This is onsequene of the following three oservtions: () i j (D') τ j τ i ; () i m (D') τ i < m τ i τ 1 τ m-1 ; () m j (D') τ m < j j { 1,, m-1 }. Proposition 6.1. Let D e n ADG n let D' e the igrph otine y pplying the Orienttion Algorithm to the ssoite essentil grph D*. Then D' is yli n equivlent to D. Proof. This is n immeite onsequene of Fts 1-3 n Proposition 5.1. Proof of Theorem 6.1. If ny of the five onfigurtions (α) -(ε) our s n inue sugrph of D*, then every orienttion of the unirete eges of D* must proue 17

18 non-trnsitive igrph, hene every ADG in [D] is non-trnsitive. Conversely, if none of these onfigurtions our in D*, we shll show tht the equivlent ADG D' otine y pplying the Orienttion Algorithm to D* is trnsitive. Suppose to the ontrry tht D' is non-trnsitive. For the purposes of this proof only, we shll enote the essentil rrows of D' (i.e., the rrows of D*) y» n the nonessentil rrows of D' (i.e., those otine from lines of D* y the Orienttion Algorithm) y. Thus, t lest one of the following four non-trnsitive onfigurtions must our s n inue sugrph of D': (1):»» (2):» (3):» (4): Clerly (1) nnot our in D' sine this woul violte the non-ourrene of (α) in D*, while (2) nnot our in D' sine D* woul fil to stisfy onition (iii) of Theorem 5.2. Suppose tht (3) ours in D'. We ssert tht A\B = Ø, where A := {' V ' D* or»' D*}, B := {' V ' D* or»' D*}. If A\B Ø, then eh ' A\B must our in one of the following two onfigurtions s n inue sugrph of D*: (Ι):»? ' (II):»?»' where "?" inites either no ege, n unirete ege, or irete ege of unspeifie orienttion. (The ourrene of n rrow «' in (I) or (II) woul inue irete yle in D*, hene is forien.) The sene of ny ege etween ' n in (I) or (II) woul ontrit the non-ourrene in D* of (δ) n (γ), respetively, while the ourrene of ' in (I) or (II) woul ontrit onition (iii) of Theorem 5.2. The ourrene of '» in (I) or (II) woul ontrit the non-ourrene in D* of (β) n (α), respetively. Finlly, the ourrene of»' in (I) or (II) woul ontrit the nonourrene in D* of (α). Thus A\B = Ø. Beuse B\A, it follows tht ν() B > A ν(). Sine D*, {, } τ for some τ T(D*). If = 1 1 (τ) then ν() ν() y Ft 4(i), ontrition. If = i 18

19 i (τ) for some i 2, then there exists j < i suh tht j (D') τ. Therefore j A B, hene either j (D') τ, j (D') τ, or» j (D') τ. Sine (D') τ, the seon n thir possiilities woul violte the yliity of D', hene the first possiility must hol. By Ft 4(ii), this implies tht ν() ν(), gin ontrition. Thus (3) nnot our in D'. Lstly, suppose tht (4) ours in D'. We gin ssert tht A\B = Ø. If A\B Ø, then s ove, eh ' A\B must our in one of the following two onfigurtions s n inue sugrph of D*: (ΙΙΙ): ' (IV):?»' The sene of ny ege etween ' n in these two onfigurtions woul ontrit the non-ourrene in D* of (ε) n (δ), respetively, while the ourrene of ' woul ontrit onitions (ii) n (iii), respetively, of Theorem 5.2. The ourrene of '» in (III) n (IV) woul ontrit oth the yliity of D* n onition (iii). Finlly, the ourrene of»' in (III) woul ontrit oth yliity n onition (iii), while its ourrene in (IV) woul ontrit the non-ourrene of (β) in D*. Thus, gin A\B = Ø. Beuse B\A, gin ν() > ν(). Here, {,, } τ for some τ T(D*). Extly s ove, however, we n show tht ν() ν(), ontrition. Thus (4) nnot our in D'. This ompletes the proof of Theorem 6.1. The first essentil grph D* in Figure 5.3 oinies with onfigurtion (β), the thir ontins (α) s n inue sugrph, while the fourth oinies with (ε), hene Theorem 6.1 implies tht none of the three ssoite ADGs is Mrkov equivlent to TADG, so none is Mrkov equivlent to ny LCI moel. The seon D* ontins none of the onfigurtions (α) - (ε) s n inue sugrph, hene its ssoite ADG is Mrkov equivlent to some TADG, hene to some LCI moel. (These fts were estlishe in Setion 5 y exhustive enumertion of [D].) As note in Setion 1, the only unirete grphil (UG) moels tht shre the menle sttistil properties of ADG moels re the eomposle moels, whih n e hrterize on the one hn s those etermine y horl UGs, n on the other s those UGs tht re Mrkov equivlent to some ADG (Dwi n Luritzen (1993); [AMP] (1996), Corollry 4.5). The following orollry hrterizes those UGs tht re Mrkov equivlent to some TADG LCI moel. 19

