Direct Detection of Dark Matter. Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014

Size: px
Start display at page:

Download "Direct Detection of Dark Matter. Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014"

Transcription

1 Direct Detection of Dark Matter Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014

2 Direct Detection of Dark Matter Lecture 1 How to detect dark matter Lecture 2 Review of current results Lecture 3 Future direct detection efforts

3 How to detect dark matter Outline I. Review of the dark matter problem II. WIMP scattering rates III. Experimental requirements for direct detection 3

4 The dark matter problem That isn t dark matter, sir you just forgot to take off the lens cap. 4

5 Zwicky s puzzle 1933: Fritz Zwicky analyzed velocity dispersion in Coma Cluster Coma Galaxy Cluster (SDSS) Individual galaxies move too fast for a bound system Posited existence of unseen matter in the cluster and named it dark matter 5

6 The modern view We have a consistent picture from multiple sources of astrophysical data We know a lot about dark matter stable, gravitationally interacting galactic rotation gravitational lensing nonbaryonic nonrelativistic BB nucleosynthesis CMB Spectrum Including that no standard model particle seems match! large scale structure formation 6

7 WIMP Detection 101 7

8 The Weakly Interacting Massive A sampling of available dark matter candidates Particle The WIMP Miracle Particles with mass and couplings at the weak scale yield cross sections that correspond to ~correct relic density of CDM early universe annihilation Freeze-out See lectures by Ann Nelson for alternatives to WIMPs 8

9 How to detect WIMPs See lectures by Adam for more on this technique χ χ and also for this FERMI-GLAST q q ~ q LHC Relic annihilation in the cosmos INDIRECT DETECTION χ χ man-made COLLIDER production Relic WIMPnucleon elastic scattering DIRECT DETECTION 9

10 Consider the relic WIMP distribution Observed energy spectrum & rate depend on WIMP distribution in dark matter halo Dark matter is distributed in a large extended, spherical halo around the Milky Way Schematic of DM Halo (1/2 cutaway) For comparison of direct detection experiments, assume an isothermal Maxwell-Boltzmann velocity distribution, with width = 220 km/s and v = esc 544 km/s Ve ~ 245 km/s - WIMP velocity relative to Earth Local density of WIMPs = 0.3 GeV/cm 3 If WIMPs are 100 GeV/c 2 particles, then ~10 million pass through your hand each second! 10

11 Scattering rate dissected Recoil energy of nucleus Reduced mass of WIMP- nucleon system 11

12 Scattering rate dissected σ 0 = σ SI + σ SD To first order, we will only consider the spin- independent and spin- dependent terms. There are other terms as well, but they tend to be suppressed see A. Ritz lecture last week. 12

13 Scattering rate dissected σ SI 2 = 4m r! f p N p π " + f n N # n $ 2 For spin- independent sca?ering, and small momentum transfer, sca?ering terms add coherently 13

14 Scattering rate dissected σ SI 2 = 4m r! f p N p π " + f n N # n $ 2 For spin- independent sca?ering, and small momentum transfer, sca?ering terms add coherently σ SI 2 = 4m r π f 2 A 2 In vanilla WIMP- nucleon coupling; assume same coupling for proton and neutron. Simplified expression depends only on atomic mass. Heavy nuclei have the advantage! 14

15 Scattering rate dissected σ SD = 32G F π 2 µ 2 ( J + 1) J! a p S p + a n S "# n 2 $ %& Spin- dependent sca?ering scales with the spin of the nucleus. Spins of individual nucleons can cancel NO COHERENT EFFECT! Many theories that predict SD sca?ering only are not as accessible to direct detecson experiments 15

16 Scattering rate dissected Choose your favorite nucleus to search for spin- dependent interacsons Tovey et al., PLB (2000) 16

17 Scattering rate dissected Roughly speaking, the form factor parameterizes coherence vs E r Coherence is lost (i.e. F(E R ) < 1) when the WIMP de Broglie wavelength is smaller than the nucleus. Since r nucleus ~ A 1/3 fm, choosing a large nucleus only helps you up to a a certain point! 17

18 Scattering rate dissected Integral over local WIMP velocity distribuson (Maxwell- boltzmann w/ assumed parameters on earlier slide) V min is the minimum WIMP velocity needed to produce recoil E r in your detector 18

19 Scattering rate for a heavy (100 GeV) WIMP Expected recoil spectrum is roughly exponential with << 1 event/kg/day expected, A 2 enhancement helps a lot with heavy WIMPs 100 GeV/c 2 WIMP-induced recoil spectrum Example experimental threshold Si (A 28) Ge (A 72) Xe (A 131) V esc = 544 km/s σ = cm 2 Implications for the experimentalist: In this example, one needs a detector that is O(100) kg running O(1) year to see one event (!) Rates are higher the lower your threshold, aim for ~5-10 kev At these rates and energies, you will be fighting a huge background from natural radioactivity, O(10 6 ) or more DEFINITION: differential rate unit (dru) = 1 event/kg/day/kev 19

20 Scattering rate for a light (10 GeV) WIMP Recoil spectrum drops off much more steeply with energy because kinematics matter much more for light WIMPs! 10 GeV/c 2 WIMP-induced recoil spectrum Example experimental threshold Si (A 28) Ge (A 72) Xe (A 131) V esc = 544 km/s σ = cm 2 A WIMP must have a minimum velocity to produce a recoil of a specific energy v min = E R m N 2m r 2 v DM è Experiments with lighter targets and lower thresholds have the advantage when looking for WIMPs with mass < 10 GeV/c 2 20

