Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors

Size: px
Start display at page:

Download "Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors"

Transcription

1 Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors Complementarity between Dark Matter Searches & Collider Experiments Miniworkshop before SUSY06 at Irvine - June 10, 2006 CDMS-II Co-Spokesperson & SuperCDMS Spokesperson Summary of current status of Direct Detection CDMS-II, EDELWEISS, ZEPLIN-I, CRESST, WArP DAMA, LIBRA(?), NAIAD Short term perspectives (< 5 years) SuperCDMS, EDELWEISS-II, CRESST-II ZEPLIN-II/III, XENON, WArP, ArDM, CLEAN PICASSO, SIMPLE, COUPP, SIGN, Xe gas Long term perspectives (> 5 years) Page 1

2 NRC EPP2010 Report on US HEP Program Action Item 1: US participation in LHC Action Item 2: US R&D for ILC Action Item 3: US bid to host ILC Action Item 4: US particle astrophysics ($$x2-3) Direct detection of dark matter Precision measurements of CMB Measure properties of dark energy Action Item 5: US neutrino physics The direct detection of dark matter in terrestrial laboratories, which then could be combined with measurements of candidate dark matter particles produced in accelerators. Action Item 6: Limited participation in large scale high precision experiments Page 2

3 The Signal and Backgrounds Signal (WIMPs) Background (gammas) Nucleus Recoils E r Electron Recoils E r v/c E r 10 s KeV phonons v/c 0.3 ionization Neutrons also interact with nuclei, but mean free path a few cms Surface electrons from beta decay can mimic nuclear recoils χ 0 γ Page 3

4 Cross-section [cm 2 ] (normalised to nucleon) LCC1 Excluded by Accelerators Does the LHC supplant Direct Detection? Excluded by Direct Detection DAMA LHC only WIMP Mass [GeV] CDMS II 2005 EDELWEISS ZEPLIN I ILC only CDMS II 2007 SuperCDMS 25kg CDMS is cross section-limited TeV WIMPs detectable, direct connection to cosmology Page 4 Accelerators are mass-limited spectral info, but often can t see LSP or deduce its relic density

5 Direct Detection and Colliders E.A. Baltz, M. Battaglia, M.E. Peskin, and T. Wizansky, hep-ph/ (120 pages) no direct detection information including SuperCDMS 25 kg experiment Page 5

6 Supersymmetry at Tevatron vs CDMS M. Carena, D. Hooper, P. Skands, hep-ph/ Tevatron 2005 CDMS current results rule out most Tevatron parameter space CDMS 2007 reach can rule out Tevatron reach or find SUSY CDMS 2005 channel would be obtained as long as the Higgsino fraction of the lightest neutralino is greater than about 0.5% and m A is heavier than about 140 GeV (as inferred from Fig. 1 and Eq. 4). On the other hand, evidence for the production of heavy neutral Higgs bosons at the Tevatron, without the observation of 2007 neutralino dark matter at CDMS by 2007, could give very valuable information about the MSSM particle spectrum. In particular, it would suggest that µ is large, e.g. greater than about 800 GeV (see Fig. 2). CDMS 3Tevatron 2007 CAVEATS Complemenatrity FIG. 2: The regionsdddm in the M& 2 -µ LHC/ILC plane in which the possibility of Page discovering heavy, neutral MSSM Higgs boson at the Tevatron (4 fb 1 per experiment) through p p A/H X τ + τ X is excluded due to current CDMS limits (light shaded/green) and the projected 2007 CDMS limits (black). The (blue) shaded region along the bottom of the figure and extending upward for small µ is excluded by LEP The conclusions presented in this letter are subject to a number of assumptions. Most obviously, if the dominant component of our universe s dark matter is not made up of neutralinos, then the constraints 6 Blas Cabrera placed by - Stanford CDMS do not University affect collider searches for supersymmetry. The results from CDMS involve substantial astrophysical uncertainties. Primary among these is the local dark matter density, which we have taken to be 0.3 GeV/cm 3, as im-

7 Present sensitivity 1 kg experiments ZBG σ nw ~ cm 2 Current Status 2T CDMS-II, EDELWEISS, CRESST, ZEPLIN-I XMASS, WArP 2.3 l Page 7

8 CDMS-II SI Results & other experiments DAMA WIMP-nucleon cross-section [cm 2 ] DAMA 99% c.l. CDMS (Soudan) WARP (42 kev) CRESST EDELWEISS WIMP mass [GeV] For further details see PRL 96, (2006) New result from WArP 2.3 liter prototype Page 8

9 Spin Dependent WIMP limits Spin-sensitivity from 73 Ge (J=9/2, 7.7%) and 29 Si (J=1/2, 4.7%) n scattering p scattering CRESST I CDMS Si CDMS II Si DAMA/NaI PICASSO CRESST I CDMS II Ge PICASSO CDMS II Si ZEPLIN I CDMS II Ge DAMA/NaI NAIAD Majorana ν Super-K Majorana ν For further details see PRD D73, (2006) Page 9

10 Reach of Underground Laboratories Reduce n from μ 2000 mwe 1,000 kg-d cm mwe 10,000 kg-d cm mwe 100,000 kg-d cm 2 Log 10 (Muon Flux) (m -2 s -1 ) Depth (meters water equivalent) Page 10

11 ST1&2 Soudan -> SNOLab like Tower 1 SUF -> Soudan Tower 1 (4 Ge & 2 Si) at SUF then at Soudan 19 neutron events at SUF 0 events at Soudan Page 11

12 Run 118 (1T) & Run 119 (2T) in Soudan Page 12

13 CDMS Active Background Rejection Detectors with excellent event-by-event background rejection Measured background rejection: % for EM backgrounds using charge/heat 99.4% for β s using pulse risetime as well Much better than expected in CDMS II proposal! Tower of 6 ZIPs Tower 1 4 Ge neutrons betas gammas gammas 2 Si betas Tower 2 2 Ge 4 Si neutrons Page 13

14 Number of Alpha Events (>P <Q) Measurement of Beta backgrounds From coincident events between detectors we identify gaps Z1-2, Z2-3, Z3-4, Z4-5, and Z5-6. Correlation of alpha decays (5.3 MeV 210 Po) with beta decays (46 kev sum both sides from 210 Pb). So 210 Pb on surfaces of detectors ~50% of our singles beta background. Small contributions from ϒs & radioisotopes, e.g. 14 C, 40 K Page Tower 1 Tower 2 1 evt <=> 0.5x10-3 / cm 2 -d Number of Beta Events (46 kev We have reduced Rn exposure for detectors in Towers 3-5 and expect >x2 reduction. We will soon measure alphas & betas.

