The Priestley-Chao Estimator

Size: px
Start display at page:

Download "The Priestley-Chao Estimator"

Transcription

1 Te Priestley-Cao Estimator In tis section we will consider te Pristley-Cao estimator of te unknown regression function. It is assumed tat we ave a sample of observations (Y i, x i ), i = 1,..., n wic are described by te model Y i = m(x i ) + ɛ i, i = 1,..., n were m( ) is te unknown conditional mean function wic as k 2 continuous derivatives on (a, b) and te errors (ɛ 1,..., ɛ n ) are uncorrelated wit zero mean and constant variance, σ 2. It will also be assumed tat te design variables (x 1,..., x n ) are equally-spaced in [a, b] so tat x i = i δ i = 1,..., n were δ = (b a)/n. It is required to estimate m nonparametrically using te available data. Te estimator wic we consider ere is tat proposed by Priestley and Cao (1972) wic is defined by ˆm(x) = δ n ( ) x xi K Y i for x (a, b) K( ) is called te kernel function wic is assumed to be symmetric about zero, be suc tat K(u) 2 du < and ave a finite second moment (ie. u 2 K(u)du = σk 2 < ). A common coice is a symmetric probability density function (pdf) suc as te standard Normal pdf or a symmetric Betatype pdf on te finite interval [, 1]. Te constant is called te smooting parameter or bandwidt and controls ow spread out te kernel functions are about eac x i. Te Priestley-Cao estimator is a weigted average of te response variables Y 1,..., Y n and te weigt associated wit Y i is K( x x i ) wit its actual value being determined by te proximity of x to x i relative to te value of. It is a linear function of te Y i s and ence is referred to as a linear smooter. Note tat if te data are not equally-spaced ten te estimator is expressed as ˆm(x) = 1 n ( ) x xi (x i x i )K Y i for x (a, b) i=2 Figure 1 below sows te a scatterplot of te simulated regression data wit four Pristley-Cao estimates calculated using different smooting parameters superimposed. Te kernel used was te biweigt function defined by { 15 K(t) = (1 16 t2 ) 2, < t < 1 0, oterwise 1

2 Wen = 0.3 (te red line) te estimate is quite wiggly and overfits te data but, as te value of increases, te estimates become more smoot and increasingly oversmoot te features in te data. Subjectively, te estimate wit = 0.1 appears to be closest to te true underlying regression function. Simulated Regression Data wit Priestley Cao Smoots y x Figure 1: Scatterplot of te simulated regression data wit fitted Priestley- Cao regression estimates. True curve - black line; = red line; = blue line; = green line; = orange line. A biweigt kernel was used in eac case. Exact Mean and Variance of ˆm(x). It will now be assumed, witout loss of generality, tat a = 0 and b = 1 so tat δ = 1/n. Te exact mean and variance of te estimator ˆm at te point x are given by and E[ ˆm(x)] = 1 n n ( x xi K ) m(x i ) V [ ˆm(x)] = σ2 n 2 2 n ( ) x xi 2 K Te E[ ˆm(x)] can be seen to be a smooted version of te true regression function values. 2

3 To see wat is driving te form of te mean and variance we will look at deriving asymptotic expressions for tem bot. Asymptotic Mean and Variance of ˆm(x). Here, we will make te following furter assumptions: (i) Te kernel K is symmetric about zero and is supported on [, 1]. (ii) Te bandwidt = (n) is a sequence satisfying 0 and n as n. (iii) Te point x at wic te estimation is taking place satisfies < x < 1 for all n n 0, were n 0 is fixed. Now, E[ ˆm(x)] = Let u = x t E[ ˆm(x)] = = 0 ( ) 1 x t K m(t)dt + O(n ) as n ie. as δ 0. du = dt x/ (1 x)/ x/ (1 x)/ dt = du. Hence, K(u)m(x u)du + O(n ) K(u) [ m(x) um (1) (x) + u2 2 ] du + o( 2 ) + O(n ) Provided < x < 1 ten, as 0, x/ and (1 x)/. Terefore, E[ ˆm(x)] = m(x) K(u)du m (1) (x) uk(u)du + 2 = m(x) + 2 u 2 K(u)du + o( 2 ) + O(n ) as 0 K(u)du m (1) (x) uk(u)du u 2 K(u)du + o( 2 ) + O(n ) as 0, using a Taylor series expansion of m(x u) and also te fact tat te support of K is [, 1]. Hence, E[ ˆm(x)] = m(x) + 2 σ 2 K + o( 2 ) + O(n ) as n and 0 3