21 Designing an ideal WIMP detector 21

22 Typical backgrounds Most backgrounds are from trace radioactivity (U, Th, K contamination) or induced by cosmic rays (cosmogenic background) ELECTRON RECOILS (ER) Gamma: Most prevalent background Beta: on the surface or in the bulk Photon and electrons scatter from the atomic electrons WIMPs and neutrons scatter from the atomic nucleus NUCLEAR RECOILS (NR) Neutron: NOT distinguishable WIMP Alphas: almost always a surface event Recoiling parent nucleus: yet another surface event 22

23 Managing backgrounds (in 5-steps) 1) Choose highly radiopure materials for your detector and experimental setup. Build it in a state-of-the art clean lab (class ~1000 or better is often used). 23

24 1a) Screening and material assay Materials used for dark matter (and some neutrino) experiments must be thoroughly screened for radioactivity before use. Beta screener prototype MWPC (Beta Cage) HP Ge detector at SNOLAB XIA large-area Alpha detector ICP Mass Spectrometer at LNGS In many cases one is looking for isotope contamination at the level of parts per billion (ppb). The demands on radiopurity are so high that one needs a detector that is almost as well shielded and low in background as the dark matter detector itself! 24

25 1b) If you can t find it build it If the materials you come across aren t clean enough then build, extract or purify it yourself Distillation tower (at Fermilab) for extracting Ar depleted in 39Ar from natural gas wells Kr and Rn purification schematic for Xenon 1T Copper electroforming setup at PNNL 25

26 Managing backgrounds (in 5-steps) 1) Choose highly radiopure materials for your detector and experimental setup. Build it in a state-of-the art clean lab (class ~1000 or better is often used). 2) Cosmic muons produce fast neutrons via spallation. These are difficult to shield against and are a source of irreducible background. Go deep underground where the fast neutron flux is reduced. 26

27 2) Where to locate your experiment Homestake JinPing (CJPL) m.w.e. = meters water equivalent Most experiments use the earth as shielding from muons. The lower the muon rate, the lower the fast neutron rate. 27

28 Managing backgrounds (in 5-steps) 1) Choose highly radiopure materials for your detector and experimental setup. Build it in a state-of-the art clean lab (class ~1000 or better is often used). 2) Cosmic muons produce fast neutrons via spallation. These are difficult to shield against and are a source of irreducible background. Go deep underground where the fast neutron flux is reduced. 3) Unless you bury your detector 2 km deep in pristine glacial ice, you will have significant background from radioactivity. Surround your radiopure experiment with several tons of radiopure shielding 28

29 3a) Passive Shielding Trace U/Th/K and other isotopes in cavern walls and surroundings produce a constant flux of gammas and neutrons (via spontaneous fission or α,n) Lead shields against gammas; ~22 cm drops the gamma rate by ~106 Ancient lead or copper shields against 210Pb, and its daughters, found in standard lead Polyethylene or water moderates radiogenic and cosmogenic neutrons so that they produce recoils below the experimental threshold; 0.5 m of poly reduces the neutron scattering rate by ~104 SuperCDMS passive shielding 29

30 3b) Active Shielding Muon Veto: water cherenkov or scintillator; rejects muons passing through or near experiment (and the fast neutrons that come with them) Darkside Dar Neutron Veto Neutron Veto: liquid scintillator doped with isotope w/ high neutron capture cross-section; tags radiogenic neutrons that originate on contaminated material close to or within the experiment. SuperCDMS neutron veto schematic n LUX Muon Veto 30

31 Managing backgrounds (in 5-steps) 1) Choose highly radiopure materials for your detector and experimental setup. Build it in a state-of-the art clean lab (class ~1000 or better is often used). 2) Cosmic muons produce fast neutrons via spallation. These are difficult to shield against and are a source of irreducible background. Go deep underground where the fast neutron flux is reduced. 3) Unless you bury your detector 2 km deep in pristine glacial ice, you will have significant background from radioactivity. Surround your radiopure experiment with several tons of radiopure shielding 4) You will likely still have O(10 6 ) more ER than expected WIMP scatters in your detector, so make sure your experiment has some ability to distinguish ER from NR - at the level of one part in 10 6 or 10 7 is nice. 31

32 4) WIMP detection techniques Background discrimination Bubble chambers, superheated droplets TeO 2 bolometers HEAT HP Ge Point-contact Ge IONIZATION Dual phase liquid noble SCINTILLATION NaI cystals Single phase liquid noble 32

33 Textbook example w/ CDMS Some discrimination parameter (ionization yield in this case) analysis threshold 133 Ba 252 Cf 133 Ba (γ s) 132 Cf (n s) REJECTED ELECTRON RECOILS SIGNAL REGION (NUCLEAR RECOILS) Eionization ionization yield Ephonon = E ionization E phonon 1:10 4 rejection of gammas based on ionization yield alone Experiments that sit on the legs of the triangle exploit the fact that ER s and NR s deposit different fractions of the recoil energy in the form of HEAT, IONIZATION and SCINTILLATION. 33

34 Surface Events 1:10 4 sounds great, BUT wait! What are these events? Some discrimination parameter (ionization yield in this case) analysis threshold 133 Ba 252 Cf 133 Ba (γ s) 132 Cf (n s) REJECTED ELECTRON RECOILS SIGNAL REGION (NUCLEAR RECOILS) SURFACE EVENTS (betas, alphas, recoiling parent nuclei and x-rays) are a near-universal problem in direct detection. FIDUCIALIZATION of the target volume is necessary to reject these events. So ideally, your detector needs to be able to determine the position of an event as well as its energy. 34