15 Identification of alphas and betas Page 15

16 1.5 WIMP search data (5 Ge ZIPs ~53 kg-d) Prior to phonon pulse shape timing cuts 10.4 kev Gallium line 1.5 After timing cuts, which reject most electron recoils Z2/Z3/Z5/Z9/Z11 Ionization Yield Z2/Z3/Z5/Z9/Z Recoil Energy (kev) CDMS has demonstrated < 4 evt / kg of Ge / yr Ionization Yield candidate (barely) 1 near-miss Recoil Energy (kev) Background ESTIMATE: 0.37 ± 0.20 (sys.) ± 0.15 (stat.) electron recoils, 0.05 recoils from neutrons expected Page 16

17 Improvements in Surface Event Rejection Significant improvements in our analysis of phonon timing information Surface event rejection improved by x3; kept pace with exposure increase! Cuts are set from calibration data (blind analysis) We still have more discrimination power available as needed Can continue to keep backgrounds < 1 event as more data accumulates This is the real strength of CDMS detectors! Surface Events Optimize background rejection versus nuclear recoil efficiency Neutron Efficiency Neutrons Chi-square (background pulse shape) - Chi-squared (neutron pulse shape) Page 17

18 Strategy for Search Protocols Maximum exposure - Cross-section for direct detection now below cm 2 which corresponds to one event per 30 kg-d with 100% efficiency and 10 kevr threshold. Zero background best for discovery. Insitu calibrations - demonstrating insitu positions and stability of electron recoils versus nuclear recoil events and blinding. Blind analysis - Hide the WIMP search region during the determination of analysis strategy including cuts and software thresholds. Full detector modeling for MCs. Bar is set high as it should be! Page 18

19 Comparisons for SI Sensitivity comparison for all target materials have chosen typical thresholds for a cross section of 1e-8 pb how many kg-d per count on average dr/dq [cts/kev!kg!d] 3 2 1! "n = 1e!44 cm 2 ; m " = 60 GeV 4 x 10!4 Na/Ne(7 kev) 2824 kg!d/ct Si(10 kev) 2031 kg!d/ct Ar(20 kev) 1284 kg!d/ct Ge(10 kev) 313 kg!d/ct I/Xe(16 kev) 309 kg!d/ct W(16 kev) 385 kg!d/ct Recoil Energy [kev] Page 19

20 Technology Complementarity NaI - annual modulation with no discrimination (<6 pe/kev) DAMA signal is suspect because near threshold (systematics) LIBRA kg new installation (still no discrimination) Cryogenic technologies - lowest intrinsic threshold (10 6 phon/kev) (Super)CDMS Ge & Si ionization + phonon + timing (now best) EDELWEISS Ge thermal + ionization (no timing) CRESST CaWO 3 thermal + scintillation (no light for W) Liquid/gas Xe Ar Ne - intrinsically high threshold (~1 pe/kev) ZEPLIN I & XMASS scintillation (uncalibrated result) XENON scintillation + ionization (need demo of threshold & stability) WArP very impressive first result, ArDM, CLEAN Superheated liquids - no energy resolution (counting) PICASSO, SIMPLE, COUPP CF 3 Br & CF 3 I (need demo of stability) TPC DRIFT - good for directionality (near term not enough mass) Page 20

21 Discrimination strategies Most particle physics experience in MeV range Direct detection requires kev scale Poor statistics from scintillation CRESST Scintillation ~ 1 kev/γ Phonons 10 mev/ph ZEPLIN XENON WArP, ArDM CLEAN CDMS EDELWEISS Ionization ~ 10 ev/e Page 21

22 Threshold comparison and importance Best resolution from sub-k experiments allows better discovery potential In the end, the tails of the background distributions determine the sensitivity Best CDMS Ge ZIP gammas XENON Prototype 99% discrimination to below ~10 kev overlap starts at ~50 kev counting statistics for more detail see n-recoils edu/hep/dm06/ talks/shutt.pdf S2 Threshold Page 22

23 EDELWEISS 1 event / 7 kg-d 1.5 EDELWEISS Experiment Phonon runs - Physics EDELWEISS-I GSA1+GSA3+GGA3 (22.7 kg.d) Ionization/Recoil Ratio 1 0.5! bands "=90% "=99.9% Recoil Energy (kev) nuclear recoil bands "=90% Edelweiss-II 320 g Ge Page 23

24 CRESST No light from W CRESST Experiment Page 24

25 Next two years 10 kg experiments ZBG σ nw ~ cm 2 5T CDMS-II, EDELWEISS, CRESST, ZEPLIN-II, XENON-10, WArP-140, ArDM Page 25

26 About to Operate Five Towers in Soudan Tower 1: 4 Ge & 2 Si Tower 2: 2 Ge & 4 Si Tower 3: 4 Ge & 2 Si Tower 4: 4 Ge & 2 Si Tower 5: 5 Ge & 1 Si Page 26