4 Terefore, as n and 0 we ave tat E[ ˆm(x)] m(x) + 2 σ 2 K Tis expression indicates tat te bias[ ˆm(x)] = E[ ˆm(x)] m(x) will be large wen te value of m (2) (x) is large wic will occur at te peaks and trougs of te function m. We also ave tat te V [ ˆm(x)] = σ2 n ( ) x xi 2 K n 2 2 ( ) = δσ 2 1 x t 2 0 K dt + O(n ) as n 2 = δσ2 ( ) 1 x t 2 0 K dt + O(n ). Now, again let u = x t du = dt dt = du. Hence, V [ ˆm(x)] δσ2 = δσ2 = O(δ/) since K(u) 2 du as n K(u) 2 du as n K(u) 2 du <. ie. V [ ˆm(x)] = O( 1 n ); since δ = 1/n. Te mean squared error (mse) of ˆm at te point x is mse[ ˆm(x)] = [bias[ ˆm(x)]] 2 + V [ ˆm(x)] 4 4 m(2) (x) 2 σk 4 + δσ2 K(u) 2 du 4

5 Notes: (i) ˆm(x) is terefore consistent in mse provided 0 and δ = 1 0 as n. ie. n as n. n (ii) It can be seen tat one strategy for reducing te bias of te estimator is to make te bandwidt,, small. However, tis will increase te value of te variance of ˆm(x). Also, increasing to reduce te variance will ave te effect of increasing te bias. Hence, tere is a trade-off between te bias and variance of te estimator wic is controlled by te value of. (iii) We can use calculus to find an expression for tat value of wic minimizes te asymptotic mean-squared error. ie. = [ σ 2 K(u) 2 ] 1/5 du n /5 (m (2) (x)) 2 σ 4 K as δ = 1/n. We ave = O(n /5 ). If we substitute back into te asymptotic mse ten mse( ) = O(n 4/5 ). ie. wen using te Priestley-Cao estimator to estimate te regression function m at te point x te asymptotically optimal bandwidt converges to zero at te rate n /5 and te mse( ˆm(x)) using converges to zero at te rate n 4/5. Tis expression for is elpful from a teoretical point of view but is not directly useful in practice as we would not know te values of m (2) (x) and σ 2 for a real set of data. (iv) All oter tings being equal, we can regard te mse[ ˆm(x)] as a function of te kernel K troug te terms σ 4 K and K(u) 2 du. Consequently, we may wis to find tat kernel function K wic minimizes mse[ ˆm(x)]. Tis is a problem involving te calculus of variations and te solution was sown by Benedetti (1977) to be te so-called Epanecnikov kernel given by: K(t) = 3 4 (1 t2 ) 1 t 1 However, it turns out tat te loss in efficiency wen using a nonoptimal kernel is quite small (see Silverman (1986) for a discussion of tis issue in te context of kernel density estimation) and so K may be cosen using computational and/or smootness considerations. 5

6 (v) Beaviour near te boundary. Suppose now tat te point of estimation x is suc tat x <. From te above, we ave tat E[ ˆm(x)] = x/ (1 x)/ K(u) [ +o( 2 ) + O(n ) m(x) um (1) (x) + u2 2 Wen < x < 1 we can replace te lower and upper endpoints of integration by and 1, respectively. Consider now te case wen x = α for α (0, 1). ie. x (0, ), te left-and boundary region. For suc an x, x/ = α < 1 and (1 x)/ <. Terefore, te upper and lower limits of integration in te expectation are α and, respectively. Hence, α E[ ˆm(x)] = m(x) + 2 α K(u)du m (1) (x) α uk(u)du ] du u 2 K(u)du + o( 2 ) + O(n ) as 0, Now, denote te incomplete moments of K by µ l,α = α ul K(u)du for l = 0, 1, 2,.... Hence, E[ ˆm(x)] = m(x)µ 0,α + m (1) (x)µ 1,α + 2 µ 2,α + o( 2 ) + O(n ) Since µ 0,α 1, we will no longer in general ave consistency at points x <. At te zero boundary point itself we will ave E[ ˆm(x)] = 1m(x) + O(). We can see tat consistency is only acieved in te 2 boundary region wen m(x) = 0 tere. Since te location of te boundary is usually known, we can adapt ˆm(x) to acieve consistency. A simple approac is to normalize ˆm(x) by dividing it by µ 0,α at eac x. Tis will acieve consistency in te boundary region but te bias will be O() tere. Tere are a variety of furter modifications wic can be carried out wen estimating in a boundary region to acieve O( 2 ) bias everywere but tese will not be covered in tis module. Clearly toug, te asymptotic variance will still be O((n) ) wen x <. Te discussion ere as focussed on te left-and boundary (0, ) but tere are analogous results wen x (1, 1), te rigt-and boundary. 6

