Graph Search Algorithms CSE

Size: px
Start display at page:

Download "Graph Search Algorithms CSE"

Transcription

1 Grp Src Aortms 1

2 Grp b No ~ cty or computr E ~ ro or t cb c Unrct or Drct A surprsny r numbr o computton probms cn b xprss s rp probms. 2

3 Drct n Unrct Grps () A rct rp G = (V, E), wr V = {1,2,3,4,5,6} n E = {(1,2), (2,2), (2,4), (2,5), (4,1), (4,5), (5,4), (6,3)}. T (2,2) s s-oop. (b) An unrct rp G = (V,E), wr V = {1,2,3,4,5,6} n E = {(1,2), (1,5), (2,5), (3,6)}. T vrtx 4 s sot. (c) T subrp o t rp n prt () nuc by t vrtx st {1,2,3,6}. 3

4 Trs Tr Forst Grp wt Cyc A tr s connct, cycc, unrct rp. A orst s st o trs (not ncssry connct) 4

5 Runnn Tm o Grp Aortms Runnn tm otn uncton o bot V n E. For convnnc, rop t. n symptotc notton,.. O(V+E). 5

6 En o Lctur 10 Apr 6, 2009

7 Rprsnttons: Unrct Grps Spc compxty: Tm to n nbours o vrtx u : Acncy Lst θ ( V + E) θ (r( u)) Acncy Mtrx 2 θ ( V ) θ ( V ) Tm to trmn ( uv, ) E: θ (r( u)) 7 θ (1)

8 Rprsnttons: Drct Grps Spc compxty: Tm to n nbours o vrtx u : Acncy Lst θ ( V + E) θ (r( u)) Acncy Mtrx 2 θ ( V ) θ ( V ) Tm to trmn ( uv, ) E: θ (r( u)) 8 θ (1)

9 Brt-Frst Src Go: To rcovr t sortst pts rom sourc no s to otr rcb nos v n rp. T nt o c pt n t pts tmsvs r rturn. Nots: Tr r n xponnt numbr o possb pts Ts probm s rr or nr rps tn trs bcus o cycs!? 9 s

10 Brt-Frst Src Input: Grp G = ( V, E ) (rct or unrct) n sourc vrtx s V. Output: v [ ] = sortst pt stnc δ ( sv, ) rom sto v, v V. π[ v] = u suc tt ( u, v) s st on sortst pt rom s to v. I: sn out src wv rom s. Kp trc o prorss by coourn vrtcs: Unscovr vrtcs r coour bc Just scovr vrtcs (on t wvront) r coour r. Prvousy scovr vrtcs (bn wvront) r coour ry. 10

11 s BFS Frst-In Frst-Out (FIFO) quu stors ust scovr vrtcs b Foun Not Hn Quu c m 11

12 c s BFS =0 b m Foun Not Hn Quu s =0 12

13 c s BFS =0 =1 b m Foun Not Hn Quu =0 =1 b 13

14 c s BFS =0 =1 b m Foun Not Hn Quu b =1 14

15 c s BFS =0 =1 b m Foun Not Hn Quu =2 b c =1 =2 15

16 c s BFS =0 =1 b m Foun Not Hn Quu =2 b c m =1 =2 16

17 c s BFS =0 =1 b m Foun Not Hn Quu =2 b c m =1 =2 17

18 c s BFS =0 =1 b m Foun Not Hn Quu =2 c m =1 =2 18

19 c s BFS =0 =1 b m Foun Not Hn Quu =2 c m =2 19

20 c s BFS =0 =1 b 20 m =3 Foun Not Hn Quu =2 m =2 =3

21 c s BFS =0 =1 b 21 m =3 Foun Not Hn Quu =2 m =2 =3

22 c s BFS =0 =1 b 22 m =3 Foun Not Hn Quu =2 =2 =3

23 c s BFS =0 =1 b 23 m =3 Foun Not Hn Quu =2 =2 =3

24 c s BFS =0 =1 b 24 m =3 Foun Not Hn Quu =2 =2 =3

25 c s BFS =0 =1 b 25 m =3 Foun Not Hn Quu =2 =3

26 c s =4 BFS =0 =1 b 26 m =3 Foun Not Hn Quu =2 =3 =4

27 c s =4 BFS =0 =1 b 27 m =3 Foun Not Hn Quu =2 =3 =4

28 c s =4 BFS =0 =1 b 28 m =3 Foun Not Hn Quu =2 =3 =4

29 c s =4 BFS =0 =1 b 29 m =3 Foun Not Hn Quu =2 =4

30 c s =4 BFS =0 =1 b 30 m =3 Foun Not Hn Quu =2 =4 =5

31 Brt-Frst Src Aortm Q s FIFO quu. BLACK Ec vrtx ssn nt vu t most onc. RED Q contns vrtcs wt vus {,,, +1,, +1} vus ssn r monotoncy ncrsn ovr tm. BLACK RED GRAY 31

32 Brt-Frst-Src s Gry Vrtcs r n: n orr o tr scovry (FIFO quu) Smst vus rst 32

33 Corrctnss Bsc Stps: s u v T sortst pt to u s nt & tr s n rom u to v Tr s pt to v wt nt

34 Corrctnss Vrtcs r scovr n orr o tr stnc rom t sourc vrtx s. Wn w scovr v, ow o w now tr s not sortr pt to v? Bcus tr ws, w wou ry v scovr t! s u v 34

