282 P. Erdös and C. A. Rogers is te caracteristic function of te set El = U {K +Xi + g}, gea for 1 <i,<n. Suppose 0 < k < N and consider te function r

Size: px
Start display at page:

Download "282 P. Erdös and C. A. Rogers is te caracteristic function of te set El = U {K +Xi + g}, gea for 1 <i,<n. Suppose 0 < k < N and consider te function r"

Transcription

1 ACTA ARITHMETICA VII (1962) Covering space wit convex bodies by P. ERDÖS and C. A. ROGERS (Toronto) 1. A few years ago Rogers [1] sowed tat, if K is any convex body in n -dimensional Euclidian space, tere is a covering of te wole space by translates of K wit density less tan nlogn+nloglogn+5n, provided n > 3. However te fact tat te covering density is reasonably small does not imply tat te maximum multiplicity is also small. In te natural covering of space by closed cubes, te density is 1, but eac cube vertex is covered 2 n times. Our object in tis note is to prove tat, provided n is sufficiently large, tere is, for eac convex body K, a covering wit density less tan nlogn=, nloglogn ;-4n, and suc tat no point is covered more tan e {n log n + nloglogn + 4n} times. By dimension teory, some points must be covered n + 1 times. 2. In tis section we take K to be a Lebesgue measurable set wit finite positive measure V. Furter let A be te lattice of all points wit integral coordinates, and suppose all te distinct translates of K by te vectors of A are disjoint. We suppose tat N points x1, x,,..., xn are cosen at random in te cube C of points x wit 0<xl <1, 0<x2 <1,..., 0<xfl <1, and investigate te average density of te set of points covered exactly k times by te system of sets (1) K+xi +g (1 < i < H, g e A). Let e (x) be te caracteristic function of te set K. Ten a=(x) = e(x - xj- g) CEA

2 282 P. Erdös and C. A. Rogers is te caracteristic function of te set El = U {K +Xi + g}, gea for 1 <i,<n. Suppose 0 < k < N and consider te function rk(x ) I (-1)-k k! ( _ k) } =k 1 s=1 were te sum I ' is taken over all selections of distinct integers from 1, 2,..., N. Suppose tat x is a point of space, wic belongs to just r of te sets (1). Ten x belongs to just r of te sets X1, E2,..., EN. Tus, if r < k, we ave rk(x) = 0, and, if r > k, we ave r!{-1) - k r! rk(x) _ k! ( - k)! A! (r - )! =k _ r! k! (r-k)! =1, if r=k, =0, if r>k. Tus Tk(X) is te caracteristic function of te set Ek of points belonging to just k of te sets (1). Since Ek is periodic wit period 1 in eac coordinate, its density is equal to te measure of Ek n C, and so is given by 8(Ek ) = f rk(x)dx. C Te mean value SW (o (Ek)) of tis density, taken over all coices of te points x 1, x 27..., XN in C is But, using Fubini's teorem, N M (S (Ek)) = f... f { r rk(x) dx} dx l..., AN. C C C f... fi f 1 1 Ci8(x)dx} dx 1... dxn C c C 8-1 = f { f o1 (x)dx1 dx a C = ' {f JQ(x-xl -g)dx1 } dx C C ged = f { f o(x-x 1)dx1 } dx a = V. ijx)),