27 Current Status in Soudan Mine Completed run demonstrating successful operation of cryocooler with vibration isolation. Vacuum system better than ever and dilution refrigerator reached base temperature < 20 mk. But detectors remained at mk (spec < 50 mk). We have identified the likely cause to be increased heat through graphite thermal isolators, together with decreased conductance of oxide on Cu connections to DR. Thermal model consistent with all observations, and we have confirmed with tests at UCB and Case facilities - standard cryogenic engineering. We now have low-risk plan for completing CDMS-II science goals by end of calendar Page 27

28 In five years 100 kg experiments ZBG σ nw ~ 10 Current Status -45 cm 2 SuperCDMS 25, EDELWEISS-II, CRESST-II, WArP 140, XENON 100,... Page 28

29 SuperCDMS is approved to be sited at SNOLab SuperCDMS at SNOLab We have received strong interest from Canadian collaborators - Queens... New lab space (under construction - ready in 2007) Sudbury, Ont. CA Sudbury Neutron Obs. Page 29

30 Exploring cryocooler system with little or no cryogen servicing Cryogen-free! dilution fridge Schematic of new SNObox 20.00" OVC-Pb-! poly lid! o" as unit 24.00" Electronics box Pulse tube! cryocooler Lid! splits 40.00" 76.00" " OVC IVC Outer polyethylene 36.00" 72.00" " Page 30

31 SuperCDMS 25 kg detectors Mass from 0.25 kg to 0.64 kg Improve by x100 x2.5 V/S, x2 lower betas x5 improved analysis x2 H passivate, x2 risetime Page 31

32 DM Direct Search Advances (2006) 58,000 kg-d ~1 event kg -1 day -1 LAr ~1 event 100 kg -1 yr -1 CRESST 04 CRESST II 230 kg-d WArP 90 kg-d 70 kg-d Need zero bkgd experiments to make progress. SuperCDMS 25 kg WArP 140 SuperCDMS 150 kg / EUREKA Plot updated from that in DM Review Article: Gaitskell, Ann. Rev. Nucl. and Part. Sci. 54 (2004) Page 32 SuperCDMS 25 kg

33 Conclusions Best sensitivity now cm 2 (10-7 pb) sensitivity for spin independent (1 kg detector mass scale); now CDMS-II 2T, soon EDELWEISS, CRESST, ZEPLIN II, WArP 2.3 l, XENON 10. By end of 2007 existing experiments will reach cm 2 (10-8 pb)(10 kg detector mass scale); CDMS-II 5T, EDELWEISS II, CRESST II, ZEPLIN II/III, WArP 140, XENON 10 Within five years next generation to reach cm 2 (10-9 pb) (100 kg detector mass scale); SuperCDMS 25 kg, EDELWEISS II, CRESST II, ZEPLIN IV, XENON 100, WArP, ArDM, CLEAN SuperCDMS 25 EXPERIMENT READY TO START NOW MULTIPLE TECHNOLOGIES ARE NECESSARY WE NEED TO CONVINCE DM SAG & P5 DURING 2006 Page 33

Latest Results on Direct Detection of Dark Matter WIMPs - CDMS & SuperCDMS

Latest Results on Direct Detection of Dark Matter WIMPs - CDMS & SuperCDMS Latest Results on Direct Detection of Dark Matter WIMPs - CDMS & SuperCDMS TeV 2006, Madison - August 30, 2006 Blas Cabrera Co-Spokesperson CDMS & Spokesperson SuperCDMS Summary of current status of Direct

More information

CDMS and SuperCDMS. SLAC Summer Institute - CDMS. August 2, 2007 Blas Cabrera Co-Spokesperson CDMS & Spokesperson SuperCDMS

CDMS and SuperCDMS. SLAC Summer Institute - CDMS. August 2, 2007 Blas Cabrera Co-Spokesperson CDMS & Spokesperson SuperCDMS CDMS and SuperCDMS SLAC Summer Institute August 2, 2007 Blas Cabrera Co-Spokesperson CDMS & Spokesperson SuperCDMS CDMS-II science results - less than 1 evt / kg of Ge / month Status of CDMS-II 5-Tower

More information

Direct Search for Dark Matter

Direct Search for Dark Matter Direct Search for Dark Matter Direct Dark Matter Search Dark Matter in the Universe Ω = 0.23 non-baryonic not neutrinos physics beyond the standard model thermal relics from Big Bang weakly interacting

More information

DUSEL NATIONAL LAB ROLE ESSENTIAL FOR SNOLAB AND DUSEL EXPERIMENTS SLUO

DUSEL NATIONAL LAB ROLE ESSENTIAL FOR SNOLAB AND DUSEL EXPERIMENTS SLUO Search for Dark Matter WIMPs: SuperCDMS Soudan Soudan and SNOLAB leading to GEODM at DUSEL NATIONAL LAB ROLE ESSENTIAL FOR SNOLAB AND DUSEL EXPERIMENTS SLUO - September 17, 2009 Blas Cabrera - Stanford

More information

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Technical Specifications and Requirements on Direct detection for Dark Matter Searches Technical Specifications and Requirements on Direct detection for Dark Matter Searches Jin Li THU/IHEP Symposium of the Sino-German GDT Cooperation 04/08/2013 Tübingen Outline Introduction Direct detection

More information

The Search for Dark Matter with the XENON Experiment

The Search for Dark Matter with the XENON Experiment The Search for Dark Matter with the XENON Experiment Elena Aprile Columbia University Paris TPC Workshop December 19, 2008 World Wide Dark Matter Searches Yangyang KIMS Homestake LUX SNOLAB DEAP/CLEAN

More information

Search for Low Energy Events with CUORE-0 and CUORE

Search for Low Energy Events with CUORE-0 and CUORE Search for Low Energy Events with CUORE-0 and CUORE Kyungeun E. Lim (on behalf of the CUORE collaboration) Oct. 30. 015, APS Division of Nuclear Physics meeting, Santa Fe, NM The CUORE Experiment CUORE

More information

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007 LUX: A Large Underground Xenon detector WIMP Search Mani Tripathi INPAC Meeting Berkeley, New Collaboration Groups formerly in XENON10: Case Western, Brown, Livermore Natl. Lab (major fraction of the US

More information

SuperCDMS at SNOLAB. What is CDMS? Technical Progress. Collaboration. Funding. Schedule and Needs. Why is SuperCDMS 25 kg timely?