7 In te main discussion above we ave focussed on estimating m at a single point x wic is not in a boundary region and te mse[ĝ(x)] summarizes ow good te estimator is at tat point. Now suppose tat we use te Priestley- Cao estimator to estimate te entire function m in te interval (0, 1) using smooting parameter. We can quantify globally ow good our estimator is by integrating te asymptotic mse[ ˆm(x)] wit respect to x (0, 1). ie. ignoring possible boundary effects. We ave 0 mse[ ˆm(x)]dx = MISE( ˆm) = m (2) (x) 2 σ 4 K + δσ2 Te value of wic minimizes te asymptotic MISE( ˆm) is opt = [ σ 2 K(u) 2 du 0 m(2) (x) 2 dxσ 4 K ] 1/5 n /5 K(u) 2 du wic is again O(n /5 ) and te ensuing MISE( ˆm) is O(n 4/5 ). Te quantity 0 m(2) (x) 2 dx can be interpreted as a an overall measure of te rougness of te function m. Large values correspond to a function wit large fluctuations wile small ones are synonymous wit a smoot curve. Tis means tat smaller values of te global are required for estimating fluctuating regression functions m, wile larger values will be required for smooter m. References Benedetti, J. P. (1977) On te nonparametric estimation of regression functions. Journal of Te Royal Statistical Society, Series B, Vol 39, pp Priestley, M. E. and Cao, M. T. (1972) Nonparametric function fitting. Journal of Te Royal Statistical Society, Series B, Vol 34, pp Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis. (Capman and Hall/CRC Monograps on Statistics and Applied Probability) (Hardcover) 7

Kernel Density Estimation

Kernel Density Estimation Kernel Density Estimation Univariate Density Estimation Suppose tat we ave a random sample of data X 1,..., X n from an unknown continuous distribution wit probability density function (pdf) f(x) and cumulative

More information

Chapter 1. Density Estimation

Chapter 1. Density Estimation Capter 1 Density Estimation Let X 1, X,..., X n be observations from a density f X x. Te aim is to use only tis data to obtain an estimate ˆf X x of f X x. Properties of f f X x x, Parametric metods f

More information

NADARAYA WATSON ESTIMATE JAN 10, 2006: version 2. Y ik ( x i

NADARAYA WATSON ESTIMATE JAN 10, 2006: version 2. Y ik ( x i NADARAYA WATSON ESTIMATE JAN 0, 2006: version 2 DATA: (x i, Y i, i =,..., n. ESTIMATE E(Y x = m(x by n i= ˆm (x = Y ik ( x i x n i= K ( x i x EXAMPLES OF K: K(u = I{ u c} (uniform or box kernel K(u = u

More information

Basic Nonparametric Estimation Spring 2002

Basic Nonparametric Estimation Spring 2002 Basic Nonparametric Estimation Spring 2002 Te following topics are covered today: Basic Nonparametric Regression. Tere are four books tat you can find reference: Silverman986, Wand and Jones995, Hardle990,

More information

Logistic Kernel Estimator and Bandwidth Selection. for Density Function

Logistic Kernel Estimator and Bandwidth Selection. for Density Function International Journal of Contemporary Matematical Sciences Vol. 13, 2018, no. 6, 279-286 HIKARI Ltd, www.m-ikari.com ttps://doi.org/10.12988/ijcms.2018.81133 Logistic Kernel Estimator and Bandwidt Selection

More information

IEOR 165 Lecture 10 Distribution Estimation

IEOR 165 Lecture 10 Distribution Estimation IEOR 165 Lecture 10 Distribution Estimation 1 Motivating Problem Consider a situation were we ave iid data x i from some unknown distribution. One problem of interest is estimating te distribution tat