35 Corrctnss Input: Grp G = ( V, E ) (rct or unrct) n sourc vrtx s V. Output: v [] = stnc rom sto v, v V. π[ v] = u suc tt ( u, v) s st on sortst pt rom s to v. Two-stp proo: On xt: 1. v [ ] δ ( sv, ) v V 2. v [ ] > δ ( sv, ) v V 35

36 Cm 1. s nvr too sm: [ v] δ ( s, v) v V Proo: Tr xsts pt rom s to v o nt [ v]. By Inucton: Suppos t s tru or vrtcs tus r scovr ( r n ry). v s scovr rom som cnt vrtx u bn n. v [ ] = u [ ] + 1 δ (, s u) + 1 δ (, sv) s u v snc c vrtx v s ssn vu xcty onc, t oows tt o n xt, v [ ] δ ( s, v) v V. 36

37 Cm 1. s nvr too sm: [ v] δ ( s, v) v V Proo: Tr xsts pt rom s to v o nt [ v]. BLACK RED s u v <LI>: v [ ] δ ( sv, ) 'scovr' ( r or r y) v V BLACK RED δ ( su, ) + 1 δ ( sv, ) GRAY 37

38 Cm 2. s nvr too b: [ v] δ ( s, v) v V Proo by contrcton: Suppos on or mor vrtcs rcv vu rtr tn δ. Lt v b t vrtx wt mnmum δ ( s, v) tt rcvs suc vu. Suppos tt v s scovr n ssn ts vu wn vrtx x s quu. Lt u b v's prcssor on sortst pt rom s to v. Tn δ (, s v) < [] v δ (, s v) 1 < [] v 1 u [ ] < x [ ] s x [ ] = v [ ] 1 [ u] = δ ( s, v ) 1 x u v Rc: vrtcs r quu n ncrsn orr o v u. u ws quu bor x. [ v] = [ u] + 1 =δ ( s, v) Contrcton! 38

39 Corrctnss Cm 1. s nvr too sm: [ v] δ ( s, v) v V Cm 2. s nvr too b: [ v] δ ( s, v) v V s ust rt: [ v] = δ ( s, v) v V 39

40 Prorss? On vry trton on vrtx s procss (turns ry). BLACK RED BLACK RED GRAY 40

41 Runnn Tm Ec vrtx s nquu t most onc OV ( ) Ec ntry n t cncy sts s scnn t most onc O(E) Tus run tm s OV ( + E). BLACK RED BLACK RED GRAY 41

42 Optm Substructur Proprty T sortst pt probm s t optm substructur proprty: Evry subpt o sortst pt s sortst pt. sortst pt s u v sortst pt sortst pt T optm substructur proprty s mr o bot ry n ynmc prormmn ortms. ows us to comput bot sortst pt stnc n t sortst pts tmsvs by storn ony on vu n on prcssor vu pr vrtx. 42

43 Rcovrn t Sortst Pt For c no v, stor prcssor o v n π(v). s u π(v) v Prcssor o v s π(v) = u. 43

44 Rcovrn t Sortst Pt PRINT-PATH( G, s, v ) Prconton: s n v r vrtcs o rp G Postconton: t vrtcs on t sortst pt rom s to v v bn prnt n orr v = s tn prnt s s π[] v = NI L tn prnt " no pt rom" s "to" v "xsts" s PRINT-PATH( G, s, π[ v]) prnt v 44

45 Coours r ctuy not rqur 45

46 Dpt Frst Src (DFS) I: Contnu srcn pr nto t rp, unt w t stuc. I t s vn v v bn xpor w bctrc to t vrtx rom wc v ws scovr. Dos not rcovr sortst pts, but cn b usu or xtrctn otr proprts o rp,.., Topooc sorts Dtcton o cycs Extrcton o strony connct componnts 46

47 Dpt-Frst Src Inp u t: Grp G = ( V, E ) (rct or unrct) Output: 2 tmstmps on c vrtx: v [] = scovry tm. v [] = nsn tm. Expor vry, strtn rom rnt vrtcs ncssry. As soon s vrtx scovr, xpor rom t. Kp trc o prorss by coourn vrtcs: Bc: unscovr vrtcs 1 v [ ] < v [ ] 2 V R: scovr, but not ns (st xporn rom t) Gry: ns (oun vrytn rcb rom t). 47

48 DFS s Not: Stc s Lst-In Frst-Out (LIFO) b Foun Not Hn Stc <no,# s> c 48 m

49 s 1 DFS b Foun Not Hn Stc <no,# s> c 49 m s,0

50 2 s 1 DFS b Foun Not Hn Stc <no,# s> c 50 m,0 s,1

51 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c 51 m c,0,1 s,1

52 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c 4 52 m,0 c,1,1 s,1

53 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m,0,1 c,1,1 s,1

54 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c Pt on Stc 4 Tr E m,1 c,1,1 s,1