SuperCDMS at SNOLAB. What is CDMS? Technical Progress. Collaboration. Funding. Schedule and Needs. Why is SuperCDMS 25 kg timely? What is CDMS? SuperCDMS at SNOLAB Why is SuperCDMS 25 kg timely? Technical Progress CDMS II running at Soudan (4.5 kg Ge) Detectors Cryogenics Backgrounds Electronics Infrastructure Collaboration Addition

More information

Direct Search for Dark Matter

Direct Search for Dark Matter Direct Search for Dark Matter Direct Dark Matter Search Dark Matter in the Universe Ω = 0.23 non-baryonic not neutrinos physics beyond the standard model thermal relics from Big Bang weakly interacting

More information

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Marco Vignati 24 Ottobre 2011 0νDBD in Theory Nuclear process: (A,Z) (A,Z+2) + 2 e - Can only happen if lepton number is not conserved. The decay probability

More information

Cryogenic Detectors Direct Dark Matter Search. Dark Matter

Cryogenic Detectors Direct Dark Matter Search. Dark Matter Cryogenic Detectors Direct Search Matter in the Universe - Composition ν too light => most of the is cold Ωmat = 0.27 0.04 u d of so far unknown weakly interacting, massive particles WIMPs normal baryonic

More information

The XENON1T experiment

The XENON1T experiment The XENON1T experiment Ranny Budnik Weizmann Institute of Science For the XENON collaboration 1 The XENON1T experiment Direct detection with xenon The XENON project XENON1T/nT 2 Quick introduction and

More information

Dark Matter. and TPC Technologies

Dark Matter. and TPC Technologies Dark Matter and TPC Technologies The Physics Case for WIMPs Status of the Field:event by event discrimination Elements of a roadmap Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute for

More information

Direkte Suche nach Dark Matter

Direkte Suche nach Dark Matter Direkte Suche nach Dark Matter WIMP über elastische Streuung an Kernen HDMS Ge 10% energy Ionization Ge, Si Edelweiss, CDMS liquid Xe Zeplin-2, US-Xenon NaI, liqu.xe Target Light 1% energy fastest no surface

More information

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration SuperCDMS SNOLAB: A G2 Dark Matter Search Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration A bit of background Astronomical data at all scales indicates dark

More information

Measuring Dark Matter Properties with High-Energy Colliders

Measuring Dark Matter Properties with High-Energy Colliders Measuring Dark Matter Properties with High-Energy Colliders The Dark Matter Problem The energy density of the universe is mostly unidentified Baryons: 5% Dark Matter: 20% Dark Energy: 75% The dark matter

More information

Direct dark matter search using liquid noble gases

Direct dark matter search using liquid noble gases Direct dark matter search using liquid noble gases Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Physik Institut Universität Zürich Texas Symposium 2010, Heidelberg, 09.11.2010 Teresa Marrodán Undagoitia

More information

SuperCDMS: Recent Results for low-mass WIMPS

SuperCDMS: Recent Results for low-mass WIMPS SuperCDMS: Recent Results for low-mass WIMPS David G. Cerdeño Institute for Theoretical Physics Universidad Autónoma de Madrid for the SuperCDMS Collaboration Hints for low-mass WIMPs in direct detection

More information

A survey of recent dark matter direct detection results

A survey of recent dark matter direct detection results A survey of recent dark matter direct detection results I where we stand II recent results (CDMS, XENON10, etc) III DAMA results IV a bit about modulation V issues with DAMA results VI what to look for

More information

Status of Dark Matter Detection Experiments

Status of Dark Matter Detection Experiments Status of Dark Matter Detection Experiments Debasish Majumdar Astroparticle Physics and Cosmology Division Saha Institute of Nuclear Physics Kolkata WIMP Hunting Going beyond gravity, three ways to detect

More information

Towards One Tonne WIMP Direct Detectors: Have we got what it takes?

Towards One Tonne WIMP Direct Detectors: Have we got what it takes? Towards One Tonne WIMP Direct Detectors: Have we got what it takes? 000922 Center for Particle Astrophysics UC Berkeley source at http://cdms.berkeley.edu/gaitskell/ Gaitskell Future Reach / Lower limit

More information

arxiv:astro-ph/ v1 24 Jun 2004

arxiv:astro-ph/ v1 24 Jun 2004 LATEST RESULTS OF THE EDELWEISS EXPERIMENT arxiv:astro-ph/46537v 24 Jun 24 V. SANGLARD for the Edelweiss collaboration Institut de Physique Nucléaire de Lyon, 4 rue Enrico Fermi, 69622 Villeurbanne, France

More information

Dark Matter Searches. Marijke Haffke University of Zürich

Dark Matter Searches. Marijke Haffke University of Zürich University of Zürich Structure Ι. Introduction - Dark Matter - WIMPs Ι Ι. ΙΙΙ. ΙV. V. Detection - Philosophy & Methods - Direct Detection Detectors - Scintillators - Bolometer - Liquid Noble Gas Detectors

More information

WIMP Direct Detection: an outlook

WIMP Direct Detection: an outlook WIMP Direct Detection: an outlook Particle Cosmology Non baryonic dark matter WIMPs: a generic consequence of new physics at TeV scale 1 Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute

More information

Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment

Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment Kevin A. McCarthy Massachusetts Institute of Technology On behalf of the SuperCDMS and CDMS Collaborations

More information

Chapter 12. Dark Matter

Chapter 12. Dark Matter Karl-Heinz Kampert Univ. Wuppertal 128 Chapter 12 Dark Matter Karl-Heinz Kampert Univ. Wuppertal Baryonic Dark Matter Brightness & Rotation Curve of NGC3198 Brightness Rotation Curve measured expected