35 Managing backgrounds (in 5-steps) 1) Choose highly radiopure materials for your detector and experimental setup. Build it in a state-of-the art clean lab (class ~1000 or better is often used). 2) Cosmic muons produce fast neutrons via spallation. These are difficult to shield against and are a source of irreducible background. Go deep underground where the fast neutron flux is reduced. 3) Unless you bury your detector 2 km deep in pristine glacial ice, you will have significant background from radioactivity. Surround your radiopure experiment with several tons of radiopure shielding 4) You will likely still have O(10 6 ) more ER than expected WIMP scatters in your detector, so make sure your experiment has some ability to distinguish ER from NR - at the level of one part in 10 6 or 10 7 is nice. 5) A team of talented students and postdocs who fine-tune rejection of background and maximize signal acceptance will extract the most out of the data. 35

36 Annual modulation and directional detection (yet more ways to distinguish WIMPs from backgrounds) 36

37 Annual modulation effect Earth s motion about the Sun produces small changes in velocity relative to the dark halo è Modulates expected rate of dark matter interactions detected on Earth If you see a signal, check for an annual modulation OR If you have irreducible backgrounds, use the modulation to pick out a signal A dark-matter-induced modulation will have extrema in June and December (whether it s max or min depends on target and threshold) 37

38 Annual modulation effect For example, you might see a signal like this DAMA/NaI and successor DAMA/LIBRA operate large arrays of NaI detectors. Their combined data yield a 9σ modulation consistent with dark matter. It has never been verified by another experiment, yet no one has a really good alternative explanation. 38

39 Directional Detection Similarly, due to the Sun s motion, the WIMP wind comes roughly from the direction of Cygnus. Low pressure TPC s preserve de/dx profile such that head to tail measurement can be made Detecting the direction of the nuclear recoil would help distinguish WIMPs (which should be coming from the direction of Cygnus) from backgrounds (which should be more isotropic). 39

40 End of Lecture 1 40

41 Homework 1 1) In spin-independent scattering, recall that coherence is lost when the momentum transferred to the nucleus (q) becomes large, thus corresponding to distance scales that are small with respect to the size of the nucleus. In other words when the debroglie wavelength is small with respect to the nucleus, one begins to probe the nuclear structure: # # λ = h/q < A 1/3 fm# # Use this relation to estimate the approximate recoil energy at which coherence is lost for a xenon nucleus. Use A = 131, which implies m xe 131 GeV/c 2 and hc = 197 MeV fm.# 2a) Using the expression for the minimum velocity needed to produce a recoil of energy E R, v min = E R m N 2m r 2 estimate the maximum recoil energy that can be produced by a 10 GeV/c 2 WIMP scattering in a xenon detector. In the expression above, m r is the reduced mass of the WIMP-nucleus system and m N is the mass of the nucleus. Use 544 km/s as the maximum WIMP velocity in the halo (note we are neglecting the motion of the sun and earth to simplify the problem).# Next do the same for silicon (A = 28) and compare the results and discuss the implications for the experimental thresholds.# # 41 #

42 Homework 1 cont d 2b) Give a qualitative description for how the differential 10 GeV/c 2 WIMP scattering rate on xenon might change once the Sun and Earth velocity are included. Discuss the implication for the experimental threshold. 2c) (Bonus) Derive the expression for v min assuming simple 2-body elastic scattering of the WIMP-nucleus system, with the nucleus initially at rest and the WIMP imparting the maximum recoil energy during the scatter (e.g. recoiling in the direction opposite of its incoming velocity).# 42

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Technical Specifications and Requirements on Direct detection for Dark Matter Searches Technical Specifications and Requirements on Direct detection for Dark Matter Searches Jin Li THU/IHEP Symposium of the Sino-German GDT Cooperation 04/08/2013 Tübingen Outline Introduction Direct detection

More information

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016 Low Background Experiments and Material Assay Tessa Johnson NSSC Summer School July 2016 Outline How do we detect particles? Some interesting questions relating to particle physics How can particle detection

More information

Dark Matter Searches. Marijke Haffke University of Zürich

Dark Matter Searches. Marijke Haffke University of Zürich University of Zürich Structure Ι. Introduction - Dark Matter - WIMPs Ι Ι. ΙΙΙ. ΙV. V. Detection - Philosophy & Methods - Direct Detection Detectors - Scintillators - Bolometer - Liquid Noble Gas Detectors

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Background and sensitivity predictions for XENON1T

Background and sensitivity predictions for XENON1T Background and sensitivity predictions for XENON1T Marco Selvi INFN - Sezione di Bologna (on behalf of the XENON collaboration) Feb 19 th 016, UCLA Dark Matter 016 1 Outline Description of the detector;

More information

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1 DarkSide Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1 DARKSIDE MAIN FEATURES Dark Matter direct detection WIMP induced nuclear recoils Double

More information

Direct Detection of Dark Matter with LUX

Direct Detection of Dark Matter with LUX Direct Detection of Dark Matter with LUX we are a collaboration of 50+ scientists, please see http://lux.brown.edu for more information Peter Sorensen Lawrence Livermore National Laboratory DNP October

More information

A survey of recent dark matter direct detection results

A survey of recent dark matter direct detection results A survey of recent dark matter direct detection results I where we stand II recent results (CDMS, XENON10, etc) III DAMA results IV a bit about modulation V issues with DAMA results VI what to look for

More information

DarkSide new results and prospects

DarkSide new results and prospects DarkSide new results and prospects Stefano Davini - INFN Genova on behalf of the DarkSide collaboration La Thuile, March 20, 2018 The DarkSide WIMP-argon program at LNGS 2011 2012 2013 2014 2015 2016 2017