55 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m c,1,1 s,1

56 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m,0 c,2,1 s,1

57 Cross E to n no: []<[] 3 c s 1 DFS 57 b m Foun Not Hn Stc <no,# s>,1 c,2,1 s,1

58 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m,2 c,2,1 s,1

59 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m,0,3 c,2,1 s,1

60 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m,1,3 c,2,1 s,1

61 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m,3 c,2,1 s,1

62 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m,0,4 c,2,1 s,1

63 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m 12,0,1,4 c,2,1 s,1

64 Bc E to no on Stc: 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m 12,1,1,4 c,2,1 s,1

65 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m m,0,2,1,4 c,2,1 s,1

66 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m m,1,2,1,4 c,2,1 s,1

67 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m ,2,1,4 c,2,1 s,1

68 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m ,1,4 c,2,1 s,1

69 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m ,4 c,2,1 s,1

70 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m ,0,5 c,2,1 s,1

71 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m ,1,5 c,2,1 s,1

72 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m ,5 c,2,1 s,1

73 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m c,2,1 s,1

74 Forwr E 2 s 1 DFS b Foun Not Hn Stc <no,# s> 3 c m c,3,1 s,1

75 2 s 1 DFS b Foun Not Hn Stc <no,# s> 319 c m ,1 s,1

76 2 s 1 DFS b Foun Not Hn Stc <no,# s> 319 c m ,2 s,1

77 220 s 1 DFS b Foun Not Hn Stc <no,# s> 319 c m s,1

78 220 s 1 DFS b Foun Not Hn Stc <no,# s> 319 c m ,0 s,2

79 220 s 1 DFS b Foun Not Hn Stc <no,# s> 319 c m ,1 s,2

80 220 s 1 DFS b Foun Not Hn Stc <no,# s> 319 c m ,2 s,2

81 220 s 1 DFS b Foun Not Hn Stc <no,# s> 319 c m ,0,3 s,2

82 220 s 1 DFS b Foun Not Hn Stc <no,# s> 319 c m ,1,3 s,2

83 220 s 1 DFS b Foun Not Hn Stc <no,# s> 319 c m ,3 s,2

84 220 s 1 DFS b Foun Not Hn Stc <no,# s> 319 c m s,2

85 220 s 1 DFS b Foun Not Hn Stc <no,# s> 319 c m s,3

86 220 s 1 DFS b 25 Foun Not Hn Stc <no,# s> 319 c m b,0 s,4

87 220 s 1 DFS b 25 Foun Not Hn Stc <no,# s> 319 c m b,1 s,4

88 220 s 1 DFS b 25 Foun Not Hn Stc <no,# s> 319 c m b,2 s,4

89 220 s 1 DFS b 25 Foun Not Hn Stc <no,# s> 319 c m b,3 s,4

90 220 s 1 DFS b 2526 Foun Not Hn Stc <no,# s> 319 c m s,4

91 319 c 47 Tr Es Bc Es Forwr Es Cross Es s DFS Fns! 910 b 2526 m Foun Not Hn Stc <no,# s>

92 Csscton o Es n DFS 1. Tr s r s n t pt-rst orst G π. E (u, v) s tr v ws rst scovr by xporn (u, v). 2. Bc s r tos s (u, v) connctn vrtx u to n ncstor v n pt-rst tr. 3. Forwr s r non-tr s (u, v) connctn vrtx u to scnnt v n pt-rst tr. 4. Cross s r otr s. Ty cn o btwn vrtcs n t sm pt-rst tr, s on s on vrtx s not n ncstor o t otr. 319 c s b 2526 m

93 Csscton o Es n DFS 1. Tr s: E (u, v) s tr v ws bc wn (u, v) trvrs. 2. Bc s: (u, v) s bc v ws r wn (u, v) trvrs. 3. Forwr s: (u, v) s orwr v ws ry wn (u, v) trvrs n [v] > [u]. 4. Cross s (u,v) s cross v ws ry wn (u, v) trvrs n [v] < [u]. Cssyn s cn p to nty proprts o t rp,.., rp s cycc DFS ys no bc s. 319 c s b 2526 m

94 Unrct Grps In pt-rst src o n unrct rp, vry s tr tr or bc. Wy? 94

95 Unrct Grps Suppos tt (u,v) s orwr or cross n DFS o n unrct rp. (u,v) s orwr or cross wn v s ry n (ry) wn ccss rom u. Ts mns tt vrtcs rcb rom v v bn xpor. Snc w r currnty nn u, u must b r. Cry v s rcb rom u. Snc t rp s unrct, u must so b rcb rom v. Tus u must ry v bn n: u must b ry. Contrcton! u v 95

96 En o Lctur 11 Apr 8, 2009

97 DFS(G) Dpt-Frst Src Aortm BLACK BLACK DFS-Vst ( u ) Prconton: vrtx u s unscovr Postconton: vrtcs rcb rom u v bn procss RED BLACK BLACK GRAY GRAY 97

98 DFS(G) Dpt-Frst Src Aortm BLACK tot wor = θ( V ) BLACK Tus runnn tm = θ ( V + E ) DFS-Vst ( u ) Prconton: vrtx u s unscovr Postconton: vrtcs rcb rom u v bn procss RED BLACK BLACK tot wor = A[ v ] = θ( E ) v V GRAY GRAY 98

99 Topooc Sortn (.., puttn tss n nr orr) An ppcton o Dpt-Frst Src

100 Lnr Orr unrwr socs pnts sos unrwr pnts socs sos 100 socs unrwr pnts sos

101 Lnr Orr unrwr socs pnts sos Too mny vo ms? 101

102 Lnr Orr b c Prconton: A Drct Acycc Grp (DAG) Post Conton: Fn on v nr orr Aortm: Fn trmn no (sn). Put t st n squnc. Dt rom rp & rpt Θ(V) Θ(V 2 ) W cn o bttr!

103 b c Lnr Orr A: DFS Foun Not Hn Stc 103..

104 b c Lnr Orr A: DFS 104 Foun Not Hn Stc Wn no s popp o stc, nsrt t ront o nry-orr to o st. Lnr Orr:..