More information

Sensitivity and Backgrounds of the LUX Dark Matter Search

Sensitivity and Backgrounds of the LUX Dark Matter Search Sensitivity and Backgrounds of the LUX Dark Matter Search 1 LUX Goal: Direct Detection of Dark Matter WMAP 5-year data (2008) gives matter densities (Ω) based on best fit to Λ-CDM cosmological model: Ω

More information

The CDMS-II Dark Matter Search and SuperCDMS

The CDMS-II Dark Matter Search and SuperCDMS The CDMS-II Dark Matter Search and SuperCDMS R. W. Ogburn IV Stanford University, Stanford, CA 94305, USA For the CDMS and SuperCDMS collaborations The Cryogenic Dark Matter Search (CDMS) currently sets

More information

Direct Detection of Dark Matter with LUX

Direct Detection of Dark Matter with LUX Direct Detection of Dark Matter with LUX we are a collaboration of 50+ scientists, please see http://lux.brown.edu for more information Peter Sorensen Lawrence Livermore National Laboratory DNP October

More information

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19, DARWIN Marc Schumann U Freiburg PATRAS 2017 Thessaloniki, May 19, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Dark Matter Searches: Status spin-independent WIMP-nucleon interactions

More information

Direct Search for Dark Matter

Direct Search for Dark Matter Direct Search for Dark Matter Dark Matter Search Dark Matter in the Universe physics beyond the standard model how to detect Dark Matter particles Josef Jochum Eberhard Karls Universität Tübingen Kepler

More information

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia)

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia) Shedding Light on Dark Matter from Deep Underground with XENON Kaixuan Ni (Columbia) University of Maryland, 11-25-2008 A well-known mystery for astronomers Fritz Zwicky, The Astrophysical Journal, 85

More information

Status of DM Direct Detection. Ranny Budnik Weizmann Institute of Science

Status of DM Direct Detection. Ranny Budnik Weizmann Institute of Science Status of DM Direct Detection Ranny Budnik Weizmann Institute of Science DM evidence on one slide Thermal freeze out of dark matter in the standard cosmological model Weakly Interacting Massive Particles

More information

Dark Matter -- Astrophysical Evidences and Terrestrial Searches

Dark Matter -- Astrophysical Evidences and Terrestrial Searches Dark Matter -- Astrophysical Evidences and Terrestrial Searches Klaus Eitel, Karlsruhe Institute of Technology, KCETA, IK KIT University of the State of Baden-Württemberg and National Large-scale Research

More information

Recent results from the second CDMSlite run and overview of SuperCDMS SNOLAB project

Recent results from the second CDMSlite run and overview of SuperCDMS SNOLAB project Recent results from the second CDMSlite run and overview of SuperCDMS SNOLAB project SLAC National Accelerator Laboratory/Kavli Institute for Particle Astrophysics and Cosmology, Menlo Park, CA 94025,

More information

Search for Weakly Interacting Massive Particles with CDMS and XENON

Search for Weakly Interacting Massive Particles with CDMS and XENON Search for Weakly Interacting Massive Particles with CDMS and XENON Elena Aprile 1,2, Laura Baudis 3,4, Blas Cabrera 5,6 1 Physics Department and Columbia Astrophysics Laboratory, Columbia University,

More information

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration Direct dark matter search with XMASS K. Abe for the XMASS collaboration Outline XMASS experiment. Single phase liquid xenon detector Many targets were searched with XMASS. WIMP search fiducialized volume.

More information

Inelastic Dark Matter and DAMA

Inelastic Dark Matter and DAMA Inelastic Dark Matter and DAMA Spencer Chang (UC Davis) work in collaboration with hep-ph:0807.2250 G. Kribs, D. Tucker-Smith, N. Weiner Also see David Morrissey's talk Dark Matter Mystery Dark matter

More information

The Direct Search for Dark Matter

The Direct Search for Dark Matter picture: Thomas Tuchan The Direct Search for Dark Matter with special emphasis on the XENON project Rafael F. Lang Purdue University rafael@purdue.edu IPMU Tokyo, March 8, 2013 1 baryon fraction Dark Matter

More information

Searches for Low-Mass WIMPs with CDMS II and SuperCDMS

Searches for Low-Mass WIMPs with CDMS II and SuperCDMS Searches for Low-Mass WIMPs with CDMS II and SuperCDMS SuperCDMS Science Coordinator Syracuse University arxiv: 1304.4279 1304.3706 1203.1309 A New Order 0.01% Visible H, He 0.5% ENERGY Metals Dark Matter

More information

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Jingke Xu Princeton University June 7 th, 2013 1 Evidences for Dark Matter Rotation Curve Gravitational Lensing CMB Power Spectrum

More information

Direct Dark Matter Search with Noble Liquids

Direct Dark Matter Search with Noble Liquids Direct Dark Matter Search with Noble Liquids Marc Schumann Physik Institut, Universität Zürich Recontres de Moriond 2012, Cosmology Session, La Thuile, March 2012 marc.schumann@physik.uzh.ch www.physik.uzh.ch/groups/groupbaudis/xenon/

More information

CDMS-II to SuperCDMS

CDMS-II to SuperCDMS CDMS-II to SuperCDMS WIMP search at a zeptobarn Tobias Bruch University of Zürich 5 th Patras Workshop on Axions,WIMPs and WISPs University of Durham, 13 July 2009 CDMS-II 5 Tower setup 5 Towers a 6 detectors

More information

PoS(idm2008)010. The PICASSO Dark Matter Search Project. A. Davour for the PICASSO collaboration Queen s University

PoS(idm2008)010. The PICASSO Dark Matter Search Project. A. Davour for the PICASSO collaboration Queen s University The PICASSO Dark Matter Search Project A. Davour for the PICASSO collaboration Queen s University E-mail: adavour@owl.phy.queensu.ca PICASSO is an array of bubble detectors constructed to search for spin