3 N Covering space wit convex bodies 283 Hence, te mean value of te density of E k N reduces to ~l(b(e'k)) - V!(-1) -k N! V GL k!(-k)!!(n-)! =k _ N! Vk 1-VN-k k! (N -R)! ( ) 3. In tis section we take K to be a convex set in n-dimensional space of volume V, and establis te existence of a covering of space by translates of K, wic as bot its density and its maximum multiplicity reasonably small. By a result of Rogers and Separd [2] tere is a lattice X11 of determinant 4"V suc tat te distinct translates of K by te vectors of A1 are disjoint. Tus, after applying a suitable linear transformation to K, we may suppose tat te volume V of K is 4 - " and tat te distinct translates of K, by te vectors of te lattice A of points wit integral coordinates, are disjoint. Now take N to be te integer nearest to and to be te integer nearest to 4'"{nlogn+nloglogn+4n}, e{nlogn+nloglogn.+4n}. If F is te set of points covered by or more of te sets of te system it follows from 2, tat K+xi +g (1 < i < N, g e 11), cjil(b(f))= N! Vk(1-V)N-k '~ k! (N- k)! k= N- H! V(1-V! (-AT - )! ( a )n' - 't i! (N-)! (+t)!(h--t)! (1-V)~. Hence In tis sum te ratio of te (t +1) - st term to te t - t term N--t V Y- V +t+1-1-v < +1 1-V < 1 ' 00 IV? JVl(b(F )) <!( ' (1-V)N - (N- V! (Nt=0 )! V `+1 1-V. _ N! N- (+1)(1-V) -!(H-)!V (1-V) (+1)- (N+1)V ' is

4 28 4 P. Erdös and C. A. Rogers So, using Stirling's formula, log M(b(Fi)) < (N- ) log(i + N )-logp.+ By te coice of V, N and, tis yields Similarly, if +(N-)log(1-V)- - flog (l- N)-log (l- (+1)V) -x-0(1). log x(b (F )) < - nlogn- n log log n - 4n + 0 (1). _ 1 '~ 2nlogn' te mean value of te density of te set Eo of points belonging to no set of te system is so tat Tis (1-2'7)K+x ;-}-g (I< i < N, g e A), 59 (b(e,)) = (1-(1-217)nV)N ; l l log~l(b(eo)) = Nlog 1-4--(1- n 1 lgn!! <-N4-n 1- nl 1ogn) " _ -N4-n 1l- lo1n +0 (1ogn1 2ll )) _ -nlogn-nloglogn-3n+0 (nloglogn) ` log J n Provided n is sufficiently large, we ave log 7rt(b(F )) < -nlogn-nloglogn-nlog8-log2, log7,1(b(eo)) < -nlogn-nloglogn-nlog8-log2. ensures tat `~'l(b(f))+~yt(b(e ))<(8nlogn)" -'7'V. Tus we can coose te points x.., X2)..., xn so tat (2) b(i'')+b(eo) < nnv.

5 We prove tat te system of sets Covering space wit convex bodies 28 5 (3) (1-r7)K+xi+g (1 < i < N, g E A), forms a covering of te wole of space wit te required properties. Let x be any point of space. Consider te system of sets -?7K+x+g (g e A). No two distinct sets of te system ave any common point. So te density of te system is rjnv > S (EO). Hence tere will be a point of a set of te system wic does not belong to EO. Tus, for some i wit 1 < i < N, for some points k1, k2 of K, and for some points g1, g2 of A, we ave Consequently belongs to te set -?1k1+x+g 1 = (1-2,q)k2 +xi+g2. x = (1-2a7)k2+rlk1+xi+(g2- g1) (1 - rj)k+xi+(g2 - g1) of te system (3). Tis sows tat te system (3) covers te wole of space. Now suppose tat a point x of space was covered or more times by te system of sets (3). Ten eac point of te set r1k+x is covered at least times by te sets of te system (1). So F contains te union U {qk+x+g}. gea But tis set as density?7nv. Hence 8(F,,) > j7nv contrary to (2). Tis sows tat no point of space is covered by te system (3) wit multiplicity or more, and completes te proof. References [1] C. A. R o g e r s A note on coverings, Matematika 4 (1957), pp [2] C. A. Rogers and G. C. Separd, Te difference body of a convex body, Arciv der Matematik, 8 (1957), pp , 5. Recu par la Redaction le

Poisson Equation in Sobolev Spaces

Poisson Equation in Sobolev Spaces Poisson Equation in Sobolev Spaces OcMountain Dayligt Time. 6, 011 Today we discuss te Poisson equation in Sobolev spaces. It s existence, uniqueness, and regularity. Weak Solution. u = f in, u = g on

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

5.1 introduction problem : Given a function f(x), find a polynomial approximation p n (x).