105 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr: 105,

106 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr: 106,,

107 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr: 107,,,

108 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr: 108,,,,

109 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr: 109,,,,

110 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr: 110,,,,,

111 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr:,,,,,, 111

112 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr:,,,,,,, 112

113 b c Lnr Orr A: DFS Foun Not Hn Stc c b Lnr Orr:,,,,,,, 113

114 b c Lnr Orr A: DFS Foun Not Hn Stc b Lnr Orr: c,,,,,,,, 114

115 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr: b,c,,,,,,,, 115

116 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr: b,c,,,,,,,, 116

117 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr:,b,c,,,,,,,, 117

118 b c Lnr Orr A: DFS Foun Not Hn Stc Lnr Orr:,,b,c,,,,,,,, Don! 118

119 u v Lnr Orr Proo: Consr c Cs 1: u os on stc rst bor v. Bcus o, v os on bor u coms o v coms o bor u coms o v os tr u n orr. Foun Not Hn Stc u v 119 u v

120 u v Lnr Orr Proo: Consr c Cs 1: u os on stc rst bor v. Cs 2: v os on stc rst bor u. v coms o bor u os on. v os tr u n orr. Foun Not Hn Stc u v 120 u v

121 Lnr Orr Proo: Consr c Cs 1: u os on stc rst bor v. Cs 2: v os on stc rst bor u. v coms o bor u os on. Cs 3: v os on stc rst bor u. u os on bor v coms o. Pnc: u os tr v n orr. Cyc mns nr orr s mpossb Foun Not Hn Stc u v T nos n t stc orm pt strtn t s. u v v u 121

122 b c Lnr Orr A: DFS Anyss: Θ(V+E) Foun Not Hn Stc Lnr Orr:,,b,c,,,,,,,, Don! 122

123 Sortst Pts Rvst

124 Bc to Sortst Pt BFS ns t sortst pts rom sourc no s to vry vrtx v n t rp. Hr, t nt o pt s smpy t numbr o s on t pt. But wt s v rnt costs? s δ (, sv) = 3 δ (, sv) = 12 v s v 124

125 Sn-Sourc (Wt) Sortst Pts

126 T Probm Wt s t sortst rvn rout rom Toronto to Ottw? (.. MAPQust, Goo Mps) Input: Drct Grp G = ( V, E) E wts w : E Wt o pt p =< v, v,..., v > = w( v, v) = 1 Sortst-pt wt rom u to v : p δ ( uv, ) = mn{ w( p) : u v} pt u v, otrws. Sortst pt rom u to v s ny pt p suc tt w( p) = δ ( u, v). 126

127 Exmp Sn-sourc sortst pt src nucs src tr root t s. Ts tr, n nc t pts tmsvs, r not ncssry unqu. 127

128 Sortst pt vrnts Sn-sourc sortst-pts probm: t sortst pt rom s to c vrtx v. (.. BFS) Sn-stnton sortst-pts probm: Fn sortst pt to vn stnton vrtx t rom c vrtx v. Sn-pr sortst-pt probm: Fn sortst pt rom u to v or vn vrtcs u n v. A-prs sortst-pts probm: Fn sortst pt rom u to v or vry pr o vrtcs u n v. 128

129 Ntv-wt s OK, s on s no ntv-wt cycs r rcb rom t sourc. I w v ntv-wt cyc, w cn ust p on roun t, n t w(s, v) = or v on t cyc. But OK t ntv-wt cyc s not rcb rom t sourc. Som ortms wor ony tr r no ntv-wt s n t rp. 129

130 Optm substructur Lmm: Any subpt o sortst pt s sortst pt Proo: Cut n pst. Suppos ts pt p s sortst pt rom u to v. Tn δ ( u, v) = w( p) = w( p ) + w( p ) + w( p ). Now suppos tr xsts sortr pt x y. Tn w( p ) < w( p ). xy Construct p : xy ux xy yv Tn w( p ) = w( p ) + w( p ) + w( p ) < w( p ) + w( p ) + w( p ) = w( p). ux xy yv So p wsn't sortst pt tr! p xy ux xy yv 130

131 Cycs Sortst pts cn t contn cycs: Ary ru out ntv-wt cycs. Postv-wt: w cn t sortr pt by omttn t cyc. Zro-wt: no rson to us tm ssum tt our soutons won t us tm. 131

132 Output o sn-sourc sortst-pt ortm For c vrtx v n V: [v] = δ(s, v). Inty, [v]=. Ruc s ortm prorsss. But wys mntn [v] δ(s, v). C [v] sortst-pt stmt. π[v] = prcssor o v on sortst pt rom s. I no prcssor, π[v] = NIL. π nucs tr sortst-pt tr. 132

133 Intzton A sortst-pts ortms strt wt t sm ntzton: INIT-SINGLE-SOURCE(V, s) or c v n V o [v] π[v] NIL [s] 0 133

134 Rxn n Cn w mprov sortst-pt stmt or v by on trou u n tn (u,v)? RELAX(u, v,w) [v] > [u] + w(u, v) tn [v] [u] + w(u, v) π[v] u 134

135 Gnr sn-sourc sortst-pt strty 1. Strt by cn INIT-SINGLE-SOURCE 2. Rx Es Aortms r n t orr n wc s r tn n ow mny tms c s rx. 135

136 Exmp: Sn-sourc sortst pts n rct cycc rp (DAG) Snc rp s DAG, w r urnt no ntv-wt cycs. 136

137 Aortm Tm: Θ ( V + E) 137

138 Exmp 138

139 Exmp 139

140 Exmp 140

141 Exmp 141

142 Exmp 142

143 Exmp 143

144 Corrctnss: Pt rxton proprty (Lmm 24.15) Lt p =< v, v,..., v > b sortst pt rom s = v to v I w rx, n orr, ( v, v ), ( v, v ),..., ( v, v ), vn ntrmx wt otr rxtons, tn v [ ] = δ ( s, v). 144