More information

Direct Dark Matter Searches

Direct Dark Matter Searches Direct Dark Matter Searches Marc Schumann Physik Institut, Universität Zürich What is? Invisibles12, GGI Florence, June 27th 2012 marc.schumann@physik.uzh.ch www.physik.uzh.ch/groups/groupbaudis/xenon/

More information

DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update INTRODUCTION AND EXPERIMENTAL GOALS SUMMARY OF RECENT ACHIEVEMENTS AND EFFORTS

DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update INTRODUCTION AND EXPERIMENTAL GOALS SUMMARY OF RECENT ACHIEVEMENTS AND EFFORTS DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update María Luisa Sarsa (Universidad de Zaragoza) On behalf of ANAIS & ROSEBUD Collaborations OUTLINE ANAIS INTRODUCTION AND EXPERIMENTAL GOALS

More information

Dark Matter - III. Workshop Freudenstadt September 30, GRK 1694: Elementarteilchenphysik bei höchster Energie und höchster Präzision

Dark Matter - III. Workshop Freudenstadt September 30, GRK 1694: Elementarteilchenphysik bei höchster Energie und höchster Präzision Dark Matter - III GRK 1694: Elementarteilchenphysik bei höchster Energie und höchster Präzision Workshop Freudenstadt 2015 September 30, 2015 Guido Drexlin, Institut für Experimentelle Kernphysik KIT University

More information

DarkSide new results and prospects

DarkSide new results and prospects DarkSide new results and prospects Stefano Davini - INFN Genova on behalf of the DarkSide collaboration La Thuile, March 20, 2018 The DarkSide WIMP-argon program at LNGS 2011 2012 2013 2014 2015 2016 2017

More information

Enectalí Figueroa-Feliciano

Enectalí Figueroa-Feliciano School and Workshop on Dark Matter and Neutrino Detection Dark Matter Direct Detection Lecture 3 Enectalí Figueroa-Feliciano!113 Outline Lecture 1: The dark matter problem WIMP and WIMP-like DM detection

More information

Direct Detection of Dark Matter. Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014

Direct Detection of Dark Matter. Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014 Direct Detection of Dark Matter Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014 Direct Detection of Dark Matter Lecture 1 How to detect dark matter Lecture 2 Review

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich,

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich, Search for Inelastic Dark Matter with the CDMS experiment Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich, 30.08.2010 The CDMS experiment - 19 Ge and 11 Si semiconductor detectors

More information

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction Dark Matter Detection and the XENON Experiment Elena Aprile Physics Department and Columbia Astrophysics Laboratory Columbia University New York, New York 10027 1 Abstract Observations on all fronts strongly

More information

Looking for WIMPs A Review

Looking for WIMPs A Review Looking for WIMPs A Review Beatriz E. Burrola Gabilondo There is currently a race to find out what dark matter actually is. Weakly Interacting Massive Particles (WIMPs) are a strong candidate for dark

More information

Nuclear Recoil Techniques for the Detection of Dark Matter

Nuclear Recoil Techniques for the Detection of Dark Matter Nuclear Recoil Techniques for the Detection of Dark Matter Uwe Oberlack Rice University Houston, TX The Cosmic Recipe Astrophysical observations reveal a dark universe. Cosmic Microwave Background. Geometry

More information

Results from 730 kg days of the CRESST-II Dark Matter Search

Results from 730 kg days of the CRESST-II Dark Matter Search Results from 730 kg days of the CRESST-II Dark Matter Search Federica Petricca on behalf of the CRESST collaboration: Max-Planck-Institut für Physik, München TU München University of Oxford Universität

More information

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15, DARWIN Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017

More information

Background and sensitivity predictions for XENON1T

Background and sensitivity predictions for XENON1T Background and sensitivity predictions for XENON1T Marco Selvi INFN - Sezione di Bologna (on behalf of the XENON collaboration) Feb 19 th 016, UCLA Dark Matter 016 1 Outline Description of the detector;

More information

DARWIN: dark matter WIMP search with noble liquids

DARWIN: dark matter WIMP search with noble liquids DARWIN: dark matter WIMP search with noble liquids Physik Institut, University of Zurich E-mail: laura.baudis@physik.uzh.ch DARWIN (DARk matter WImp search with Noble liquids) is an R&D and design study

More information

No combined analysis of all experiments available

No combined analysis of all experiments available Compatibility between DAMA-CDMS CDMS-Edelweiss-Xenon10 - KIMS? No combined analysis of all experiments available However, some trivial considerations: * for m χ 25 GeV capture on DAMA is dominated by the

More information

MICROPHYSICS AND THE DARK UNIVERSE

MICROPHYSICS AND THE DARK UNIVERSE MICROPHYSICS AND THE DARK UNIVERSE Jonathan Feng University of California, Irvine CAP Congress 20 June 2007 20 June 07 Feng 1 WHAT IS THE UNIVERSE MADE OF? Recently there have been remarkable advances

More information

Dark Matter Detection with XENON100 Accomplishments, Challenges and the Future

Dark Matter Detection with XENON100 Accomplishments, Challenges and the Future Dark Matter Detection with XENON0 Accomplishments, Challenges and the Future http://xenon.astro.columbia.edu Kaixuan Ni Columbia University TeV Particle Astrophysics IHEP, Beijing, Sep.4-8, 008 The Challenges

More information

The Search for Dark Matter. Jim Musser

The Search for Dark Matter. Jim Musser The Search for Dark Matter Jim Musser Composition of the Universe Dark Matter There is an emerging consensus that the Universe is made of of roughly 70% Dark Energy, (see Stu s talk), 25% Dark Matter,

More information

Down-to-earth searches for cosmological dark matter

Down-to-earth searches for cosmological dark matter Down-to-earth searches for cosmological dark matter Carter Hall, University of Maryland October 19, 2016 Astrophysical evidence for dark matter Galaxy cluster collisions Rotation curves Ω 380,000 years