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines Lecture 5 Interpolation II Introduction In te previous lecture we focused primarily on polynomial interpolation of a set of n points. A difficulty we observed is tat wen n is large, our polynomial as to

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

DEPARTMENT MATHEMATIK SCHWERPUNKT MATHEMATISCHE STATISTIK UND STOCHASTISCHE PROZESSE

DEPARTMENT MATHEMATIK SCHWERPUNKT MATHEMATISCHE STATISTIK UND STOCHASTISCHE PROZESSE U N I V E R S I T Ä T H A M B U R G A note on residual-based empirical likeliood kernel density estimation Birte Musal and Natalie Neumeyer Preprint No. 2010-05 May 2010 DEPARTMENT MATHEMATIK SCHWERPUNKT

More information

Fast optimal bandwidth selection for kernel density estimation

Fast optimal bandwidth selection for kernel density estimation Fast optimal bandwidt selection for kernel density estimation Vikas Candrakant Raykar and Ramani Duraiswami Dept of computer science and UMIACS, University of Maryland, CollegePark {vikas,ramani}@csumdedu

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Homework 1 Due: Wednesday, September 28, 2016

Homework 1 Due: Wednesday, September 28, 2016 0-704 Information Processing and Learning Fall 06 Homework Due: Wednesday, September 8, 06 Notes: For positive integers k, [k] := {,..., k} denotes te set of te first k positive integers. Wen p and Y q

More information

A Locally Adaptive Transformation Method of Boundary Correction in Kernel Density Estimation

A Locally Adaptive Transformation Method of Boundary Correction in Kernel Density Estimation A Locally Adaptive Transformation Metod of Boundary Correction in Kernel Density Estimation R.J. Karunamuni a and T. Alberts b a Department of Matematical and Statistical Sciences University of Alberta,

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

Boosting Kernel Density Estimates: a Bias Reduction. Technique?

Boosting Kernel Density Estimates: a Bias Reduction. Technique? Boosting Kernel Density Estimates: a Bias Reduction Tecnique? Marco Di Marzio Dipartimento di Metodi Quantitativi e Teoria Economica, Università di Cieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy

More information

Calculus I - Spring 2014

Calculus I - Spring 2014 NAME: Calculus I - Spring 04 Midterm Exam I, Marc 5, 04 In all non-multiple coice problems you are required to sow all your work and provide te necessary explanations everywere to get full credit. In all

More information

Fast Exact Univariate Kernel Density Estimation

Fast Exact Univariate Kernel Density Estimation Fast Exact Univariate Kernel Density Estimation David P. Hofmeyr Department of Statistics and Actuarial Science, Stellenbosc University arxiv:1806.00690v2 [stat.co] 12 Jul 2018 July 13, 2018 Abstract Tis

More information

Bootstrap prediction intervals for Markov processes

Bootstrap prediction intervals for Markov processes arxiv: arxiv:0000.0000 Bootstrap prediction intervals for Markov processes Li Pan and Dimitris N. Politis Li Pan Department of Matematics University of California San Diego La Jolla, CA 92093-0112, USA

More information

Bootstrap confidence intervals in nonparametric regression without an additive model

Bootstrap confidence intervals in nonparametric regression without an additive model Bootstrap confidence intervals in nonparametric regression witout an additive model Dimitris N. Politis Abstract Te problem of confidence interval construction in nonparametric regression via te bootstrap

More information

Artificial Neural Network Model Based Estimation of Finite Population Total

Artificial Neural Network Model Based Estimation of Finite Population Total International Journal of Science and Researc (IJSR), India Online ISSN: 2319-7064 Artificial Neural Network Model Based Estimation of Finite Population Total Robert Kasisi 1, Romanus O. Odiambo 2, Antony

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

Calculus I Practice Exam 1A

Calculus I Practice Exam 1A Calculus I Practice Exam A Calculus I Practice Exam A Tis practice exam empasizes conceptual connections and understanding to a greater degree tan te exams tat are usually administered in introductory

More information

. If lim. x 2 x 1. f(x+h) f(x)

. If lim. x 2 x 1. f(x+h) f(x) Review of Differential Calculus Wen te value of one variable y is uniquely determined by te value of anoter variable x, ten te relationsip between x and y is described by a function f tat assigns a value