20 Corollry 6.1. A UG G is Mrkov equivlent to some LCI moel if n only if G is horl n oes not ontin onfigurtion (ε): s n inue sugrph. Proof. ("only if"): By Theorem 4.1, G is Mrkov equivlent to some TADG D, hene G is horl. By the si Mrkov equivlene theorem for hin grphs (Fryenerg (1990), Theorem 5.6; [AMP] (1996), Theorem 3.1), D u = G u G. Therefore, sine D is trnsitive, G nnot ontin onfigurtion (ε) s n inue sugrph ("if"): By Corollry 5.1, G = D* for some ADG D. Thus D* is UG, hene nnot ontin onfigurtions (α) - (δ) s inue sugrphs, n oes not ontin (ε) y ssumption. By Theorem 6.1, therefore, D is Mrkov equivlent to some LCI moel, hene, y Proposition 5.2, so is D* G. Remrk 6.1. It ws note in Setion 5 tht D* n e otine from D (V, E) y n lgorithm tht n e implemente in polynomil-time in n V. Sine eh of the onfigurtions (α) - (ε) involves t most four verties, t most O(n 4 ) opertions re require to etermine whether D* ontins ny of (α) - (ε). Thus, it is possile to etermine in polynomil-time whether speifi ADG D is Mrkov equivlent to some TADG n hene to some LCI moel. If it is equivlent, then the Orienttion Algorithm proues Mrkov-equivlent TADG D' from D*, lso in polynomil time (f. Peyton et l (1993)). 7. LCI Moels Determine y Rings of Susets. In [AP] (1991, 1993, 1994, 1995, ), [AMPT] (1995), n [PW] (1996), LCI moels re efine in slightly more restritive fshion thn in Setion 4 ove. The finite istriutive lttie is presente s ring 6 K of susets of finite inex set I n the LCI moel onsists of fmily of multivrite istriutions on prout spe of the form Y (Y i i I). Suh istriution P is represente y rnom vrite Y := (Y i i I) Y. For ny suset K I, efine Y K := (Y i i K), revite Y i n Y K y i n K, respetively, n efine Y onstnt. Then the LCI moel L(K) L Y (K) is efine to e the set of ll P suh tht (7.1) L M L M [P] for every L, M K. 6 A ring of susets of I is lose uner finite intersetions n unions, n ontins I n Ø. 20

21 In orer to express L Y (K) s generl LCI moel L X (L), following [AP] (1993) efine, for eh K K, <K> := (K' K K' K) [K] := K\<K>. It is strightforwr to verify tht J(K) = {J K <J> J} {J K [J] Ø}. If we now efine [J(K)] := {[J] J J(K)}, then, sine J(K) is poset uner the set inlusion orering, [J(K)] is n isomorphi poset uner the inue orering efine s follows: [J'] [J] iff J' J. Figures 1.2 n 7.1 illustrte the reltions mong K, (J(K), ), n ([J(K)], ). {, } {, } [{, }] {} {} [{, }] \ / \ / {} {} () J(K): {} {, }, {} {, } () [J(K)]: {} {}, {} {} Figure 7.1. The isomorphi posets (J(K), ) n ([J(K)], ) etermine y the ring K in Figure 1.2. Note tht K n e reovere from [J(K)] y (7.2). The ring K n e reonstrute from the memers of [J(K)] y the reltion (7.2) L = ([J] J J(K), J L) A(([J(K)], )), vli for ll L K (f. [AP] (1993), Proposition 2.1), speil se of the isomorphism (4.1). Thus, eh L K is represente uniquely s isjoint union of memers of the poset ([J(K)], ); in prtiulr 7, (7.3) I = ([J] J J(K)). We n now express L Y (K) s generl LCI moel L X (L): simply set L = K n efine X := (X J J J(K)), where X J := (Y i i [J]). Then X = Y y (7.3), n the LCI onition 7 See, for exmple, Figure 7.1(), where I = {,, }. 21

22 (4.4) for L X (L) oinies with the LCI onition (7.1) for L Y (K). Thus the LCI moel L Y (K) is generl LCI moel L X (L) with the slight restrition tht eh omponent spe X J is itself prout spe inexe y the memers of [J]. Appenix: Grphs. Our terminology n nottion losely follows those of Luritzen et l (1990) n Fryenerg (1990), with one exeption note elow. A grph G is pir (V, E), where V is finite set of verties n E, the set of eges, is suset of E*(V) (V V)\{(, ) V}, i.e., set of orere pirs of istint verties; thus our grphs inlue no loops or multiple eges. An ege (, ) E whose opposite (, ) E is lle n unirete ege n ppers s line in our figures, wheres n ege (, ) E whose opposite (, ) E is lle irete ege n ppers s n rrow 8 :. If G ontins only unirete eges, it is n unirete grph (UG); if G ontins only irete eges it is irete grph (igrph). It shll e onvenient to write G to inite tht (, ) E ut (, ) E; in this se we sy tht the rrow ours in G. Similrly, we write G to inite tht (, ) E n (, ) E; in this se we sy tht the line ours in G. For eh vertex V, efine p G () := { V G}, the set of prents of in G. For ny suset A V, the ounry of A in G is the set G (A) := { V\A (, ) E for some A}; the losure of A in G is the set l G (A) := G (A) A. A suset A V inues the sugrph G A := (A, E A ), where E A := E (A A). The skeleton G u of grph G (V, E) is its unerlying unirete grph, i.e., G u := (V, E u ), where E u := {(, ) (, ) E or (, ) E}. Two verties, re lle jent in G if (, ) E u. Let,, n e three istint verties of G (V, E). The triple (,, ) is lle n immorlity of G if the inue sugrph G {,, } is ; tht is, if the prents n of re unmrrie ( non-jent). A grph G 2 (V 2, E 2 ) i s si to e lrger thn grph G 1 (V 1, E 1 ), enote y G 1 G 2, if V 1 V 2 n E 1 E 2. Thus, if (G 1 ) u = (G 2 ) u, then G 1 G 2 iff G 1 n G 2 iffer only in tht some irete eges (rrows) in G 1 my e onverte into unirete eges (lines) in G 2. We write G 1 G 2 if G 1 G 2 ut G 1 G 2. The union of finite olletion of sugrphs (G i (V i, E i ) i = 1,, n) of G (V, E) is 8 Our nottion iffers from Fryenerg's in this regr: he uses the nottion rther thn in his text, lthough not in his figures. 22