More information

Sensitivity and Backgrounds of the LUX Dark Matter Search

Sensitivity and Backgrounds of the LUX Dark Matter Search Sensitivity and Backgrounds of the LUX Dark Matter Search 1 LUX Goal: Direct Detection of Dark Matter WMAP 5-year data (2008) gives matter densities (Ω) based on best fit to Λ-CDM cosmological model: Ω

More information

Down-to-earth searches for cosmological dark matter

Down-to-earth searches for cosmological dark matter Down-to-earth searches for cosmological dark matter Carter Hall, University of Maryland October 19, 2016 Astrophysical evidence for dark matter Galaxy cluster collisions Rotation curves Ω 380,000 years

More information

The Search for Dark Matter. Jim Musser

The Search for Dark Matter. Jim Musser The Search for Dark Matter Jim Musser Composition of the Universe Dark Matter There is an emerging consensus that the Universe is made of of roughly 70% Dark Energy, (see Stu s talk), 25% Dark Matter,

More information

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata Whither WIMP Dark Matter Search? AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata 1/51 2/51 Planck 2015 Parameters of the Universe 3/51 Discovery of Dark Matter Fritz

More information

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration SuperCDMS SNOLAB: A G2 Dark Matter Search Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration A bit of background Astronomical data at all scales indicates dark

More information

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Jingke Xu Princeton University June 7 th, 2013 1 Evidences for Dark Matter Rotation Curve Gravitational Lensing CMB Power Spectrum

More information

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007 LUX: A Large Underground Xenon detector WIMP Search Mani Tripathi INPAC Meeting Berkeley, New Collaboration Groups formerly in XENON10: Case Western, Brown, Livermore Natl. Lab (major fraction of the US

More information

Status of Dark Matter Detection Experiments

Status of Dark Matter Detection Experiments Status of Dark Matter Detection Experiments Debasish Majumdar Astroparticle Physics and Cosmology Division Saha Institute of Nuclear Physics Kolkata WIMP Hunting Going beyond gravity, three ways to detect

More information

Recent results from PandaX- II and status of PandaX-4T

Recent results from PandaX- II and status of PandaX-4T Recent results from PandaX- II and status of PandaX-4T Jingkai Xia (Shanghai Jiao Tong University) On behalf of PandaX Collaboration August 2-5, Mini-Workshop@SJTU 2018/8/4 1 Outline Dark Matter direct

More information

Dark Matter. and TPC Technologies

Dark Matter. and TPC Technologies Dark Matter and TPC Technologies The Physics Case for WIMPs Status of the Field:event by event discrimination Elements of a roadmap Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute for

More information

DUSEL NATIONAL LAB ROLE ESSENTIAL FOR SNOLAB AND DUSEL EXPERIMENTS SLUO

DUSEL NATIONAL LAB ROLE ESSENTIAL FOR SNOLAB AND DUSEL EXPERIMENTS SLUO Search for Dark Matter WIMPs: SuperCDMS Soudan Soudan and SNOLAB leading to GEODM at DUSEL NATIONAL LAB ROLE ESSENTIAL FOR SNOLAB AND DUSEL EXPERIMENTS SLUO - September 17, 2009 Blas Cabrera - Stanford

More information

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012 Background Characterization and Rejection in the LZ Detector David Malling Brown University IDM 2012 July 25, 2012 LZ Construction 2 Background Sources Ti cryostats 1500 kg

More information

The XENON1T experiment

The XENON1T experiment The XENON1T experiment Ranny Budnik Weizmann Institute of Science For the XENON collaboration 1 The XENON1T experiment Direct detection with xenon The XENON project XENON1T/nT 2 Quick introduction and

More information

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Marco Vignati 24 Ottobre 2011 0νDBD in Theory Nuclear process: (A,Z) (A,Z+2) + 2 e - Can only happen if lepton number is not conserved. The decay probability

More information

Status of DM Direct Detection. Ranny Budnik Weizmann Institute of Science

Status of DM Direct Detection. Ranny Budnik Weizmann Institute of Science Status of DM Direct Detection Ranny Budnik Weizmann Institute of Science DM evidence on one slide Thermal freeze out of dark matter in the standard cosmological model Weakly Interacting Massive Particles

More information

BubXe: a liquid xenon bubble chamber for Dark Matter detection!

BubXe: a liquid xenon bubble chamber for Dark Matter detection! BubXe: a liquid xenon bubble chamber for Dark Matter detection Jeremy Mock, on behalf of Cecilia Levy and Matthew Szydagis SUNY Albany Direct DM Search Today 3 detection channels (light, charge, heat):

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

Lecture 12. Dark Matter. Part II What it could be and what it could do

Lecture 12. Dark Matter. Part II What it could be and what it could do Dark Matter Part II What it could be and what it could do Theories of Dark Matter What makes a good dark matter candidate? Charge/color neutral (doesn't have to be though) Heavy We know KE ~ kev CDM ~

More information

COUPP: Bubble Chambers for Dark Matter Detection

COUPP: Bubble Chambers for Dark Matter Detection COUPP: Bubble Chambers for Dark Matter Detection Eric Vázquez Jáuregui SNOLAB Rencontres de Moriond 2013 La Thuille, Italy; March 9-16, 2013 COUPP bubble chambers Target material: superheated CF 3 I spin-dependent/independent

More information

Current status of LUX Dark Matter Experiment

Current status of LUX Dark Matter Experiment Current status of LUX Dark Matter Experiment by A. Lyashenko Yale University On behalf of LUX collaboration LUX Large Underground Xenon experiment LUX Collaboration: Yale, CWRU, UC Santa Barbara, Brown,