5.1 introduction problem : Given a function f(x), find a polynomial approximation p n (x). capter 5 : polynomial approximation and interpolation 5 introduction problem : Given a function f(x), find a polynomial approximation p n (x) Z b Z application : f(x)dx b p n(x)dx, a a one solution : Te

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

Convexity and Smoothness

Convexity and Smoothness Capter 4 Convexity and Smootness 4. Strict Convexity, Smootness, and Gateaux Di erentiablity Definition 4... Let X be a Banac space wit a norm denoted by k k. A map f : X \{0}!X \{0}, f 7! f x is called

More information

Equilibrium and Pareto Efficiency in an exchange economy

Equilibrium and Pareto Efficiency in an exchange economy Microeconomic Teory -1- Equilibrium and efficiency Equilibrium and Pareto Efficiency in an excange economy 1. Efficient economies 2 2. Gains from excange 6 3. Edgewort-ox analysis 15 4. Properties of a

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

Rules of Differentiation

Rules of Differentiation LECTURE 2 Rules of Differentiation At te en of Capter 2, we finally arrive at te following efinition of te erivative of a function f f x + f x x := x 0 oing so only after an extene iscussion as wat te

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Convexity and Smoothness

Convexity and Smoothness Capter 4 Convexity and Smootness 4.1 Strict Convexity, Smootness, and Gateaux Differentiablity Definition 4.1.1. Let X be a Banac space wit a norm denoted by. A map f : X \{0} X \{0}, f f x is called a

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

MATH 173: Problem Set 5 Solutions

MATH 173: Problem Set 5 Solutions MATH 173: Problem Set 5 Solutions Problem 1. Let f L 1 and a. Te wole problem is a matter of cange of variables wit integrals. i Ff a ξ = e ix ξ f a xdx = e ix ξ fx adx = e ia+y ξ fydy = e ia ξ = e ia

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

Monoidal Structures on Higher Categories

Monoidal Structures on Higher Categories Monoidal Structures on Higer Categories Paul Ziegler Monoidal Structures on Simplicial Categories Let C be a simplicial category, tat is a category enriced over simplicial sets. Suc categories are a model

More information

A SHORT INTRODUCTION TO BANACH LATTICES AND

A SHORT INTRODUCTION TO BANACH LATTICES AND CHAPTER A SHORT INTRODUCTION TO BANACH LATTICES AND POSITIVE OPERATORS In tis capter we give a brief introduction to Banac lattices and positive operators. Most results of tis capter can be found, e.g.,

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

Symmetry Labeling of Molecular Energies

Symmetry Labeling of Molecular Energies Capter 7. Symmetry Labeling of Molecular Energies Notes: Most of te material presented in tis capter is taken from Bunker and Jensen 1998, Cap. 6, and Bunker and Jensen 2005, Cap. 7. 7.1 Hamiltonian Symmetry

More information

Gradient Descent etc.

Gradient Descent etc. 1 Gradient Descent etc EE 13: Networked estimation and control Prof Kan) I DERIVATIVE Consider f : R R x fx) Te derivative is defined as d fx) = lim dx fx + ) fx) Te cain rule states tat if d d f gx) )

More information

LATTICE EXIT MODELS S. GILL WILLIAMSON

LATTICE EXIT MODELS S. GILL WILLIAMSON LATTICE EXIT MODELS S. GILL WILLIAMSON ABSTRACT. We discuss a class of problems wic we call lattice exit models. At one level, tese problems provide undergraduate level exercises in labeling te vertices

More information

Volume 29, Issue 3. Existence of competitive equilibrium in economies with multi-member households