23 the sugrph G i := ( V i, E i ). Clerly, G i is the smllest sugrph lrger thn eh G i, i = 1,, n. Let, e istint verties in G (V, E). A pth π of length n 1 from to in G is sequene π { 0, 1,, n } V of istint verties suh tht suh tht 0 =, n =, n either i-1 i G or i-1 i G for every i = 1,, n. If i-1 i G for t lest one i, the pth is irete; if this is not the se, the pth is unirete. A (irete) yle is (irete) pth with the moifition tht 0 = n. An rrow G is si to lok irete yle in G if there is irete pth from to in G other thn itself. A UG G (V, E) is omplete if ll pirs of verties re jent. Trivilly, the empty grph is omplete. A suset A V is omplete if its inue sugrph G A is omplete. A suset A V is onnete in G if for every istint pir, A, there is pth from to in G A. For pirwise isjoint susets A ( ), B ( ), n S of V, A n B re seprte y S in G if ll pths from verties in A to verties in B interset S. The UG G (V, E) is horl if every yle of length n 4 possesses hor, tht is, two non-onseutive jent verties. A totl orering of V is perfet orering of G if, when eh ege of G is oriente in orne with this orering, the resulting ADG D is perfet, i.e., is yli n morl (without immorlities); D is lle perfet irete version of G. It is well-known tht UG mits perfet irete version if n only if it is horl (f. Blir n Peyton (1993)). A grph G (V, E) is lle hin grph if it oes not ontin ny irete yles. Every inue sugrph G A of G is lso hin grph. Any UG is trivilly hin grph. A hin grph tht is lso igrph is lle n yli igrph (ADG). For the reminer of the Appenix, let G (V, E) e hin grph. Then G etermines pre-orering (V, ) s follows: iff = or there exists pth from to in G. A suset A V is n nterior set if A A. For ny suset A V, n(a) is the smllest nterior set ontining A: n(a) = { V for some A}. If oth n then we write, whih ours iff = or there is n unirete pth from to in G. Fryenerg (1990) notes tht is n equivlene reltion on V; we enote the set of equivlene lsses in V y T(G). Equivlently, T(G) is the set of onnete omponents of the unirete grph otine from G y removing ll irete eges. Eh τ T(G) is lle hin omponent of G. A onnete UG hs only one hin omponent, while for n ADG, every hin omponent onsists of single vertex. We write < if there exists irete pth from to. The future of vertex V is the set φ() := { V < }. A triple (, C, ) is lle omplex in G if C is onnete suset of hin 23

24 omponent τ T(G) n n re two non-jent verties in G (τ) G (C). A omplex (, C, ) is lle miniml omplex in G if no proper suset C' C forms omplex (, C', ) in G. Fryenerg(1990) notes tht (, C, ) is miniml omplex in G iff G C {, } looks like the hin grph of Figure A.1. An immorlity is the speil se of miniml omplex where C = 1. C Figure A.1: A simple hin grph. Here (, C, ) is miniml omplex. The morl grph etermine y G is the unirete grph G m (V, E m ), where E m := E u [ (E*( G (τ)) τ T(G))]. Tht is, G m is G u ugmente y ll unirete eges neee to mke G (τ) omplete in G m for every hin omponent τ T (G). Equivlently, G m is otine from G u y ing line whenever (, C, ) is miniml omplex in G. Referenes Anerson, T. W. (1957). Mximum likelihoo estimtes for multivrite norml istriution when some oservtions re missing. J. Amer. Sttist. Asso Anersson, S. A. (1990). The lttie struture of orthogonl liner moels n orthogonl vrine omponent moels. Sn. J. Sttist Anersson, S. A., D. Mign, n M. D. Perlmn (1996). On the Mrkov equivlene of hin grphs, unirete grphs, n yli igrphs. Sn. J. Sttist., in press. Anersson, S. A., D. Mign, n M. D. Perlmn (1996). A hrteriztion of Mrkov equivlene lsses for yli igrphs. Ann. Sttist., in press. Anersson, S. A., D. Mign, M. D. Perlmn, n C. M. Triggs (1995). On the reltion etween onitionl inepenene moels etermine y finite istriutive ltties n y irete yli grphs. J. Sttist. Plnning n Inferene

25 Anersson, S. A. n M. D. Perlmn (1988). Lttie moels for onitionl inepenene in multivrite norml istriution. Preprint, Institute of Mthemtil Sttistis, University of Copenhgen n Deprtment of Sttistis, University of Wshington. Anersson, S. A. n M. D. Perlmn (1991). Lttie-orere onitionl inepenene moels for missing t. Sttist. Proility Letters Anersson, S. A. n M. D. Perlmn (1993). Lttie moels for onitionl inepenene in multivrite norml istriution. Ann. Sttist Anersson, S. A. n M. D. Perlmn (1994). Norml liner moels with lttie onitionl inepenene restritions. Multivrite Anlysis n Its Applitions (T. W. Anerson, K.-T. Fng, n I. Olkin, es.) IMS Leture Notes-Monogrph Series, Vol. 24, Anersson, S. A. n M. D. Perlmn (1995). Testing lttie onitionl inepenene moels. J. Multivrite Anlysis Anersson, S. A. n M. D. Perlmn (1995). Uniseness of the likelihoo rtio test for lttie onitionl inepenene moels. J. Multivrite Anlysis Anersson, S. A. n M. D. Perlmn (1996). Norml liner regression moels with reursive grphil Mrkov struture. Sumitte to J. Multivrite Anlysis. Blir, J. R. S. n B. Peyton (1993). An introution to horl grphs n lique trees. In Grph Theory n Sprse Mtrix Computtion (A. George, J. R. Gilert, n J. W. H. Liu, es.), Springer-Verlg, New York. Chikering, D. M. (1995). A trnsformtionl hrteriztion of equivlent Byesin network strutures. In Unertinty in Artifiil Intelligene: Proeeings of the Eleventh Conferene (P. Besnr, S. Hnks, es.), Morgn Kufmnn, Sn Frniso. Cox, D. R. n Wermuth, N. (1996). Multivrite Depenenies: Moels, Anlysis, n Interprettion. Chpmn n Hll, Lonon. Dvey, B. A. n H. A. Priestley (1990). Introution to Ltties n Orer. Cmrige U. Press, Cmrige, U.K. 25