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

A Jump-Preserving Curve Fitting Procedure Based On Local Piecewise-Linear Kernel Estimation

A Jump-Preserving Curve Fitting Procedure Based On Local Piecewise-Linear Kernel Estimation A Jump-Preserving Curve Fitting Procedure Based On Local Piecewise-Linear Kernel Estimation Peiua Qiu Scool of Statistics University of Minnesota 313 Ford Hall 224 Curc St SE Minneapolis, MN 55455 Abstract

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

7 Semiparametric Methods and Partially Linear Regression

7 Semiparametric Methods and Partially Linear Regression 7 Semiparametric Metods and Partially Linear Regression 7. Overview A model is called semiparametric if it is described by and were is nite-dimensional (e.g. parametric) and is in nite-dimensional (nonparametric).

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

estimate results from a recursive sceme tat generalizes te algoritms of Efron (967), Turnbull (976) and Li et al (997) by kernel smooting te data at e

estimate results from a recursive sceme tat generalizes te algoritms of Efron (967), Turnbull (976) and Li et al (997) by kernel smooting te data at e A kernel density estimate for interval censored data Tierry Ducesne and James E Staord y Abstract In tis paper we propose a kernel density estimate for interval-censored data It retains te simplicity andintuitive

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only.

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c.

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c. Capter Derivatives Review of Prerequisite Skills. f. p p p 7 9 p p p Eercise.. i. ( a ) a ( b) a [ ] b a b ab b a. d. f. 9. c. + + ( ) ( + ) + ( + ) ( + ) ( + ) + + + + ( ) ( + ) + + ( ) ( ) ( + ) + 7

More information

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions Concepts: definition of polynomial functions, linear functions tree representations), transformation of y = x to get y = mx + b, quadratic functions axis of symmetry, vertex, x-intercepts), transformations

More information

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I October 12, 2016 8:30 am LAST NAME: FIRST NAME: STUDENT NUMBER: SIGNATURE: (I understand tat ceating is a serious offense DO NOT WRITE IN THIS TABLE

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

Bandwidth Selection in Nonparametric Kernel Testing

Bandwidth Selection in Nonparametric Kernel Testing Te University of Adelaide Scool of Economics Researc Paper No. 2009-0 January 2009 Bandwidt Selection in Nonparametric ernel Testing Jiti Gao and Irene Gijbels Bandwidt Selection in Nonparametric ernel

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

Robust Average Derivative Estimation. February 2007 (Preliminary and Incomplete Do not quote without permission)

Robust Average Derivative Estimation. February 2007 (Preliminary and Incomplete Do not quote without permission) Robust Average Derivative Estimation Marcia M.A. Scafgans Victoria inde-wals y February 007 (Preliminary and Incomplete Do not quote witout permission) Abstract. Many important models, suc as index models

More information

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00 SFU UBC UNBC Uvic Calculus Callenge Eamination June 5, 008, :00 5:00 Host: SIMON FRASER UNIVERSITY First Name: Last Name: Scool: Student signature INSTRUCTIONS Sow all your work Full marks are given only

More information

UNIMODAL KERNEL DENSITY ESTIMATION BY DATA SHARPENING

UNIMODAL KERNEL DENSITY ESTIMATION BY DATA SHARPENING Statistica Sinica 15(2005), 73-98 UNIMODAL KERNEL DENSITY ESTIMATION BY DATA SHARPENING Peter Hall 1 and Kee-Hoon Kang 1,2 1 Australian National University and 2 Hankuk University of Foreign Studies Abstract:

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

INFINITE ORDER CROSS-VALIDATED LOCAL POLYNOMIAL REGRESSION. 1. Introduction

INFINITE ORDER CROSS-VALIDATED LOCAL POLYNOMIAL REGRESSION. 1. Introduction INFINITE ORDER CROSS-VALIDATED LOCAL POLYNOMIAL REGRESSION PETER G. HALL AND JEFFREY S. RACINE Abstract. Many practical problems require nonparametric estimates of regression functions, and local polynomial

More information

Applications of the van Trees inequality to non-parametric estimation.