Volume 29, Issue 3. Existence of competitive equilibrium in economies with multi-member households Volume 29, Issue 3 Existence of competitive equilibrium in economies wit multi-member ouseolds Noriisa Sato Graduate Scool of Economics, Waseda University Abstract Tis paper focuses on te existence of

More information

Math 242: Principles of Analysis Fall 2016 Homework 7 Part B Solutions

Math 242: Principles of Analysis Fall 2016 Homework 7 Part B Solutions Mat 22: Principles of Analysis Fall 206 Homework 7 Part B Solutions. Sow tat f(x) = x 2 is not uniformly continuous on R. Solution. Te equation is equivalent to f(x) = 0 were f(x) = x 2 sin(x) 3. Since

More information

Math 312 Lecture Notes Modeling

Math 312 Lecture Notes Modeling Mat 3 Lecture Notes Modeling Warren Weckesser Department of Matematics Colgate University 5 7 January 006 Classifying Matematical Models An Example We consider te following scenario. During a storm, a

More information

Generic maximum nullity of a graph

Generic maximum nullity of a graph Generic maximum nullity of a grap Leslie Hogben Bryan Sader Marc 5, 2008 Abstract For a grap G of order n, te maximum nullity of G is defined to be te largest possible nullity over all real symmetric n

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 -

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 - Eercise. Find te derivative of g( 3 + t5 dt wit respect to. Solution: Te integrand is f(t + t 5. By FTC, f( + 5. Eercise. Find te derivative of e t2 dt wit respect to. Solution: Te integrand is f(t e t2.

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Kernel Density Estimation

Kernel Density Estimation Kernel Density Estimation Univariate Density Estimation Suppose tat we ave a random sample of data X 1,..., X n from an unknown continuous distribution wit probability density function (pdf) f(x) and cumulative

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximating a function f(x, wose values at a set of distinct points x, x, x 2,,x n are known, by a polynomial P (x

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

, meant to remind us of the definition of f (x) as the limit of difference quotients: = lim

, meant to remind us of the definition of f (x) as the limit of difference quotients: = lim Mat 132 Differentiation Formulas Stewart 2.3 So far, we ave seen ow various real-world problems rate of cange and geometric problems tangent lines lead to derivatives. In tis section, we will see ow to

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

MA455 Manifolds Solutions 1 May 2008

MA455 Manifolds Solutions 1 May 2008 MA455 Manifolds Solutions 1 May 2008 1. (i) Given real numbers a < b, find a diffeomorpism (a, b) R. Solution: For example first map (a, b) to (0, π/2) and ten map (0, π/2) diffeomorpically to R using

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

An L p di erentiable non-di erentiable function

An L p di erentiable non-di erentiable function An L di erentiable non-di erentiable function J. Marsall As Abstract. Tere is a a set E of ositive Lebesgue measure and a function nowere di erentiable on E wic is di erentible in te L sense for every

More information

1 (10) 2 (10) 3 (10) 4 (10) 5 (10) 6 (10) Total (60)

1 (10) 2 (10) 3 (10) 4 (10) 5 (10) 6 (10) Total (60) First Name: OSU Number: Last Name: Signature: OKLAHOMA STATE UNIVERSITY Department of Matematics MATH 2144 (Calculus I) Instructor: Dr. Matias Sculze MIDTERM 1 September 17, 2008 Duration: 50 minutes No

More information

MATH1151 Calculus Test S1 v2a

MATH1151 Calculus Test S1 v2a MATH5 Calculus Test 8 S va January 8, 5 Tese solutions were written and typed up by Brendan Trin Please be etical wit tis resource It is for te use of MatSOC members, so do not repost it on oter forums

More information

Minimal surfaces of revolution

Minimal surfaces of revolution 5 April 013 Minimal surfaces of revolution Maggie Miller 1 Introduction In tis paper, we will prove tat all non-planar minimal surfaces of revolution can be generated by functions of te form f = 1 C cos(cx),

More information

. If lim. x 2 x 1. f(x+h) f(x)

. If lim. x 2 x 1. f(x+h) f(x) Review of Differential Calculus Wen te value of one variable y is uniquely determined by te value of anoter variable x, ten te relationsip between x and y is described by a function f tat assigns a value

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Applications of the van Trees inequality to non-parametric estimation.