More information

Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment

Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment Kevin A. McCarthy Massachusetts Institute of Technology On behalf of the SuperCDMS and CDMS Collaborations

More information

The Search for Dark Matter with the XENON Experiment

The Search for Dark Matter with the XENON Experiment The Search for Dark Matter with the XENON Experiment Elena Aprile Columbia University Paris TPC Workshop December 19, 2008 World Wide Dark Matter Searches Yangyang KIMS Homestake LUX SNOLAB DEAP/CLEAN

More information

The Direct Search for Dark Matter

The Direct Search for Dark Matter picture: Thomas Tuchan The Direct Search for Dark Matter with special emphasis on the XENON project Rafael F. Lang Purdue University rafael@purdue.edu IPMU Tokyo, March 8, 2013 1 baryon fraction Dark Matter

More information

Dark matter search with the SABRE experiment

Dark matter search with the SABRE experiment Dark matter search with the SABRE experiment Giulia D Imperio* for the SABRE collaboration *INFN Roma 1 25-07-2017 TAUP 2017 Sudbury, Canada 1 Dark matter detection through annual modulation WIMP is one

More information

The Search for Dark Matter, and Xenon1TP

The Search for Dark Matter, and Xenon1TP The Search for Dark Matter, and Xenon1TP by Jamin Rager Hillsdale College Assistant Prof. Rafael Lang Purdue University Dept. of Physics Galaxy NGC 3198 2 Galaxy NGC 3198 Rotation Curves http://bustard.phys.nd.edu/phys171/lectures/dm.html

More information

Direct Search for Dark Matter

Direct Search for Dark Matter Direct Search for Dark Matter Direct Dark Matter Search Dark Matter in the Universe Ω = 0.23 non-baryonic not neutrinos physics beyond the standard model thermal relics from Big Bang weakly interacting

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Measuring Dark Matter Properties with High-Energy Colliders

Measuring Dark Matter Properties with High-Energy Colliders Measuring Dark Matter Properties with High-Energy Colliders The Dark Matter Problem The energy density of the universe is mostly unidentified Baryons: 5% Dark Matter: 20% Dark Energy: 75% The dark matter

More information

Direct Detection Lecture 2: Current Results

Direct Detection Lecture 2: Current Results Direct Detection Lecture 2: Current Results Outline I. Leading spin-independent measurements II. Leading spin-depending measurements III. Low Mass WIMP searches IV. Discussion on Calibration 43 Current

More information

Direct detection: results from liquid noble-gas experiments

Direct detection: results from liquid noble-gas experiments Direct detection: results from liquid noble-gas experiments Teresa Marrodán Undagoitia marrodan@mpi-hd.mpg.de DM@LHC Heidelberg, April 5th, 2018 Teresa Marrodán Undagoitia (MPIK) Liquid noble gases Heidelberg,

More information

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich,

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich, Search for Inelastic Dark Matter with the CDMS experiment Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich, 30.08.2010 The CDMS experiment - 19 Ge and 11 Si semiconductor detectors

More information

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University Temple University E-mail: cmartoff@gmail.com The DarkSide Dark Matter Search Program is a direct-detection search for dark matter using a Liquid Argon Time Projection Chamber. The detector is designed

More information

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia)

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia) Shedding Light on Dark Matter from Deep Underground with XENON Kaixuan Ni (Columbia) University of Maryland, 11-25-2008 A well-known mystery for astronomers Fritz Zwicky, The Astrophysical Journal, 85

More information

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction Dark Matter Detection and the XENON Experiment Elena Aprile Physics Department and Columbia Astrophysics Laboratory Columbia University New York, New York 10027 1 Abstract Observations on all fronts strongly

More information

Recent Results from the PandaX Experiment

Recent Results from the PandaX Experiment Recent Results from the PandaX Experiment Changbo Fu Shanghai Jiao Tong University On Behalf of Collaboration 25May2017 1 Outline 1. Introduciton Dark Matter: WIMPs, Axion, PandaX at China Jinping Underground

More information

PoS(idm2008)010. The PICASSO Dark Matter Search Project. A. Davour for the PICASSO collaboration Queen s University

PoS(idm2008)010. The PICASSO Dark Matter Search Project. A. Davour for the PICASSO collaboration Queen s University The PICASSO Dark Matter Search Project A. Davour for the PICASSO collaboration Queen s University E-mail: adavour@owl.phy.queensu.ca PICASSO is an array of bubble detectors constructed to search for spin

More information

Studies of the XENON100 Electromagnetic Background

Studies of the XENON100 Electromagnetic Background Studies of the XENON100 Electromagnetic Background Daniel Mayani Physik-Institut University of Zurich PhD Seminar PSI, August 26-27, 2015 Searching for elusive particles The main challenge for experiments

More information

DarkSide-20k and the Darkside Program for Dark Matter Searches

DarkSide-20k and the Darkside Program for Dark Matter Searches DarkSide-20k and the Darkside Program for Dark Matter Searches Cristiano Galbiati Princeton University APC Paris Diderot GDR Neutrinos LPSC Grenoble June 6, 2016 DarkSide-20k Institutions [cm 2 ] σ 41

More information

Direct Detection of! sub-gev Dark Matter

Direct Detection of! sub-gev Dark Matter Direct Detection of! sub-gev Dark Matter Rouven Essig C.N. Yang Institute for Theoretical Physics, Stony Brook Sackler Conference, Harvard, May 18, 2014 An ongoing program Direct Detection of sub-gev Dark