26 Dwi, A. P. n S. L. Luritzen (1993). Hyper Mrkov lws in the sttistil nlysis of eomposle grphil moels. Ann. Sttist Ewrs, D. (1995). Introution to Grphil Moeling. Springer, New York. Fryenerg, M. (1990). The hin grph Mrkov property. Sn. J. Sttist Jensen, F. V. (1996). An Introution to Byesin Networks. U. College Lonon Press, Lonon. Koster, J. A. (1996). Mrkov properties of non-reursive usl moels. Ann. Sttist., in press. Luritzen, S. L. (1996). Grphil Moels. Oxfor University Press, Oxfor. Luritzen, S. L., A. P. Dwi, B. N. Lrsen, n H.-G. Leimer (1990). Inepenene properties of irete Mrkov fiels. Networks Luritzen, S. L. n D. J. Spiegelhlter (1988). Lol omputtions with proilities on grphil strutures n their pplition to expert systems (with isussion). J. Royl Sttist. So. (Series B) Mign, D. n A. E. Rftery (1994). Moel seletion n ounting for moel unertinty in grphil moels using Om's winow. J. Amer. Sttist. Asso Meek, C. (1995). Cusl inferene n usl explntion with kgroun knowlege. In Unertinty in Artifiil Intelligene: Proeeings of the Eleventh Conferene (P. Besnr, S. Hnks, es.), Morgn Kufmnn, Sn Frniso. Nepolitn, R. E. (1990). Proilisti Resoning in Expert Systems. Wiley, New York. Perl, J. (1988). Proilisti Resoning in Intelligent Systems: Networks of Plusile Inferene. Morgn Kufmnn, Sn Mteo, CA. Perlmn, M. D. n L. Wu (1996). Lttie onitionl inepenene moels for missing t in ontingeny tles. In preprtion. 26

27 Peyton, B.W., A. Pothen, n X. Yun (1993). Prtitioning horl grph into trnsitive sugrphs for prllel sprse tringulr solution. Liner Alger Appl Spiegelhlter, D. J., A. P. Dwi, S. L. Luritzen, n R. G. Cowell (1993). Byesin nlysis in expert systems (with isussion). Sttist. Siene Spiegelhlter, D. J. n S. L. Luritzen (1990). Sequentil upting of onitionl proilities on irete grphil strutures. Networks Spirtes, P., Glymour, C;., n Sheines, R. (1993). Custion, Preition, n Serh. Springer, New York. Verm, T. n J. Perl (1990). Equivlene n synthesis of usl moels. In Unertinty in Artifiil Intelligene: Proeeings of the Sixth Conferene (M. Henrion et l es.) North Holln. Verm, T. n J. Perl (1992). An lgorithm for eiing if set of oserve inepenenies hs usl explntion. In Unertinty in Artifiil Intelligene: Proeeings of the Eighth Conferene (D. Duois et l es.), Sn Frniso: Morgn Kufmn, pp Wermuth, N. n Luritzen, N. (1983). Grphil n reursive moels for ontingeny tles. Biometrik Whittker, J. L. (1990). Grphil Moels in Applie Multivrite Sttistis. Wiley, New York. Wright, S. (1921). Correltion n ustion. J. Agriulturl Reserh York, J., D. Mign, I. Heuh, n R. T. Lie (1995). Estimting proportion of irth efets y oule smpling: Byesin pproh inorporting ovrites n moel unertinty. Applie Sttistis Zellner, A. (1962). An effiient metho of estimting seemingly unrelte regression equitions n tests for ggregtion is. J. Amer. Sttist. Asso

28 28

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Introduction to Graphical Models

Introduction to Graphical Models Introution to Grhil Moels Kenji Fukumizu The Institute of Sttistil Mthemtis Comuttionl Methoology in Sttistil Inferene II Introution n Review 2 Grhil Moels Rough Sketh Grhil moels Grh: G V E V: the set

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours Mi-Term Exmintion - Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into

More information

Logic, Set Theory and Computability [M. Coppenbarger]

Logic, Set Theory and Computability [M. Coppenbarger] 14 Orer (Hnout) Definition 7-11: A reltion is qusi-orering (or preorer) if it is reflexive n trnsitive. A quisi-orering tht is symmetri is n equivlene reltion. A qusi-orering tht is nti-symmetri is n orer

More information

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 ) Neessry n suient onitions for some two vrile orthogonl esigns in orer 44 C. Koukouvinos, M. Mitrouli y, n Jennifer Seerry z Deite to Professor Anne Penfol Street Astrt We give new lgorithm whih llows us

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

arxiv: v2 [math.co] 31 Oct 2016

arxiv: v2 [math.co] 31 Oct 2016 On exlue minors of onnetivity 2 for the lss of frme mtrois rxiv:1502.06896v2 [mth.co] 31 Ot 2016 Mtt DeVos Dryl Funk Irene Pivotto Astrt We investigte the set of exlue minors of onnetivity 2 for the lss

More information

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of: 22: Union Fin CS 473u - Algorithms - Spring 2005 April 14, 2005 1 Union-Fin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x) - rete set tht ontins the single element x. 2. Fin(x)

More information

On the Spectra of Bipartite Directed Subgraphs of K 4

On the Spectra of Bipartite Directed Subgraphs of K 4 On the Spetr of Biprtite Direte Sugrphs of K 4 R. C. Bunge, 1 S. I. El-Znti, 1, H. J. Fry, 1 K. S. Kruss, 2 D. P. Roerts, 3 C. A. Sullivn, 4 A. A. Unsiker, 5 N. E. Witt 6 1 Illinois Stte University, Norml,