More information

WIMP Dark Matter Search with XENON and DARWIN

WIMP Dark Matter Search with XENON and DARWIN WIMP Dark Matter Search with XENON and DARWIN Johannes Gutenberg University Mainz, Germany XENON100 Rice University Houston, TX, USA http://xenon.physics.rice.edu 6th Patras Workshop Zurich July 7, 2010

More information

XMASS: a large single-phase liquid-xenon detector

XMASS: a large single-phase liquid-xenon detector XMASS: a large single-phase liquid-xenon detector Katsuki Hiraide, the university of Tokyo for the XMASS Collaboration October 3 rd, 2016 IPRD16@Siena, Italy 1 XMASS project XMASS: a multi purpose experiment

More information

Dark Matter Search with XENON

Dark Matter Search with XENON Dark Matter Search with XENON Marc Schumann Physik Institut, Universität Zürich Universität Mainz, Seminar, May 2, 2012 www.physik.uzh.ch/groups/groupbaudis/xenon/ 2 Baryonic Matter Dark Matter? Dark Energy????

More information

Dark Matter, Low-Background Physics

Dark Matter, Low-Background Physics Dark Matter, Low-Background Physics RHUL Jocelyn Monroe Nov. 6, 2012 1. Evidence (Astrophysical Detection) 2. Candidates, Properties 3. Direct Detection (Particle Physics) 1 st Observation: 1930s Fritz

More information

Recent results from the UK Dark Matter Search at Boulby Mine.

Recent results from the UK Dark Matter Search at Boulby Mine. Recent results from the UK Dark Matter Search at Boulby Mine. Nigel Smith Rutherford Appleton Laboratory on behalf of the UK Dark Matter Collaboration (Imperial College, Sheffield, RAL) NaI scintillation

More information

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky Dark Matter established as major component of the Universe: CMB determination of its relic density further confirmed by SNs and galaxy clusters;

More information

Light Dark Matter and XENON100. For the XENON100 Collaboration Rafael F. Lang Columbia University

Light Dark Matter and XENON100. For the XENON100 Collaboration Rafael F. Lang Columbia University Light Dark Matter and XENON100 For the XENON100 Collaboration Rafael F. Lang Columbia University rafael.lang@astro.columbia.edu The XENON Collaboration ~60 scientists from 12 institutions: University of

More information

Latest results of EDELWEISS II

Latest results of EDELWEISS II Latest results of EDELWEISS II Ana Torrentó CEA/IRFU/SPP Saclay Rencontres de Moriond 2011 «EW and Unified Theories» WIMP search Motivated by the «WIMP miracle» Very small rate of WIMPnucleus scattering

More information

Dark Matter WIMP and SuperWIMP

Dark Matter WIMP and SuperWIMP Dark Matter WIMP and SuperWIMP Shufang Su U. of Arizona S. Su Dark Matters Outline Dark matter evidence New physics and dark matter WIMP candidates: neutralino LSP in MSSM direct/indirect DM searches,

More information

Constraints on Low-Mass WIMPs from PICASSO. Carsten B. Krauss University of Alberta for the PICASSO Collaboration IDM Chicago, July

Constraints on Low-Mass WIMPs from PICASSO. Carsten B. Krauss University of Alberta for the PICASSO Collaboration IDM Chicago, July Constraints on Low-Mass WIMPs from PICASSO Carsten B. Krauss University of Alberta for the PICASSO Collaboration IDM Chicago, July 25 2012 Spin-Dependent or Spin-Independent Interaction xxx ^> c* 4 9 9

More information

Dark Matter Searches. Christian Spiering DESY, Zeuthen

Dark Matter Searches. Christian Spiering DESY, Zeuthen Dark Matter Searches Christian Spiering DESY, Zeuthen Bad Honnef, 2.10.2007 Outline CDM candidates WIMPs: direct and indirect detection Indirect detection with neutrino telescopes Search for Q-balls and

More information

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) Dark Matter Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) 1 Dark Matter 1933 r. - Fritz Zwicky, COMA cluster. Rotation

More information

Toward A Consistent Picture For CRESST, CoGeNT and DAMA. Chris Kelso Fermilab and University of Chicago Cosmology on the Beach Jan.

Toward A Consistent Picture For CRESST, CoGeNT and DAMA. Chris Kelso Fermilab and University of Chicago Cosmology on the Beach Jan. Toward A Consistent Picture For CRESST, CoGeNT and DAMA Chris Kelso Fermilab and University of Chicago Cosmology on the Beach Jan. 19, 2012 How are we looking for dark matter? Current Direct Detection

More information

COUPP: Bubble Chambers for Dark Matter Detection

COUPP: Bubble Chambers for Dark Matter Detection COUPP: Bubble Chambers for Dark Matter Detection Eric Vázquez Jáuregui SNOLAB Rencontres de Moriond 2013 La Thuille, Italy; March 9-16, 2013 COUPP bubble chambers Target material: superheated CF 3 I spin-dependent/independent

More information

PANDA-X A New Detector for Dark Matter Search. Karl Giboni Shanghai Jiao Tong University

PANDA-X A New Detector for Dark Matter Search. Karl Giboni Shanghai Jiao Tong University PANDA-X A New Detector for Dark Matter Search Karl Giboni Shanghai Jiao Tong University Seminar at KEK, Tsukuba Japan 3 February, 2011 Jin Ping Laboratory Newly constructed deep underground lab In the

More information

Direct dark matter search using liquid noble gases

Direct dark matter search using liquid noble gases Universität Zürich E-mail: marrodan@physik.uzh.ch Liquid noble gases have proven a great potential as detector medium for dark matter searches. Particles interacting in these media produce ionized and