More information

Direct Dark Matter Search with Noble Liquids

Direct Dark Matter Search with Noble Liquids Direct Dark Matter Search with Noble Liquids Marc Schumann Physik Institut, Universität Zürich Recontres de Moriond 2012, Cosmology Session, La Thuile, March 2012 marc.schumann@physik.uzh.ch www.physik.uzh.ch/groups/groupbaudis/xenon/

More information

The XENON100 Dark Matter Experiment at LNGS: Status and Sensitivity

The XENON100 Dark Matter Experiment at LNGS: Status and Sensitivity The XENON100 Dark Matter Experiment at LNGS: Status and Sensitivity Elena Aprile (on behalf of the XENON Collaboration) Columbia University,Physics Department, New York,NY, USA E-mail: age@astro.columbia.edu

More information

Enectalí Figueroa-Feliciano

Enectalí Figueroa-Feliciano School and Workshop on Dark Matter and Neutrino Detection Dark Matter Direct Detection Lecture 3 Enectalí Figueroa-Feliciano!113 Outline Lecture 1: The dark matter problem WIMP and WIMP-like DM detection

More information

DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update INTRODUCTION AND EXPERIMENTAL GOALS SUMMARY OF RECENT ACHIEVEMENTS AND EFFORTS

DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update INTRODUCTION AND EXPERIMENTAL GOALS SUMMARY OF RECENT ACHIEVEMENTS AND EFFORTS DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update María Luisa Sarsa (Universidad de Zaragoza) On behalf of ANAIS & ROSEBUD Collaborations OUTLINE ANAIS INTRODUCTION AND EXPERIMENTAL GOALS

More information

No combined analysis of all experiments available

No combined analysis of all experiments available Compatibility between DAMA-CDMS CDMS-Edelweiss-Xenon10 - KIMS? No combined analysis of all experiments available However, some trivial considerations: * for m χ 25 GeV capture on DAMA is dominated by the

More information

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011 Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011 First Discovery of Dark Matter As you get farther away from the main central mass of a galaxy, the acceleration from

More information

Direct dark matter search using liquid noble gases

Direct dark matter search using liquid noble gases Direct dark matter search using liquid noble gases Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Physik Institut Universität Zürich Texas Symposium 2010, Heidelberg, 09.11.2010 Teresa Marrodán Undagoitia

More information

Looking for WIMPs A Review

Looking for WIMPs A Review Looking for WIMPs A Review Beatriz E. Burrola Gabilondo There is currently a race to find out what dark matter actually is. Weakly Interacting Massive Particles (WIMPs) are a strong candidate for dark

More information

PHY326/426:Lecture 11

PHY326/426:Lecture 11 PHY326/426:Lecture 11 Towards WIMP direct detection WIMP Cross Sections and Recoil Rates (1) Introduction to SUSY dark matter WIMP-nucleon collision kinematics Recoil energy in the CM frame Probability

More information

Searches for Low-Mass WIMPs with CDMS II and SuperCDMS

Searches for Low-Mass WIMPs with CDMS II and SuperCDMS Searches for Low-Mass WIMPs with CDMS II and SuperCDMS SuperCDMS Science Coordinator Syracuse University arxiv: 1304.4279 1304.3706 1203.1309 A New Order 0.01% Visible H, He 0.5% ENERGY Metals Dark Matter

More information

Solar and atmospheric neutrinos as background for direct dark matter searches

Solar and atmospheric neutrinos as background for direct dark matter searches Solar and atmospheric neutrinos as background for direct dark matter searches Achim Gütlein TU-München Joined seminar on neutrinos and dark matter.0.0 utline Direct Dark Matter Search eutrinos as background

More information

Chapter 12. Dark Matter

Chapter 12. Dark Matter Karl-Heinz Kampert Univ. Wuppertal 128 Chapter 12 Dark Matter Karl-Heinz Kampert Univ. Wuppertal Baryonic Dark Matter Brightness & Rotation Curve of NGC3198 Brightness Rotation Curve measured expected

More information

DARWIN: dark matter WIMP search with noble liquids

DARWIN: dark matter WIMP search with noble liquids DARWIN: dark matter WIMP search with noble liquids Physik Institut, University of Zurich E-mail: laura.baudis@physik.uzh.ch DARWIN (DARk matter WImp search with Noble liquids) is an R&D and design study

More information

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON Henrique Araújo Imperial College London Oxford University 18 th October 2016 OUTLINE Two-phase xenon for (dark) radiation detection Instrumenting a liquid

More information

PANDA-X A New Detector for Dark Matter Search. Karl Giboni Shanghai Jiao Tong University

PANDA-X A New Detector for Dark Matter Search. Karl Giboni Shanghai Jiao Tong University PANDA-X A New Detector for Dark Matter Search Karl Giboni Shanghai Jiao Tong University Seminar at KEK, Tsukuba Japan 3 February, 2011 Jin Ping Laboratory Newly constructed deep underground lab In the

More information

Deep Underground Labs and the Search for Dark Matter

Deep Underground Labs and the Search for Dark Matter Deep Underground Labs and the Search for Dark Matter Sujeewa Kumaratunga Feb 16th, 2013 Sujeewa Kumaratunga, TRIUMF Saturday Morning Lectures 1 /38 Outline Dark Matter, a brief history Underground Labs,

More information

Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors

Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors Complementarity between Dark Matter Searches & Collider Experiments Miniworkshop before SUSY06 at Irvine -