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area Journl of Grph Algorithms n Applitions http://jg.info/ vol. 13, no. 2, pp. 153 177 (2009) On Clss of Plnr Grphs with Stright-Line Gri Drwings on Liner Are M. Rezul Krim 1,2 M. Siur Rhmn 1 1 Deprtment of

More information

On the Construction of the Inclusion Boundary Neighbourhood for Markov Equivalence Classes of Bayesian Network Structures

On the Construction of the Inclusion Boundary Neighbourhood for Markov Equivalence Classes of Bayesian Network Structures On te Constrution of te Inlusion Bounry Neigouroo for Mrkov Equivlene Clsses of Byesin Network Strutures Vinent Auvry Eletril Engineering n Computer Siene Dept. University of Liège uvry@montefiore.ulg..e

More information

Compression of Palindromes and Regularity.

Compression of Palindromes and Regularity. Compression of Plinromes n Regulrity. Kyoko Shikishim-Tsuji Center for Lierl Arts Eution n Reserh Tenri University 1 Introution In [1], property of likstrem t t view of tse is isusse n it is shown tht

More information

Lecture 8: Abstract Algebra

Lecture 8: Abstract Algebra Mth 94 Professor: Pri Brtlett Leture 8: Astrt Alger Week 8 UCSB 2015 This is the eighth week of the Mthemtis Sujet Test GRE prep ourse; here, we run very rough-n-tumle review of strt lger! As lwys, this

More information

Lecture 2: Cayley Graphs

Lecture 2: Cayley Graphs Mth 137B Professor: Pri Brtlett Leture 2: Cyley Grphs Week 3 UCSB 2014 (Relevnt soure mteril: Setion VIII.1 of Bollos s Moern Grph Theory; 3.7 of Gosil n Royle s Algeri Grph Theory; vrious ppers I ve re

More information

arxiv: v1 [cs.cg] 28 Apr 2009

arxiv: v1 [cs.cg] 28 Apr 2009 Orienttion-Constrine Retngulr Lyouts Dvi Eppstein 1 n Elen Mumfor 2 1 Deprtment of Computer Siene, University of Cliforni, Irvine, USA 2 Deprtment of Mthemtis n Computer Siene, TU Einhoven, The Netherlns

More information

Obstructions to chordal circular-arc graphs of small independence number

Obstructions to chordal circular-arc graphs of small independence number Ostrutions to horl irulr-r grphs of smll inepenene numer Mthew Frnis,1 Pvol Hell,2 Jurj Stho,3 Institute of Mth. Sienes, IV Cross Ro, Trmni, Chenni 600 113, Ini Shool of Comp. Siene, Simon Frser University,

More information

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014 S 224 DIGITAL LOGI & STATE MAHINE DESIGN SPRING 214 DUE : Mrh 27, 214 HOMEWORK III READ : Relte portions of hpters VII n VIII ASSIGNMENT : There re three questions. Solve ll homework n exm prolems s shown

More information

Algebra 2 Semester 1 Practice Final

Algebra 2 Semester 1 Practice Final Alger 2 Semester Prtie Finl Multiple Choie Ientify the hoie tht est ompletes the sttement or nswers the question. To whih set of numers oes the numer elong?. 2 5 integers rtionl numers irrtionl numers

More information

The DOACROSS statement

The DOACROSS statement The DOACROSS sttement Is prllel loop similr to DOALL, ut it llows prouer-onsumer type of synhroniztion. Synhroniztion is llowe from lower to higher itertions sine it is ssume tht lower itertions re selete

More information

Solutions to Problem Set #1

Solutions to Problem Set #1 CSE 233 Spring, 2016 Solutions to Prolem Set #1 1. The movie tse onsists of the following two reltions movie: title, iretor, tor sheule: theter, title The first reltion provies titles, iretors, n tors

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap Prtile Physis Mihelms Term 2011 Prof Mrk Thomson g X g X g g Hnout 3 : Intertion y Prtile Exhnge n QED Prof. M.A. Thomson Mihelms 2011 101 Rep Working towrs proper lultion of ey n sttering proesses lnitilly

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

CS261: A Second Course in Algorithms Lecture #5: Minimum-Cost Bipartite Matching

CS261: A Second Course in Algorithms Lecture #5: Minimum-Cost Bipartite Matching CS261: A Seon Course in Algorithms Leture #5: Minimum-Cost Biprtite Mthing Tim Roughgren Jnury 19, 2016 1 Preliminries Figure 1: Exmple of iprtite grph. The eges {, } n {, } onstitute mthing. Lst leture

More information

arxiv: v1 [cs.dm] 24 Jul 2017

arxiv: v1 [cs.dm] 24 Jul 2017 Some lsses of grphs tht re not PCGs 1 rxiv:1707.07436v1 [s.dm] 24 Jul 2017 Pierluigi Biohi Angelo Monti Tizin Clmoneri Rossell Petreshi Computer Siene Deprtment, Spienz University of Rome, Itly pierluigi.iohi@gmil.om,

More information

Maximum size of a minimum watching system and the graphs achieving the bound

Maximum size of a minimum watching system and the graphs achieving the bound Mximum size of minimum wthing system n the grphs hieving the oun Tille mximum un système e ontrôle minimum et les grphes tteignnt l orne Dvi Auger Irène Chron Olivier Hury Antoine Lostein 00D0 Mrs 00 Déprtement

More information

Separable discrete functions: recognition and sufficient conditions

Separable discrete functions: recognition and sufficient conditions Seprle isrete funtions: reognition n suffiient onitions Enre Boros Onřej Čepek Vlimir Gurvih Novemer 21, 217 rxiv:1711.6772v1 [mth.co] 17 Nov 217 Astrt A isrete funtion of n vriles is mpping g : X 1...