Applications of the van Trees inequality to non-parametric estimation. Brno-06, Lecture 2, 16.05.06 D/Stat/Brno-06/2.tex www.mast.queensu.ca/ blevit/ Applications of te van Trees inequality to non-parametric estimation. Regular non-parametric problems. As an example of suc

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

Math 1210 Midterm 1 January 31st, 2014

Math 1210 Midterm 1 January 31st, 2014 Mat 110 Midterm 1 January 1st, 01 Tis exam consists of sections, A and B. Section A is conceptual, wereas section B is more computational. Te value of every question is indicated at te beginning of it.

More information

Hazard Rate Function Estimation Using Erlang Kernel

Hazard Rate Function Estimation Using Erlang Kernel Pure Matematical Sciences, Vol. 3, 04, no. 4, 4-5 HIKARI Ltd, www.m-ikari.com ttp://dx.doi.org/0.988/pms.04.466 Hazard Rate Function Estimation Using Erlang Kernel Raid B. Sala Department of Matematics

More information

DEFINITION OF A DERIVATIVE

DEFINITION OF A DERIVATIVE DEFINITION OF A DERIVATIVE Section 2.1 Calculus AP/Dual, Revised 2017 viet.dang@umbleisd.net 2.1: Definition of a Derivative 1 DEFINITION A. Te derivative of a function allows you to find te SLOPE OF THE

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

Data-Based Optimal Bandwidth for Kernel Density Estimation of Statistical Samples

Data-Based Optimal Bandwidth for Kernel Density Estimation of Statistical Samples Commun. Teor. Pys. 70 (208) 728 734 Vol. 70 No. 6 December 208 Data-Based Optimal Bandwidt for Kernel Density Estimation of Statistical Samples Zen-Wei Li ( 李振伟 ) 2 and Ping He ( 何平 ) 3 Center for Teoretical

More information

Poisson Equation in Sobolev Spaces

Poisson Equation in Sobolev Spaces Poisson Equation in Sobolev Spaces OcMountain Dayligt Time. 6, 011 Today we discuss te Poisson equation in Sobolev spaces. It s existence, uniqueness, and regularity. Weak Solution. u = f in, u = g on

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

New families of estimators and test statistics in log-linear models

New families of estimators and test statistics in log-linear models Journal of Multivariate Analysis 99 008 1590 1609 www.elsevier.com/locate/jmva ew families of estimators and test statistics in log-linear models irian Martín a,, Leandro Pardo b a Department of Statistics

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h Lecture Numerical differentiation Introduction We can analytically calculate te derivative of any elementary function, so tere migt seem to be no motivation for calculating derivatives numerically. However

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

Continuous Stochastic Processes

Continuous Stochastic Processes Continuous Stocastic Processes Te term stocastic is often applied to penomena tat vary in time, wile te word random is reserved for penomena tat vary in space. Apart from tis distinction, te modelling

More information

Kernel Density Based Linear Regression Estimate

Kernel Density Based Linear Regression Estimate Kernel Density Based Linear Regression Estimate Weixin Yao and Zibiao Zao Abstract For linear regression models wit non-normally distributed errors, te least squares estimate (LSE will lose some efficiency

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x Eam Solutions Question (0%) Consider f() = 2 2 2 2. (a) By calculating relevant its, determine te equations of all vertical asymptotes of te grap of f(). If tere are none, say so. f() = ( 2) ( + )( 2)

More information

The Priestley-Chao Estimator - Bias, Variance and Mean-Square Error

The Priestley-Chao Estimator - Bias, Variance and Mean-Square Error The Priestley-Chao Estimator - Bias, Variance and Mean-Square Error Bias, variance and mse properties In the previous section we saw that the eact mean and variance of the Pristley-Chao estimator ˆm()

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

A h u h = f h. 4.1 The CoarseGrid SystemandtheResidual Equation

A h u h = f h. 4.1 The CoarseGrid SystemandtheResidual Equation Capter Grid Transfer Remark. Contents of tis capter. Consider a grid wit grid size and te corresponding linear system of equations A u = f. Te summary given in Section 3. leads to te idea tat tere migt

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

On Local Linear Regression Estimation of Finite Population Totals in Model Based Surveys

On Local Linear Regression Estimation of Finite Population Totals in Model Based Surveys American Journal of Teoretical and Applied Statistics 2018; 7(3): 92-101 ttp://www.sciencepublisinggroup.com/j/ajtas doi: 10.11648/j.ajtas.20180703.11 ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information