Applications of the van Trees inequality to non-parametric estimation. Brno-06, Lecture 2, 16.05.06 D/Stat/Brno-06/2.tex www.mast.queensu.ca/ blevit/ Applications of te van Trees inequality to non-parametric estimation. Regular non-parametric problems. As an example of suc

More information

0.1 Differentiation Rules

0.1 Differentiation Rules 0.1 Differentiation Rules From our previous work we ve seen tat it can be quite a task to calculate te erivative of an arbitrary function. Just working wit a secon-orer polynomial tings get pretty complicate

More information

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions Concepts: definition of polynomial functions, linear functions tree representations), transformation of y = x to get y = mx + b, quadratic functions axis of symmetry, vertex, x-intercepts), transformations

More information

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 +

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 + MATH 55A FALL 3 PRACTICE MIDTERM SOLUTIONS Question Find te domain of te following functions (a) f(x) = x3 5 x +x 6 (b) g(x) = x+ + x+ (c) f(x) = 5 x + x 0 (a) We need x + x 6 = (x + 3)(x ) 0 Hence Dom(f)

More information

1 Proving the Fundamental Theorem of Statistical Learning

1 Proving the Fundamental Theorem of Statistical Learning THEORETICAL MACHINE LEARNING COS 5 LECTURE #7 APRIL 5, 6 LECTURER: ELAD HAZAN NAME: FERMI MA ANDDANIEL SUO oving te Fundaental Teore of Statistical Learning In tis section, we prove te following: Teore.

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Math 161 (33) - Final exam

Math 161 (33) - Final exam Name: Id #: Mat 161 (33) - Final exam Fall Quarter 2015 Wednesday December 9, 2015-10:30am to 12:30am Instructions: Prob. Points Score possible 1 25 2 25 3 25 4 25 TOTAL 75 (BEST 3) Read eac problem carefully.

More information

Subdifferentials of convex functions

Subdifferentials of convex functions Subdifferentials of convex functions Jordan Bell jordan.bell@gmail.com Department of Matematics, University of Toronto April 21, 2014 Wenever we speak about a vector space in tis note we mean a vector

More information

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER*

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER* EO BOUNDS FO THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BADLEY J. LUCIE* Abstract. Te expected error in L ) attimet for Glimm s sceme wen applied to a scalar conservation law is bounded by + 2 ) ) /2 T

More information

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set WYSE Academic Callenge 00 Sectional Matematics Solution Set. Answer: B. Since te equation can be written in te form x + y, we ave a major 5 semi-axis of lengt 5 and minor semi-axis of lengt. Tis means

More information

Runge-Kutta methods. With orders of Taylor methods yet without derivatives of f (t, y(t))

Runge-Kutta methods. With orders of Taylor methods yet without derivatives of f (t, y(t)) Runge-Kutta metods Wit orders of Taylor metods yet witout derivatives of f (t, y(t)) First order Taylor expansion in two variables Teorem: Suppose tat f (t, y) and all its partial derivatives are continuous

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition an Cain Rules James K. Peterson Department of Biological Sciences an Department of Matematical Sciences Clemson University November 2, 2018 Outline Function Composition an Continuity

More information

Chapter 3 Thermoelectric Coolers

Chapter 3 Thermoelectric Coolers 3- Capter 3 ermoelectric Coolers Contents Capter 3 ermoelectric Coolers... 3- Contents... 3-3. deal Equations... 3-3. Maximum Parameters... 3-7 3.3 Normalized Parameters... 3-8 Example 3. ermoelectric