More information

Total score: /100 points

Total score: /100 points Points misse: Stuent's Nme: Totl sore: /100 points Est Tennessee Stte University Deprtment of Computer n Informtion Sienes CSCI 2710 (Trnoff) Disrete Strutures TEST 2 for Fll Semester, 2004 Re this efore

More information

If the numbering is a,b,c,d 1,2,3,4, then the matrix representation is as follows:

If the numbering is a,b,c,d 1,2,3,4, then the matrix representation is as follows: Reltions. Solutions 1. ) true; ) true; ) flse; ) true; e) flse; f) true; g) flse; h) true; 2. 2 A B 3. Consier ll reltions tht o not inlue the given pir s n element. Oviously, the rest of the reltions

More information

Graph Algorithms. Vertex set = { a,b,c,d } Edge set = { {a,c}, {b,c}, {c,d}, {b,d}} Figure 1: An example for a simple graph

Graph Algorithms. Vertex set = { a,b,c,d } Edge set = { {a,c}, {b,c}, {c,d}, {b,d}} Figure 1: An example for a simple graph Inin Institute of Informtion Tehnology Design n Mnufturing, Knheepurm, Chenni 00, Ini An Autonomous Institute uner MHRD, Govt of Ini http://www.iiitm..in COM 0T Design n Anlysis of Algorithms -Leture Notes

More information

The vertex leafage of chordal graphs

The vertex leafage of chordal graphs The vertex lefge of horl grphs Steven Chplik, Jurj Stho b Deprtment of Physis n Computer Siene, Wilfri Lurier University, 75 University Ave. West, Wterloo, Ontrio N2L 3C5, Cn b DIMAP n Mthemtis Institute,

More information

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 11365-9415, Tehrn, Irn Deprtment

More information

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS Bull. Koren Mth. So. 35 (998), No., pp. 53 6 POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS YOUNG BAE JUN*, YANG XU AND KEYUN QIN ABSTRACT. We introue the onepts of positive

More information

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

2.4 Theoretical Foundations

2.4 Theoretical Foundations 2 Progrmming Lnguge Syntx 2.4 Theoretil Fountions As note in the min text, snners n prsers re se on the finite utomt n pushown utomt tht form the ottom two levels of the Chomsky lnguge hierrhy. At eh level

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Outline. Theory-based Bayesian framework for property induction Causal structure induction

Outline. Theory-based Bayesian framework for property induction Causal structure induction Outline Theory-sed Byesin frmework for property indution Cusl struture indution Constrint-sed (ottom-up) lerning Theory-sed Byesin lerning The origins of usl knowledge Question: how do people relily ome

More information

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4 Am Blnk Leture 13 Winter 2016 CSE 332 CSE 332: Dt Astrtions Sorting Dt Astrtions QuikSort Cutoff 1 Where We Are 2 For smll n, the reursion is wste. The onstnts on quik/merge sort re higher thn the ones

More information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Now we must transform the original model so we can use the new parameters. = S max. Recruits MODEL FOR VARIABLE RECRUITMENT (ontinue) Alterntive Prmeteriztions of the pwner-reruit Moels We n write ny moel in numerous ifferent ut equivlent forms. Uner ertin irumstnes it is onvenient to work with

More information

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES Avne Mth Moels & Applitions Vol3 No 8 pp63-75 SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVE STOCHASTIC PROCESSES ON THE CO-ORDINATES Nurgül Okur * Imt Işn Yusuf Ust 3 3 Giresun University Deprtment

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

Computing all-terminal reliability of stochastic networks with Binary Decision Diagrams

Computing all-terminal reliability of stochastic networks with Binary Decision Diagrams Computing ll-terminl reliility of stohsti networks with Binry Deision Digrms Gry Hry 1, Corinne Luet 1, n Nikolos Limnios 2 1 LRIA, FRE 2733, 5 rue u Moulin Neuf 80000 AMIENS emil:(orinne.luet, gry.hry)@u-pirie.fr

More information

Monochromatic Plane Matchings in Bicolored Point Set

Monochromatic Plane Matchings in Bicolored Point Set CCCG 2017, Ottw, Ontrio, July 26 28, 2017 Monohromti Plne Mthings in Biolore Point Set A. Krim Au-Affsh Sujoy Bhore Pz Crmi Astrt Motivte y networks interply, we stuy the prolem of omputing monohromti

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

Bisimulation, Games & Hennessy Milner logic

Bisimulation, Games & Hennessy Milner logic Bisimultion, Gmes & Hennessy Milner logi Leture 1 of Modelli Mtemtii dei Proessi Conorrenti Pweł Soboiński Univeristy of Southmpton, UK Bisimultion, Gmes & Hennessy Milner logi p.1/32 Clssil lnguge theory

More information

I 3 2 = I I 4 = 2A

I 3 2 = I I 4 = 2A ECE 210 Eletril Ciruit Anlysis University of llinois t Chigo 2.13 We re ske to use KCL to fin urrents 1 4. The key point in pplying KCL in this prolem is to strt with noe where only one of the urrents

More information

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues MTB 050 1 ORIGIN 1 Eigenvets n Eigenvlues This wksheet esries the lger use to lulte "prinipl" "hrteristi" iretions lle Eigenvets n the "prinipl" "hrteristi" vlues lle Eigenvlues ssoite with these iretions.