145 Corrctnss o DAG Sortst Pt Aortm Bcus w procss vrtcs n topoocy sort orr, s o ny pt r rx n orr o pprnc n t pt. Es on ny sortst pt r rx n orr. By pt-rxton proprty, corrct. 145

146 Exmp: Dstr s ortm Apps to nr wt rct rp (my contn cycs). But wts must b non-ntv. Essnty wt vrson o BFS. Inst o FIFO quu, uss prorty quu. Kys r sortst-pt wts ([v]). Mntn 2 sts o vrtcs: S = vrtcs wos n sortst-pt wts r trmn. Q = prorty quu = V-S. 146

147 Dstr s ortm Dstr s ortm cn b vw s ry, snc t wys cooss t tst vrtx n V S to to S. 147

148 Dstr s ortm: Anyss Anyss: Usn mnp, quu oprtons ts O(oV) tm OV ( ) O(o V ) O( V) trtons Runnn Tm s OE ( o V) O(o V ) O( E) trtons 148

149 Exmp Ky: Wt Not Foun Gry Hnn Bc Hn 149

150 Exmp 150

151 Exmp 151

152 Exmp 152

153 Exmp 153

154 Exmp 154

155 Corrctnss o Dstr s ortm Loop nvrnt: [v] = δ(s, v) or v n S. Intzton: Inty, S s mpty, so trvy tru. Trmnton: At n, Q s mpty S = V [v] = δ(s, v) or v n V. Mntnnc: N to sow tt [u] = δ(s, u) wn u s to S n c trton. [u] os not cn onc u s to S. 155

156 Corrctnss o Dstr s Aortm: Uppr Boun Proprty Uppr Boun Proprty: 1. v [ ] δ ( sv, ) v V 2. Onc v [ ] = δ ( sv, ), t osn't cn Proo: By nucton. Bs Cs : v [ ] δ ( sv, ) v V mmty tr ntzton, snc s [ ] = 0 = δ ( ss, ) v [ ] = v s Inuctv Stp: Suppos x [ ] δ ( sx, ) x V Suppos w rx ( uv, ). I v [ ] cns, tn v [ ] = u [ ] + wuv (, ) δ (, su) + wuv (, ) δ (, sv) 156

157 Corrctnss o Dstr s Aortm C m : Wn u s to S, [ u] = δ ( s, u) Proo by Contrcton: Lt u b t rst vrtx to S suc tt u [ ] δ ( su, ) wn us. Lt y b rst vrtx n V S on sortst pt to u Lt x b t prcssor o y on t sortst pt to u C m: y [ ] = δ ( sy, ) wn us to S. Proo: x [ ] = δ ( sx, ), snc x S. ( x, y) ws rx wn x ws to S y [ ] = δ (, sx) + wxy (, ) = δ (, sy) Hn 157

158 Corrctnss o Dstr s Aortm Tus y [ ] = δ ( sy, ) wn us to S. y [ ] = δ ( sy, ) δ ( su, ) u [ ] (uppr boun proprty) But u [ ] y [ ] wn u to S Tus y [ ] = δ ( sy, ) = δ ( su, ) = u [ ]! Tus wn u s to S, [ u] = δ ( s, u) Consquncs: Tr s sortst pt to u suc tt t prcssor o u π[ u] S wn u s to S. T pt trou y cn ony b sortst pt w[ p ] = 0. 2 Hn π[ u] 158

159 Corrctnss o Dstr s ortm Loop nvrnt: [v] = δ(s, v) or v n S. Mntnnc: N to sow tt [u] = δ(s, u) wn u s to S n c trton. [u] os not cn onc u s to S. Rx(u,v,w) cn ony crs v [ ]. By t uppr boun proprty, v [ ] δ ( sv, ). Tus onc v [ ] = δ ( sv, ), t w not b cn.? 159

Graph Search Algorithms

Graph Search Algorithms Grp Sr Aortms 1 Grp 2 No ~ ty or omputr E ~ ro or t Unrt or Drt A surprsny r numr o omputton proms n xprss s rp proms. 3 Drt n Unrt Grps () A rt rp G = (V, E), wr V = {1,2,3,4,5,6} n E = {(1,2), (2,2),

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Graphs Depth First Search

Graphs Depth First Search Grp Dpt Frt Sr SFO 337 LAX 1843 1743 1233 802 DFW ORD - 1 - Grp Sr Aort - 2 - Outo Ø By unrtnn t tur, you ou to: q L rp orn to t orr n w vrt r ovr, xpor ro n n n pt-rt r. q Cy o t pt-rt r tr,, orwr n ro

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

Applications of trees

Applications of trees Trs Apptons o trs Orgnzton rts Attk trs to syst Anyss o tr ntworks Prsng xprssons Trs (rtrv o norton) Don-n strutur Mutstng Dstnton-s orwrng Trnsprnt swts Forwrng ts o prxs t routrs Struturs or nt pntton

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk S 445 Shortst Paths n Graphs lon frat Sls courtsy of rk man an arola Wnk Paths n raphs onsr a raph G = (V, ) wth -wht functon w : R. Th wht of path p = v v v k s fn to xampl: k = w ( p) = w( v, v + ).