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

( ) ! = = = = = = = 0. ev nm. h h hc 5-4. (from Equation 5-2) (a) For an electron:! = = 0. % & (b) For a proton: (c) For an alpha particle:

( ) ! = = = = = = = 0. ev nm. h h hc 5-4. (from Equation 5-2) (a) For an electron:! = = 0. % & (b) For a proton: (c) For an alpha particle: 5-3. ( c) 1 ( 140eV nm) (. )(. ) Ek = evo = = V 940 o = = V 5 m mc e 5 11 10 ev 0 04nm 5-4. c = = = mek mc Ek (from Equation 5-) 140eV nm (a) For an electron: = = 0. 0183nm ( )( 0 511 10 )( 4 5 10 3 )

More information

FINITE DIFFERENCE APPROXIMATIONS FOR NONLINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

FINITE DIFFERENCE APPROXIMATIONS FOR NONLINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XL 2002 FINITE DIFFERENCE APPROXIMATIONS FOR NONLINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS by Anna Baranowska Zdzis law Kamont Abstract. Classical

More information

Week #15 - Word Problems & Differential Equations Section 8.2

Week #15 - Word Problems & Differential Equations Section 8.2 Week #1 - Word Problems & Differential Equations Section 8. From Calculus, Single Variable by Huges-Hallett, Gleason, McCallum et. al. Copyrigt 00 by Jon Wiley & Sons, Inc. Tis material is used by permission

More information

Packing polynomials on multidimensional integer sectors

Packing polynomials on multidimensional integer sectors Pacing polynomials on multidimensional integer sectors Luis B Morales IIMAS, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México lbm@unammx Submitted: Jun 3, 015; Accepted: Sep 8,

More information

Walrasian Equilibrium in an exchange economy

Walrasian Equilibrium in an exchange economy Microeconomic Teory -1- Walrasian equilibrium Walrasian Equilibrium in an ecange economy 1. Homotetic preferences 2 2. Walrasian equilibrium in an ecange economy 11 3. Te market value of attributes 18

More information

2.4 Exponential Functions and Derivatives (Sct of text)

2.4 Exponential Functions and Derivatives (Sct of text) 2.4 Exponential Functions an Derivatives (Sct. 2.4 2.6 of text) 2.4. Exponential Functions Definition 2.4.. Let a>0 be a real number ifferent tan. Anexponential function as te form f(x) =a x. Teorem 2.4.2

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES. Sangwon Park

INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES. Sangwon Park Korean J. Mat. 16 (2008), No. 3, pp. 323 334 INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES Sanwon Park Abstract. We define injective and projective representations of quivers

More information

Approximation of the Viability Kernel

Approximation of the Viability Kernel Approximation of te Viability Kernel Patrick Saint-Pierre CEREMADE, Université Paris-Daupine Place du Marécal de Lattre de Tassigny 75775 Paris cedex 16 26 october 1990 Abstract We study recursive inclusions

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

1 Introduction to Optimization

1 Introduction to Optimization Unconstrained Convex Optimization 2 1 Introduction to Optimization Given a general optimization problem of te form min x f(x) (1.1) were f : R n R. Sometimes te problem as constraints (we are only interested

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has

pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has Volumes One can epress volumes of regions in tree dimensions as integrals using te same strateg as we used to epress areas of regions in two dimensions as integrals approimate te region b a union of small,

More information

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers.