More information

Lecture 4: Graph Theory and the Four-Color Theorem

Lecture 4: Graph Theory and the Four-Color Theorem CCS Disrete II Professor: Pri Brtlett Leture 4: Grph Theory n the Four-Color Theorem Week 4 UCSB 2015 Through the rest of this lss, we re going to refer frequently to things lle grphs! If you hen t seen

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

Technology Mapping Method for Low Power Consumption and High Performance in General-Synchronous Framework

Technology Mapping Method for Low Power Consumption and High Performance in General-Synchronous Framework R-17 SASIMI 015 Proeeings Tehnology Mpping Metho for Low Power Consumption n High Performne in Generl-Synhronous Frmework Junki Kwguhi Yukihie Kohir Shool of Computer Siene, the University of Aizu Aizu-Wkmtsu

More information

Bivariate drought analysis using entropy theory

Bivariate drought analysis using entropy theory Purue University Purue e-pus Symposium on Dt-Driven Approhes to Droughts Drought Reserh Inititive Network -3- Bivrite rought nlysis using entropy theory Zengho Ho exs A & M University - College Sttion,

More information

A Primer on Continuous-time Economic Dynamics

A Primer on Continuous-time Economic Dynamics Eonomis 205A Fll 2008 K Kletzer A Primer on Continuous-time Eonomi Dnmis A Liner Differentil Eqution Sstems (i) Simplest se We egin with the simple liner first-orer ifferentil eqution The generl solution

More information

Let s divide up the interval [ ab, ] into n subintervals with the same length, so we have

Let s divide up the interval [ ab, ] into n subintervals with the same length, so we have III. INTEGRATION Eonomists seem muh more intereste in mrginl effets n ifferentition thn in integrtion. Integrtion is importnt for fining the epete vlue n vrine of rnom vriles, whih is use in eonometris

More information

Generalized Kronecker Product and Its Application

Generalized Kronecker Product and Its Application Vol. 1, No. 1 ISSN: 1916-9795 Generlize Kroneker Prout n Its Applition Xingxing Liu Shool of mthemtis n omputer Siene Ynn University Shnxi 716000, Chin E-mil: lxx6407@163.om Astrt In this pper, we promote

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

On the existence of a cherry-picking sequence

On the existence of a cherry-picking sequence On the existene of herry-piking sequene Jnosh Döker, Simone Linz Deprtment of Computer Siene, University of Tüingen, Germny Deprtment of Computer Siene, University of Aukln, New Zeln Astrt Reently, the

More information

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t

More information

Lecture 11 Binary Decision Diagrams (BDDs)

Lecture 11 Binary Decision Diagrams (BDDs) C 474A/57A Computer-Aie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, K-mp, iruit, et

More information

Mathematical Proofs Table of Contents

Mathematical Proofs Table of Contents Mthemtil Proofs Tle of Contents Proof Stnr Pge(s) Are of Trpezoi 7MG. Geometry 8.0 Are of Cirle 6MG., 9 6MG. 7MG. Geometry 8.0 Volume of Right Cirulr Cyliner 6MG. 4 7MG. Geometry 8.0 Volume of Sphere Geometry

More information

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

F / x everywhere in some domain containing R. Then, + ). (10.4.1) 0.4 Green's theorem in the plne Double integrls over plne region my be trnsforme into line integrls over the bounry of the region n onversely. This is of prtil interest beuse it my simplify the evlution

More information

On the Revision of Argumentation Systems: Minimal Change of Arguments Status

On the Revision of Argumentation Systems: Minimal Change of Arguments Status On the Revision of Argumenttion Systems: Miniml Chnge of Arguments Sttus Sylvie Coste-Mrquis, Séstien Koniezny, Jen-Guy Milly, n Pierre Mrquis CRIL Université Artois CNRS Lens, Frne {oste,koniezny,milly,mrquis}@ril.fr

More information

System Validation (IN4387) November 2, 2012, 14:00-17:00

System Validation (IN4387) November 2, 2012, 14:00-17:00 System Vlidtion (IN4387) Novemer 2, 2012, 14:00-17:00 Importnt Notes. The exmintion omprises 5 question in 4 pges. Give omplete explntion nd do not onfine yourself to giving the finl nswer. Good luk! Exerise

More information

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS #A42 INTEGERS 11 (2011 ON THE CONDITIONED BINOMIAL COEFFICIENTS Liqun To Shool of Mthemtil Sienes, Luoyng Norml University, Luoyng, Chin lqto@lynuedun Reeived: 12/24/10, Revised: 5/11/11, Aepted: 5/16/11,

More information

Edexcel Level 3 Advanced GCE in Mathematics (9MA0) Two-year Scheme of Work

Edexcel Level 3 Advanced GCE in Mathematics (9MA0) Two-year Scheme of Work Eexel Level 3 Avne GCE in Mthemtis (9MA0) Two-yer Sheme of Work Stuents stuying A Level Mthemtis will tke 3 ppers t the en of Yer 13 s inite elow. All stuents will stuy Pure, Sttistis n Mehnis. A level

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line APPENDIX D Preclculus Review APPENDIX D.1 Rel Numers n the Rel Numer Line Rel Numers n the Rel Numer Line Orer n Inequlities Asolute Vlue n Distnce Rel Numers n the Rel Numer Line Rel numers cn e represente

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

Metaheuristics for the Asymmetric Hamiltonian Path Problem

Metaheuristics for the Asymmetric Hamiltonian Path Problem Metheuristis for the Asymmetri Hmiltonin Pth Prolem João Pero PEDROSO INESC - Porto n DCC - Fule e Ciênis, Universie o Porto, Portugl jpp@f.up.pt Astrt. One of the most importnt pplitions of the Asymmetri

More information

CS 360 Exam 2 Fall 2014 Name

CS 360 Exam 2 Fall 2014 Name CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singly-linke list n stk. Write three ifferent O(n)-time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output

More information

Automata and Regular Languages

Automata and Regular Languages Chpter 9 Automt n Regulr Lnguges 9. Introution This hpter looks t mthemtil moels of omputtion n lnguges tht esrie them. The moel-lnguge reltionship hs multiple levels. We shll explore the simplest level,