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Rll t nton o spnnn tr: Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Any unrt, onnt rp s spnnn tr. Atully, rp

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

Graphs Breadth First Search

Graphs Breadth First Search Grp Brdt Frt Sr SFO ORD LAX DFW - 1 - Outo Ø By undrtndn t tur, you oud to: q L rp ordn to t ordr n w vrt r dovrd n rdt-rt r. q Idnty t urrnt tt o rdt-rt r n tr o vrt tt r prvouy dovrd, ut dovrd or undovrd.

More information

Lecture II: Minimium Spanning Tree Algorithms

Lecture II: Minimium Spanning Tree Algorithms Ltur II: Mnmum Spnnn Tr Alortms Dr Krn T. Hrly Dprtmnt o Computr Sn Unvrsty Coll Cork Aprl 0 KH (/0/) Ltur II: Mnmum Spnnn Tr Alortms Aprl 0 / 5 Mnmum Spnnn Trs Mnmum Spnnn Trs Spnnn Tr tr orm rom rp s

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

CSE 332. Data Structures and Parallelism

CSE 332. Data Structures and Parallelism Am Blnk Ltur 20 Wntr 2017 CSE 332 Dt Struturs n Prlllsm CSE 332: Dt Struturs n Prlllsm Grps 1: Wt s Grp? DFS n BFS LnkLsts r to Trs s Trs r to... 1 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus,

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 19 Summr 2015 CSE 332: Dt Astrtons CSE 332 Grps 1: Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... 1 A Grp s Tny... 2 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps,

More information

Single Source Shortest Paths (with Positive Weights)

Single Source Shortest Paths (with Positive Weights) Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm

More information

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem.

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem. Outlins: Graps Part-4 Applications o DFS Elmntary Grap Aloritms Topoloical Sort o Dirctd Acyclic Grap Stronly Connctd Componnts PART-4 1 2 Applications o Dpt-First Sarc Topoloical Sort: Usin dpt-irst sarc

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

Analysis of Algorithms - Elementary graphs algorithms -

Analysis of Algorithms - Elementary graphs algorithms - Analysis of Algorithms - Elmntary graphs algorithms - Anras Ermahl MRTC (Mälaralns Ral-Tim Rsarch Cntr) anras.rmahl@mh.s Autumn 004 Graphs Graphs ar important mathmatical ntitis in computr scinc an nginring

More information

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË CHELOURANYAN CALENDAR FOR YEAR YEAR OF SAI RHAVË I tou woust n unon wt our Motr, now tt tou st nvr t Hr. I tou woust sp t v o mttr, now tt tr s no mttr n no v. ~Cry Mry KEY TO CALENDAR T Dys o t W In t

More information

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE N URY T NORTON PROV N RRONOUS NORTON NVRTNTY PROV. SPY S NY TY OR UT T TY RY OS NOT URNT T S TT T NORTON PROV S ORRT, NSR S POSS, VRY ORT S N ON N T S T TY RY. TS NORTON S N OP RO RORS RT SU "" YW No.

More information

Maximum Matching Width: new characterizations and a fast algorithm for dominating set

Maximum Matching Width: new characterizations and a fast algorithm for dominating set Maxmum Matcn Wdt: nw caractrzatons and a ast alortm or domnatn st 정지수 (KAIST) jont work wt Sv Hortmo Sætr and Jan Arn Tll (Unvrsty o Brn) 1st Koran Worksop on Grap Tory 2015.8.27. KAIST Grap wdt paramtrs

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

2 Trees and Their Applications

2 Trees and Their Applications Trs n Tr Appltons. Proprts o trs.. Crtrzton o trs Dnton. A rp s ll yl (or orst) t ontns no yls. A onnt yl rp s ll tr. Quston. Cn n yl rp v loops or prlll s? Notton. I G = (V, E) s rp n E, tn G wll not

More information

Computer Graphics. Viewing & Projections

Computer Graphics. Viewing & Projections Vw & Ovrvw rr : rss r t -vw trsrt: st st, rr w.r.t. r rqurs r rr (rt syst) rt: 2 trsrt st, rt trsrt t 2D rqurs t r y rt rts ss Rr P usuy st try trsrt t wr rts t rs t surs trsrt t r rts u rt w.r.t. vw vu

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

Analysis of Algorithms - Elementary graphs algorithms -

Analysis of Algorithms - Elementary graphs algorithms - Analysis of Algorithms - Elmntary graphs algorithms - Anras Ermahl MRTC (Mälaralns Ral-Tim Rsach Cntr) anras.rmahl@mh.s Autumn 00 Graphs Graphs ar important mathmatical ntitis in computr scinc an nginring

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments Ston 7 - Rpr Prours Srv Mnul - Son Eton Pltorm Controls 1-1 Joystk Controllrs Mntnn oystk ontrollrs t t propr sttns s ssntl to s mn oprton. Evry oystk ontrollr soul oprt smootly n prov proportonl sp ontrol

More information

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee. B Pror NTERV FL/VAL ~RA1::1 1 21,, 1989 i n or Socil,, fir ll, Pror Fr rcru Sy Ar you lir SDC? Y, om um SM: corr n 'd m vry ummr yr. Now, y n y, f pr my ry for ummr my 1 yr Un So vr ummr cour d rr o l

More information

Differentiation of allergenic fungal spores by image analysis, with application to aerobiological counts