More information

arxiv: v1 [physics.ins-det] 4 Nov 2017

arxiv: v1 [physics.ins-det] 4 Nov 2017 arxiv:1711.01488v1 [physics.ins-det] 4 Nov 017 Current status and projected sensitivity of COSINE-0 WG Thompson, on behalf of the COSINE-0 Collaboration Department of Physics, Yale University, New Haven,

More information

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso 1 RADIOCHEMICAL Integrated in energy and time CHERENKOV Less than 0.01% of the solar neutrino flux is been measured in

More information

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19, DARWIN Marc Schumann U Freiburg PATRAS 2017 Thessaloniki, May 19, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Dark Matter Searches: Status spin-independent WIMP-nucleon interactions

More information

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15, DARWIN Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017

More information

Bubble Chambers for Direct Dark Matter Searches in COUPP

Bubble Chambers for Direct Dark Matter Searches in COUPP Bubble Chambers for Direct Dark Matter Searches in COUPP Eric Vázquez Jáuregui SNOLAB 8th Patras Workshop on Axions, WIMPs and WISPs Chicago IL, USA; July 22, 2012 Eric Va zquez-ja uregui PATRAS 2012 July

More information

Vincenzo Caracciolo for the ADAMO collaboration National Laboratory of Gran Sasso - INFN.

Vincenzo Caracciolo for the ADAMO collaboration National Laboratory of Gran Sasso - INFN. Vincenzo Caracciolo for the ADAMO collaboration National Laboratory of Gran Sasso - INFN. Signatures for direct detection experiments In direct detection experiments to provide a Dark Matter signal identification

More information

Low Energy Particles in Noble Liquids

Low Energy Particles in Noble Liquids Low Energy Particles in Noble Liquids Antonio J. Melgarejo Fernandez Columbia University Invisibles School, July 14th 2013, Durham Explaining the title I Noble gases are a group of elements found at the

More information

XMASS: a large single-phase liquid-xenon detector

XMASS: a large single-phase liquid-xenon detector XMASS: a large single-phase liquid-xenon detector Katsuki Hiraide, the university of Tokyo for the XMASS Collaboration October 3 rd, 2016 IPRD16@Siena, Italy 1 XMASS project XMASS: a multi purpose experiment

More information

Backgrounds in PICO. Eric Vázquez Jáuregui SNOLAB. AARM Meeting Fermilab; Batavia IL, USA; March 19, 2014

Backgrounds in PICO. Eric Vázquez Jáuregui SNOLAB. AARM Meeting Fermilab; Batavia IL, USA; March 19, 2014 Backgrounds in PICO Eric Vázquez Jáuregui SNOLAB AARM Meeting Fermilab; Batavia IL, USA; March 19, 2014 PICO at SNOLAB SNOLAB deepest and cleanest large-space international facility in the world 2 km

More information

Background Studies for the XENON100 Experiment. Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH

Background Studies for the XENON100 Experiment. Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH Background Studies for the XENON100 Experiment Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH The XENON dark matter search program Target Volume 62 kg Total

More information

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min S. Fiorucci Brown University UCLA Dark Matter 2014 Symposium Origins and Distributions of the Backgrounds 15 min What is a signal for LUX? Nuclear recoil Single scatter Signal Low energy, typically < 25

More information

After LUX: The LZ Program. David Malling, Simon Fiorucci Brown University APS DPF Conference August 10, 2011

After LUX: The LZ Program. David Malling, Simon Fiorucci Brown University APS DPF Conference August 10, 2011 After LUX: The LZ Program David Malling, Simon Fiorucci Brown University APS DPF Conference August 10, 2011 The LZ Program LZ LUX-ZEPLIN LUX (14 U.S. institutions) + new collaborators from ZEPLIN, other

More information

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) Dark Matter Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) 1 Dark Matter 1933 r. - Fritz Zwicky, COMA cluster. Rotation

More information

Darkside and the future Liquid Argon Dark Matter program

Darkside and the future Liquid Argon Dark Matter program Darkside and the future Liquid Argon Dark Matter program Giuliana Fiorillo Università di Napoli Federico II & INFN Napoli PM2018-14th Pisa Meeting on Advanced Detectors DM direct detection WIMP χ Low mass

More information

The next generation dark matter hunter: XENON1T status and perspective

The next generation dark matter hunter: XENON1T status and perspective The next generation dark matter hunter: XENON1T status and perspective A. Rizzo a on behalf of the XENON Collaboration Department of Astrophysics, Columbia University in the City of New York, USA Abstract.

More information

Dark anti-atoms. Quentin Wallemacq IFPA, AGO Dept., University of Liège. CosPa Meeting 19 th of November 2014

Dark anti-atoms. Quentin Wallemacq IFPA, AGO Dept., University of Liège. CosPa Meeting 19 th of November 2014 Dark anti-atoms Quentin Wallemacq IFPA, AGO Dept., University of Liège CosPa Meeting 19 th of November 2014 Q. Wallemacq, J.R. Cudell, arxiv:1411.3178 Introduction The status of direct-search experiments

More information

Direct Search for Dark Matter

Direct Search for Dark Matter Direct Search for Dark Matter Dark Matter Search Dark Matter in the Universe physics beyond the standard model how to detect Dark Matter particles Josef Jochum Eberhard Karls Universität Tübingen Kepler

More information

The Mystery of Dark Matter

The Mystery of Dark Matter The Mystery of Dark Matter Maxim Perelstein, LEPP/Cornell U. CIPT Fall Workshop, Ithaca NY, September 28 2013 Introduction Last Fall workshop focused on physics of the very small - elementary particles

More information

Direct Dark Matter and Axion Detection with CUORE

Direct Dark Matter and Axion Detection with CUORE Direct Dark Matter and Axion Detection with CUORE Europhysics Conference on High-Energy Physics 2011 Cecilia G. Maiano on behalf of CUORE collaboration Contents The Bolometric Technique The CUORE experiment

More information

Luca Grandi.