More information

A Disambiguation Algorithm for Finite Automata and Functional Transducers

A Disambiguation Algorithm for Finite Automata and Functional Transducers A Dismigution Algorithm for Finite Automt n Funtionl Trnsuers Mehryr Mohri Cournt Institute of Mthemtil Sienes n Google Reserh 51 Merer Street, New York, NY 1001, USA Astrt. We present new ismigution lgorithm

More information

Geodesics on Regular Polyhedra with Endpoints at the Vertices

Geodesics on Regular Polyhedra with Endpoints at the Vertices Arnol Mth J (2016) 2:201 211 DOI 101007/s40598-016-0040-z RESEARCH CONTRIBUTION Geoesis on Regulr Polyher with Enpoints t the Verties Dmitry Fuhs 1 To Sergei Thnikov on the osion of his 60th irthy Reeive:

More information

Vidyalankar S.E. Sem. III [CMPN] Discrete Structures Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [CMPN] Discrete Structures Prelim Question Paper Solution S.E. Sem. III [CMPN] Discrete Structures Prelim Question Pper Solution 1. () (i) Disjoint set wo sets re si to be isjoint if they hve no elements in common. Exmple : A = {0, 4, 7, 9} n B = {3, 17, 15}

More information

Analysis of Temporal Interactions with Link Streams and Stream Graphs

Analysis of Temporal Interactions with Link Streams and Stream Graphs Anlysis of Temporl Intertions with n Strem Grphs, Tiphine Vir, Clémene Mgnien http:// ltpy@ LIP6 CNRS n Soronne Université Pris, Frne 1/23 intertions over time 0 2 4 6 8,,, n for 10 time units time 2/23

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

ANALYSIS AND MODELLING OF RAINFALL EVENTS

ANALYSIS AND MODELLING OF RAINFALL EVENTS Proeedings of the 14 th Interntionl Conferene on Environmentl Siene nd Tehnology Athens, Greee, 3-5 Septemer 215 ANALYSIS AND MODELLING OF RAINFALL EVENTS IOANNIDIS K., KARAGRIGORIOU A. nd LEKKAS D.F.

More information

Section 2.1 Special Right Triangles

Section 2.1 Special Right Triangles Se..1 Speil Rigt Tringles 49 Te --90 Tringle Setion.1 Speil Rigt Tringles Te --90 tringle (or just 0-60-90) is so nme euse of its ngle mesures. Te lengts of te sies, toug, ve very speifi pttern to tem

More information

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France) Grph Sttes EPIT 2005 Mehdi Mhll (Clgry, Cnd) Simon Perdrix (Grenole, Frne) simon.perdrix@img.fr Grph Stte: Introdution A grph-sed representtion of the entnglement of some (lrge) quntum stte. Verties: quits

More information

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS Krgujev Journl of Mthemtis Volume 38() (204), Pges 35 49. DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS MOHAMMAD W. ALOMARI Abstrt. In this pper, severl bouns for the ifferene between two Riemn-

More information

Symmetrical Components 1

Symmetrical Components 1 Symmetril Components. Introdution These notes should e red together with Setion. of your text. When performing stedy-stte nlysis of high voltge trnsmission systems, we mke use of the per-phse equivlent

More information

Subsequence Automata with Default Transitions

Subsequence Automata with Default Transitions Susequene Automt with Defult Trnsitions Philip Bille, Inge Li Gørtz, n Freerik Rye Skjoljensen Tehnil University of Denmrk {phi,inge,fskj}@tu.k Astrt. Let S e string of length n with hrters from n lphet

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233, Surs n Inies Surs n Inies Curriulum Rey ACMNA:, 6 www.mthletis.om Surs SURDS & & Inies INDICES Inies n surs re very losely relte. A numer uner (squre root sign) is lle sur if the squre root n t e simplifie.

More information

A Short Introduction to Self-similar Groups

A Short Introduction to Self-similar Groups A Short Introution to Self-similr Groups Murry Eler* Asi Pifi Mthemtis Newsletter Astrt. Self-similr groups re fsinting re of urrent reserh. Here we give short, n hopefully essile, introution to them.

More information

Probability. b a b. a b 32.

Probability. b a b. a b 32. Proility If n event n hppen in '' wys nd fil in '' wys, nd eh of these wys is eqully likely, then proility or the hne, or its hppening is, nd tht of its filing is eg, If in lottery there re prizes nd lnks,

More information

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic Chpter 3 Vetor Spes In Chpter 2, we sw tht the set of imges possessed numer of onvenient properties. It turns out tht ny set tht possesses similr onvenient properties n e nlyzed in similr wy. In liner

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

More information

Génération aléatoire uniforme pour les réseaux d automates

Génération aléatoire uniforme pour les réseaux d automates Génértion létoire uniforme pour les réseux d utomtes Niols Bsset (Trvil ommun ve Mihèle Sori et Jen Miresse) Université lire de Bruxelles Journées Alé 2017 1/25 Motivtions (1/2) p q Automt re omni-present

More information

Implication Graphs and Logic Testing

Implication Graphs and Logic Testing Implition Grphs n Logi Testing Vishwni D. Agrwl Jmes J. Dnher Professor Dept. of ECE, Auurn University Auurn, AL 36849 vgrwl@eng.uurn.eu www.eng.uurn.eu/~vgrwl Joint reserh with: K. K. Dve, ATI Reserh,

More information

Learning Partially Observable Markov Models from First Passage Times

Learning Partially Observable Markov Models from First Passage Times Lerning Prtilly Oservle Mrkov s from First Pssge s Jérôme Cllut nd Pierre Dupont Europen Conferene on Mhine Lerning (ECML) 8 Septemer 7 Outline. FPT in models nd sequenes. Prtilly Oservle Mrkov s (POMMs).

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information