Differentiation of allergenic fungal spores by image analysis, with application to aerobiological counts 15: 211 223, 1999. 1999 Kuw Puss. Pt t ts. 211 tt u ss y yss, wt t t uts.. By 1, S. s 2,EuR.Tvy 2 St 3 1 tt Ss, R 407 Bu (05), Uvsty Syy, SW, 2006, ust; 2 st ty, v 4 Bu u (6), sttut Rsty, Uvsty Syy, SW,

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

1.9 Cartesian Tensors

1.9 Cartesian Tensors Scton.9.9 Crtsn nsors s th th ctor, hghr ordr) tnsor s mthmtc obct hch rprsnts mny physc phnomn nd hch xsts ndpndnty of ny coordnt systm. In ht foos, Crtsn coordnt systm s sd to dscrb tnsors..9. Crtsn

More information

An action with positive kinetic energy term for general relativity. T. Mei

An action with positive kinetic energy term for general relativity. T. Mei An ton wt post nt ny t fo n tty T (Dptnt of Jon Cnt Cn o Unsty Wn H PRO Pop s Rp of Cn E-: to@nn tow@pwn ) Astt: At fst w stt so sts n X: 7769 n tn sn post nt ny oont onton n y X: 7769 w psnt n ton wt

More information

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,... Warmup: Lt b 2 c 3 d 1 12 6 4 5 10 9 7 a 8 11 (i) Vriy tat G is connctd by ivin an xampl o a walk rom vrtx a to ac o t vrtics b. (ii) Wat is t sortst pat rom a to c? to? (iii) Wat is t lonst pat rom a

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 orthstar expressly reserves its common law copyright and other property rights for all ideas, provisions and plans represented or indicated by these drawings,

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Clm: Any unrt, onnt rp s spnnn tr (n nrl rp my v mny spnnn trs).

More information

0# E % D 0 D - C AB

0# E % D 0 D - C AB 5-70,- 393 %& 44 03& / / %0& / / 405 4 90//7-90/8/3 ) /7 0% 0 - @AB 5? 07 5 >0< 98 % =< < ; 98 07 &? % B % - G %0A 0@ % F0 % 08 403 08 M3 @ K0 J? F0 4< - G @ I 0 QR 4 @ 8 >5 5 % 08 OF0 80P 0O 0N 0@ 80SP

More information

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy.

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy. LTNY OF TH SNTS Cntrs Gnt flwng ( = c. 100) /G Ddd9/F ll Kybrd / hv Ddd9 hv hv Txt 1973, CL. ll rghts rsrvd. Usd wth prmssn. Musc: D. Bckr, b. 1953, 1987, D. Bckr. Publshd by OCP. ll rghts rsrvd. SMPL

More information

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri-

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri- sh Wdsdy 7 gn mult- tú- st Frst Intrt thng X-áud m. ns ní- m-sr-cór- Ps. -qu Ptr - m- Sál- vum m * usqu 1 d fc á-rum sp- m-sr-t- ó- num Gló- r- Fí- l- Sp-rí- : quó-n- m ntr-vé-runt á- n-mm c * m- quó-n-

More information

Examples and applications on SSSP and MST

Examples and applications on SSSP and MST Exampls an applications on SSSP an MST Dan (Doris) H & Junhao Gan ITEE Univrsity of Qunslan COMP3506/7505, Uni of Qunslan Exampls an applications on SSSP an MST Dijkstra s Algorithm Th algorithm solvs

More information

Telecommunications BUILDING INTERCOM CALL BUTTON WITH 3/4"C AND PULL STRING TO ACCESSIBLE CEILING SPACE. MOUNT 48" AFF.

Telecommunications BUILDING INTERCOM CALL BUTTON WITH 3/4C AND PULL STRING TO ACCESSIBLE CEILING SPACE. MOUNT 48 AFF. 0 NOOY SYMO S N NOOY NOS: NO: his is a standard symbol list and not all items listed may be used. bbreviations () XSN OV NS OO NMW - UNOUN ONU OY ONO UNS ONO NS O ONO UNS OWN NS OX OX U OP SUON UN OO,

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

w x a f f s t p q 4 r u v 5 i l h m o k j d g DT Competition, 1.8/1.6 Stainless, Black S, M, L, XL Matte Raw/Yellow

w x a f f s t p q 4 r u v 5 i l h m o k j d g DT Competition, 1.8/1.6 Stainless, Black S, M, L, XL Matte Raw/Yellow HELION CARBON TEAM S, M, L, XL M R/Y COR XC Py, FOC U Cn F, 110 T Innn Dn 27. AOS Snn Sy /F Ln, P, 1 1/8"-1 1/2" In H T, n 12 12 M D F 32 FLOAT 27. CTD FIT /A K, 110 T, 1QR, / FIT D, L & Rn A, T Ay S DEVICE

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

(4, 2)-Choosability of Planar Graphs with Forbidden Structures

(4, 2)-Choosability of Planar Graphs with Forbidden Structures Mtmtcs Publctons Mtmtcs 7-017 (4, )-Coosblty o Plnr Grps wt Forbn Structurs Znr Brkkyzy Iow Stt Unvrsty Crstopr Cox Crn Mllon Unvrsty Mcl Dryko Iow Stt Unvrsty, mryko@stt.u Krstn Honson Coloro Coll Mot

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

10. EXTENDING TRACTABILITY

10. EXTENDING TRACTABILITY Coping with NP-compltnss 0. EXTENDING TRACTABILITY ining small vrtx covrs solving NP-har problms on trs circular arc covrings vrtx covr in bipartit graphs Q. Suppos I n to solv an NP-complt problm. What

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 0 Autumn 0 CSE 33: Dt Astrtons CSE 33 Grps : Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... A Grp s Tny... Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps, Vnll Trs,

More information

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o: R TE EVTE (dhd H Hdg) L / Mld Kbrd gú s v l m sl c m qu gs v nns V n P P rs l mul m d lud 7 súb Fí cón ví f f dó, cru gs,, j l f c r s m l qum t pr qud ct, us: ns,,,, cs, cut r l sns m / m fí hó sn sí

More information

Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017.

Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017. 0//0 Prvw Spnnng Tr Spnnng Tr Mnmum Spnnng Tr Kruskl s Algorthm Prm s Algorthm Corrctnss of Kruskl s Algorthm A spnnng tr T of connctd, undrctd grph G s tr composd of ll th vrtcs nd som (or prhps ll) of

More information

Housing Market Monitor

Housing Market Monitor M O O D Y È S A N A L Y T I C S H o u s i n g M a r k e t M o n i t o r I N C O R P O R A T I N G D A T A A S O F N O V E M B E R İ Ī Ĭ Ĭ E x e c u t i v e S u m m a r y E x e c u t i v e S u m m a r y

More information

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP MN POST SRS LUSTR SYSTM NSTLLTON U PROUT O: MPS-RP 0 R0 WLL LN 0 RONT LVTON VW R0 N P 0 T RUR LOK LOT ON LSS. SLON SL TYP. OT SS 000 LSS T 0 00 SRS LSS WT 00/00 (0mm NRMNTS VLL) MX. 000 00-0 (ROMMN) 00

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

CAVALIER SPA & SALON UPFIT

CAVALIER SPA & SALON UPFIT 7 9 0 7 V S & SO U 0 OY O, V, V U YS SSOS, S. V., SU 0 S V, O 77--7 : 77-- S 0// O OW O V OS. U o. 00 Sheet ist Sheet umber Sheet ame S WS O US, O, O OU, WO O O W SO V WOU SSO O U YS SSOS VY - S OO - S

More information

Strongly Connected Components

Strongly Connected Components Strongly Connctd Componnts Lt G = (V, E) b a dirctd graph Writ if thr is a path from to in G Writ if and is an quivalnc rlation: implis and implis s quivalnc classs ar calld th strongly connctd componnts

More information

SAN JOSE CITY COLLEGE PHYSICAL EDUCATION BUILDING AND RENOVATED LAB BUILDING SYMBOL LIST & GENERAL NOTES - MECHANICAL

SAN JOSE CITY COLLEGE PHYSICAL EDUCATION BUILDING AND RENOVATED LAB BUILDING SYMBOL LIST & GENERAL NOTES - MECHANICAL S SRUUR OR OORO SU sketch SYO SRPO OO OU O SUPPOR YP SUPPOR O UR SOS OVR SOS (xwx) X W (S) RR RWS U- R R OR ROO OR P S SPR SO S OS OW "Wx00"x0" 000.0, 8/7.0 Z U- R R UPPR ROO S S S SPR SO S OS OW 0"Wx0"x90"

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wv hnon hyscs 5c cur 4 Coupl Oscllors! H& con 4. Wh W D s T " u forc oscllon " olv h quon of oon wh frcon n foun h sy-s soluon " Oscllon bcos lr nr h rsonnc frquncy " hs chns fro 0 π/ π s h frquncy ncrss

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

ELECTRONIC SUPPLEMENTARY INFORMATION

ELECTRONIC SUPPLEMENTARY INFORMATION Elctronc Supplmntry Mtrl (ESI) or Polymr Cmstry. Ts ournl s T Royl Socty o Cmstry 2015 ELECTRONIC SUPPLEMENTARY INFORMATION Poly(lyln tcont)s An ntrstn clss o polystrs wt proclly loct xo-cn oul ons suscptl

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

Fuzzy Reasoning and Optimization Based on a Generalized Bayesian Network

Fuzzy Reasoning and Optimization Based on a Generalized Bayesian Network Fuy R O B G By Nw H-Y K D M Du M Hu Cu Uvy 48 Hu Cu R Hu 300 Tw. @w.u.u.w A By w v wy u w w uy. Hwv u uy u By w y u v w uu By w w w u vu vv y. T uy v By w w uy v v uy. B By w uy. T uy v uy. T w w w- uy.

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

A ' / 1 6 " 5 ' / 4 " A4.2 48' - 0" 3 12' - 7" 13' - 11" 10' - 0" 9' - 0" 2' - 6" 1. 2: 12 INDICATES SHOW MELT TYP ABV ABV

A ' / 1 6  5 ' / 4  A4.2 48' - 0 3 12' - 7 13' - 11 10' - 0 9' - 0 2' - 6 1. 2: 12 INDICATES SHOW MELT TYP ABV ABV 4. 4. 4. K ' - / " ' - / 4 " 0 ' - / " ' - 0 " ' - 0 " ' - / " 4 ' - 0 " 4. M U PPR 48' - 0" ' - ' - " 0' - 0" ' - 0" ' - ". : WOM ' - 0 " OT: PROV URROU TR OUT SVS OR UTUR SP UTTY T OR QUSTR MPUS OTO

More information

Dental PBRN Study: Reasons for replacement or repair of dental restorations

Dental PBRN Study: Reasons for replacement or repair of dental restorations Dntl PBRN Stuy: Rsons or rplmnt or rpr o ntl rstortons Us ts Dt Collton Form wnvr stuy rstorton s rpl or rpr. For nrollmnt n t ollton you my rpl or rpr up to 4 rstortons, on t sm ptnt, urn snl vst. You

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information