Luca Grandi. Luca Grandi http://warp.pv.infn.it idm2004 - September 2004 Wimp Argon Programme Collaboration R. Brunetti, E. Calligarich, M. Cambiaghi, C. De Vecchi, R. Dolfini, L. Grandi, A. Menegolli, C. Montanari,

More information

Collaborazione DAMA & INR-Kiev. XCVIII Congresso SIF Napoli, 18 Settembre F. Cappella

Collaborazione DAMA & INR-Kiev.  XCVIII Congresso SIF Napoli, 18 Settembre F. Cappella Collaborazione DAMA & INR-Kiev http://people.roma2.infn.it/dama XCVIII Congresso SIF Napoli, 18 Settembre 2012 F. Cappella Based on the study of the correlation between the Earth motion in the galactic

More information

Backgrounds and Sensitivity Expectations for XENON100

Backgrounds and Sensitivity Expectations for XENON100 Backgrounds and Sensitivity Expectations for XENON100 IDM08, Stockholm, August 19, 2008 Laura Baudis University of Zurich For the XENON100 Collaboration LNGS collaboration meeting, Oct. 2007 1 ??? The

More information

SuperCDMS: Recent Results for low-mass WIMPS

SuperCDMS: Recent Results for low-mass WIMPS SuperCDMS: Recent Results for low-mass WIMPS David G. Cerdeño Institute for Theoretical Physics Universidad Autónoma de Madrid for the SuperCDMS Collaboration Hints for low-mass WIMPs in direct detection

More information

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration Direct dark matter search with XMASS K. Abe for the XMASS collaboration Outline XMASS experiment. Single phase liquid xenon detector Many targets were searched with XMASS. WIMP search fiducialized volume.

More information

Indirect Dark Matter Detection

Indirect Dark Matter Detection Indirect Dark Matter Detection Martin Stüer 11.06.2010 Contents 1. Theoretical Considerations 2. PAMELA 3. Fermi Large Area Telescope 4. IceCube 5. Summary Indirect Dark Matter Detection 1 1. Theoretical

More information

Dark Matter Search * in China

Dark Matter Search * in China Dark Matter Search * in China Jianglai Liu 刘江来 Shanghai Jiao Tong University Member of the PandaX collaboration * Disclaimer: focused on direct detection The 7th Workshop on Hadron Physics in China and

More information

DARK MATTER SEARCH AT BOULBY MINE

DARK MATTER SEARCH AT BOULBY MINE DARK MATTER SEARCH AT BOULBY MINE R. LUSCHER on behalf of the Boulby Dark Matter Collaboration (RAL, Imperial College, Sheffield, UCLA, Texas A&M, Pisa, ITEP, Coimbra, Temple and Occidental) Rutherford

More information

The XENON100 Dark Matter Experiment

The XENON100 Dark Matter Experiment The XENON0 Dark Matter Experiment Marc Schumann 1, Eirini Tziaferi 2 for the XENON0 collaboration 1 Rice University, 60 Main St., Houston TX, USA 2 University of Zürich, Winterthurerstr. 190, Zürich, Switzerland

More information

The XENON Dark Matter Project: Status of the XENON100 Phase. Elena Aprile Columbia University

The XENON Dark Matter Project: Status of the XENON100 Phase. Elena Aprile Columbia University The XENON Dark Matter Project: Status of the XENON100 Phase Elena Aprile Columbia University 8th UCLA Symposium Marina del Rey, Feb 22, 2008 The XENON Dark Matter Phased Program Detect WIMPS through their

More information

Recent results from the UK Dark Matter Search at Boulby Mine.

Recent results from the UK Dark Matter Search at Boulby Mine. Recent results from the UK Dark Matter Search at Boulby Mine. Nigel Smith Rutherford Appleton Laboratory on behalf of the UK Dark Matter Collaboration (Imperial College, Sheffield, RAL) NaI scintillation

More information

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011 Background Modeling and Materials Screening for the LUX and LZ Detectors David Malling Brown University LUX Collaboration AARM Meeting February 2011 1 Summary LUX screening program limits background contributions

More information

WIMP Direct Detection: an outlook

WIMP Direct Detection: an outlook WIMP Direct Detection: an outlook Particle Cosmology Non baryonic dark matter WIMPs: a generic consequence of new physics at TeV scale 1 Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute

More information

XENONNT AND BEYOND. Hardy Simgen. WIN 2015 MPIK Heidelberg. Max-Planck-Institut für Kernphysik Heidelberg

XENONNT AND BEYOND. Hardy Simgen. WIN 2015 MPIK Heidelberg. Max-Planck-Institut für Kernphysik Heidelberg XENONNT AND BEYOND Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg WIN 2015 MPIK Heidelberg THE XENON PROGRAM FOR DIRECT DARK MATTER SEARCH 1 THE PRESENT: XENON1T! LXe TPC under construction

More information

Direct Search for Dark Matter

Direct Search for Dark Matter Direct Search for Dark Matter Direct Dark Matter Search Dark Matter in the Universe Ω = 0.23 non-baryonic not neutrinos physics beyond the standard model thermal relics from Big Bang weakly interacting

More information

nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON

nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON Dark Matter XENON nerix Project 1-> PMT Calibration Project 2-> Neutron Generator Simulation

More information