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers. ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU A. Fundamental identities Trougout tis section, a and b denotes arbitrary real numbers. i) Square of a sum: (a+b) =a +ab+b ii) Square of a difference: (a-b)

More information

MATH1901 Differential Calculus (Advanced)

MATH1901 Differential Calculus (Advanced) MATH1901 Dierential Calculus (Advanced) Capter 3: Functions Deinitions : A B A and B are sets assigns to eac element in A eactl one element in B A is te domain o te unction B is te codomain o te unction

More information

Calculus I, Fall Solutions to Review Problems II

Calculus I, Fall Solutions to Review Problems II Calculus I, Fall 202 - Solutions to Review Problems II. Find te following limits. tan a. lim 0. sin 2 b. lim 0 sin 3. tan( + π/4) c. lim 0. cos 2 d. lim 0. a. From tan = sin, we ave cos tan = sin cos =

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I October 12, 2016 8:30 am LAST NAME: FIRST NAME: STUDENT NUMBER: SIGNATURE: (I understand tat ceating is a serious offense DO NOT WRITE IN THIS TABLE

More information

Chapter 1. Density Estimation

Chapter 1. Density Estimation Capter 1 Density Estimation Let X 1, X,..., X n be observations from a density f X x. Te aim is to use only tis data to obtain an estimate ˆf X x of f X x. Properties of f f X x x, Parametric metods f

More information

CLOSED CONVEX SHELLS Meunargia T. Mixed forms of stress-strain relations are given in the form. λ + 2µ θ + 1

CLOSED CONVEX SHELLS Meunargia T. Mixed forms of stress-strain relations are given in the form. λ + 2µ θ + 1 Seminar of I. Vekua Institute of Applied Matematics REPORTS, Vol. 43, 207 CLOSED CONVEX SHELLS Meunargia T. Abstract. If Ω is a closed convex sell, ten S : x 3 = 0 is an ovaloid. It is proved tat in tis

More information

3.1. COMPLEX DERIVATIVES 89

3.1. COMPLEX DERIVATIVES 89 3.1. COMPLEX DERIVATIVES 89 Teorem 3.1.4 (Cain rule) Let f : D D C and g : D C be olomorpic functions on te domains D and D respectively. Suppose tat bot f and g are C 1 -smoot. 10 Ten (g f) (z) g (f(z))

More information

arxiv:math/ v1 [math.ca] 1 Oct 2003

arxiv:math/ v1 [math.ca] 1 Oct 2003 arxiv:mat/0310017v1 [mat.ca] 1 Oct 2003 Cange of Variable for Multi-dimensional Integral 4 Marc 2003 Isidore Fleiscer Abstract Te cange of variable teorem is proved under te sole ypotesis of differentiability

More information

Exponential and logarithmic functions (pp ) () Supplement October 14, / 1. a and b positive real numbers and x and y real numbers.

Exponential and logarithmic functions (pp ) () Supplement October 14, / 1. a and b positive real numbers and x and y real numbers. MA123, Supplement Exponential and logaritmic functions pp. 315-319) Capter s Goal: Review te properties of exponential and logaritmic functions. Learn ow to differentiate exponential and logaritmic functions.

More information

A Finite Element Primer

A Finite Element Primer A Finite Element Primer David J. Silvester Scool of Matematics, University of Mancester d.silvester@mancester.ac.uk. Version.3 updated 4 October Contents A Model Diffusion Problem.................... x.

More information

arxiv: v3 [math.gr] 7 Dec Introduction

arxiv: v3 [math.gr] 7 Dec Introduction arxiv:503.0688v3 [mat.gr] 7 Dec 206 Concrete algoritms for word problem and subsemigroup problem for semigroups wic are disoint unions of finitely many copies of te free monogenic semigroup Nabila Abugazala

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

The Priestley-Chao Estimator

The Priestley-Chao Estimator Te Priestley-Cao Estimator In tis section we will consider te Pristley-Cao estimator of te unknown regression function. It is assumed tat we ave a sample of observations (Y i, x i ), i = 1,..., n wic are

More information

More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms

More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms More on generalized inverses of partitioned matrices wit anaciewicz-scur forms Yongge Tian a,, Yosio Takane b a Cina Economics and Management cademy, Central University of Finance and Economics, eijing,

More information