More information

Backgrounds and Sensitivity Expectations for XENON100

Backgrounds and Sensitivity Expectations for XENON100 Backgrounds and Sensitivity Expectations for XENON100 IDM08, Stockholm, August 19, 2008 Laura Baudis University of Zurich For the XENON100 Collaboration LNGS collaboration meeting, Oct. 2007 1 ??? The

More information

The EDELWEISS DM search Phase II to Phase III

The EDELWEISS DM search Phase II to Phase III The EDELWEISS DM search Phase II to Phase III Adam Cox Karlsruhe Institute for Technology (KIT) on behalf of the EDELWEISS Collaboration CEA, Saclay (IRFU and IRAMIS) IPNL (CNRS/IN2P3 and Université de

More information

Direct Detection of! sub-gev Dark Matter

Direct Detection of! sub-gev Dark Matter Direct Detection of! sub-gev Dark Matter Rouven Essig C.N. Yang Institute for Theoretical Physics, Stony Brook Sackler Conference, Harvard, May 18, 2014 An ongoing program Direct Detection of sub-gev Dark

More information

Introduction to Class and Dark Matter

Introduction to Class and Dark Matter Introduction to Class and Dark Matter Prof. Luke A. Corwin PHYS 792 South Dakota School of Mines & Technology Jan. 14, 2014 (W1-1) L. Corwin, PHYS 792 (SDSM&T) Introduction Jan. 14, 2014 (W1-1) 1 / 22

More information

C. Galbiati Princeton

C. Galbiati Princeton Dark Matter search with liquid Argon in the Gran Sasso Laboratory C. Galbiati Princeton First physics results from WARP 2.3 liter prototype http://warp.pv.infn.it WARP Collaboration P. Benetti, E.Calligarich,

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

Ge and Dark Matter Searches: CDEX, present and future

Ge and Dark Matter Searches: CDEX, present and future Ge and Dark Matter Searches: CDEX, present and future -Ge detectors at LN temperature Lin, Shin-Ted / Sichuan University On behalf of CDEX Collaboration Oct. 19, 2015 (Materials Provided by Prof. Qian

More information

WIMP EXCLUSION RESULTS FROM THE CDMS EXPERIMENT

WIMP EXCLUSION RESULTS FROM THE CDMS EXPERIMENT WIMP EXCLUSION RESULTS FROM THE CDMS EXPERIMENT P.L. BRINK, L. BAUDIS, B. CABRERA, J.P. CASTLE, C. CHANG AND T. SAAB Department of Physics, Stanford University, Stanford, CA 94350, USA R. J. GAITSKELL

More information

Experiments for double beta decay and dark matter

Experiments for double beta decay and dark matter Experiments for double beta decay and dark matter Ettore Fiorini, NDM2006, Paris September 4, 2006 Je ne loue ni blâme pas, je report seulement (Talleyrand) I am not praising, nor blaming; I anly report

More information

arxiv:astro-ph/ v1 15 Feb 2005

arxiv:astro-ph/ v1 15 Feb 2005 The XENON Dark Matter Experiment Elena Aprile (on behalf of the XENON collaboration) Physics Department and Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027 age@astro.columbia.edu

More information

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G. pmssm Dark Matter Searches On Ice! χ ~ 0 1 Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G. Rizzo (SLAC) Based on: 1104.XXXX (next week or bust.) In case

More information

The Cryogenic Dark Matter Search (CDMS) : Status and future. Kipac SLAC April 2009

The Cryogenic Dark Matter Search (CDMS) : Status and future. Kipac SLAC April 2009 The Cryogenic Dark Matter Search (CDMS) : Status and future Kipac SLAC April 2009 Department of Physics, Stanford University KIPAC associate member CDMS The CDMS Collaboration Caltech Z. Ahmed, S. Golwala,

More information

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK & SUSY Direct Search at ILC Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK Contents The ILC has access to new physics via: Precision Higgs measurements Precision top measurements

More information

Direct detection: results from liquid noble-gas experiments

Direct detection: results from liquid noble-gas experiments Direct detection: results from liquid noble-gas experiments Teresa Marrodán Undagoitia marrodan@mpi-hd.mpg.de DM@LHC Heidelberg, April 5th, 2018 Teresa Marrodán Undagoitia (MPIK) Liquid noble gases Heidelberg,

More information

Dark Matter and the XENON Experiment

Dark Matter and the XENON Experiment Dark Matter and the XENON Experiment Marc Schumann Physik Institut, Universität Zürich Lunch Seminar, Weizmann Institute of Science, November 4th, 2010 www.physik.uzh.ch/groups/groupbaudis/xenon/ 2 3 95%

More information

Direct Detection Lecture 2: Current Results

Direct Detection Lecture 2: Current Results Direct Detection Lecture 2: Current Results Outline I. Leading spin-independent measurements II. Leading spin-depending measurements III. Low Mass WIMP searches IV. Discussion on Calibration 43 Current

More information

Status of the EDELWEISS Dark Matter search

Status of the EDELWEISS Dark Matter search Status of the EDELWEISS Dark Matter search KIT Institute Centre for Particle Nuclear and Physics Astroparticle Physics KIT University of the State of Baden-Wuerttemberg and National Research Center of

More information

Cryodetectors, CRESST and Background

Cryodetectors, CRESST and Background Cryodetectors, CRESST and Background A cryogenic detector for Dark Matter with heat (phonon) readout and light (scintillation) readout MPI, TUM, Oxford, Tübingen, LNGS What we re looking for: M W imp =

More information

XENON100. Marc Schumann. Physik Institut, Universität Zürich. IDM 2010, Montpellier, July 26 th,

XENON100. Marc Schumann. Physik Institut, Universität Zürich. IDM 2010, Montpellier, July 26 th, XENON100 Marc Schumann Physik Institut, Universität Zürich IDM 2010, Montpellier, July 26 th, 2010 www.physik.uzh.ch/groups/groupbaudis/xenon/ Why WIMP search with Xenon? efficient, fast scintillator (178nm)

More information