Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

Size: px
Start display at page:

Download "Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016"

Transcription

1 Low Background Experiments and Material Assay Tessa Johnson NSSC Summer School July 2016

2 Outline How do we detect particles? Some interesting questions relating to particle physics How can particle detection solve them? Experiments trying to answer these questions Backgrounds to particle physics experiments What backgrounds exist to sensitive experiments? How these backgrounds are mitigated Low background assay techniques

3 How do we detect particles? Can a particle ionize a material? Geiger Counter: Inert gas Ionized particle amplifies inside of the cavity Detector clicks, or displays voltage Applied voltage

4 How do we detect particles? Can a particle ionize a material? Scintillation A + e A + e e e A + e A + A + e A + Phonons Ways to detect ionization e e Free Charge e e e *Fast moving particles can also be detected by Cherenkov radiation

5 What questions can we answer by detecting particles? What is the bulk of our universe made of? Is lepton number a conserved quantity? What is the absolute mass of the neutrino?

6 What is our universe made of? Non- luminous matter? Fritz Zwicky 1933: Fritz Zwicky measures a discrepancy in calculations of galaxy cluster mass Vera Rubin Outer stars are rotating much faster than expected!

7 What is our universe made of? WMAP CMB heat map Pink = x- ray image Blue = gravitational lensing map Cosmological evidence of dark matter cosmic microwave background anisotropies Astrophysical evidence of dark matter Bullet cluster; mass distribution and baryons separated What is the dark matter (85% of matter!) made of? Weakly Interacting Massive Particle (WIMP) is a favored Candidate 7

8 Experiments looking for WIMPS Noble Liquid Detectors WIMP WIMP Bubble Chamber Detectors Recoil Semiconductor Detectors Cryogenic Thermometer Detectors Scintillation Crystal Detectors CDMS CRESST

9 Is lepton number conserved? Or rather is the neutrino its own antiparticle? This could explain the matter/antimatter asymmetry in the universe! =? vs. P. Dirac E. Majorana + m =0 i/@ + m c =0

10 Is lepton number conserved? Or rather is the neutrino its own antiparticle? This could explain the matter/antimatter asymmetry in the universe! 2 0 *Measuring this process would also allow measurement of the absolute neutrino mass!

11 Experiments looking for 0 EXO- 200 GERDA SNO+ CUORE

12 More about neutrinos! Neutrinos are notoriously difficult to detect. And have displayed some interesting properties! We would like to know more about: Oscillation properties Mass hierarchy Absolute mass CP violating phase? Sterile neutrinos?

13 Neutrino Oscillation Experiments Deep Underground Neutrino Experiment (DUNE) is the next biggest thing should measure mass hierarchy and CP violating phase

14 Neutrino Absolute Mass Experiments Neutrinoless double beta decay could measure absolute mass KATRIN Experiment

15

16 Backgrounds to particle physics experiments Cosmic Rays Mostly protons, some αs, small component e # and heavy nuclei Interactions in the atmosphere: p + N X + π + s p + N X + K + s π s and K s decay to produce μ - μ are highly ionizing and have very little stopping power!

17 How to reduce cosmic ray related backgrounds? Go Underground! Boulby SNOLAB Gran Sasso Soudan JINPING Sanford WIPP Kamioka CanFranc

18 How to reduce cosmic ray related backgrounds? Go Underground! Gran Sasso Laboratory DarkSide- 50 Xenon1T OPERA Borexino DAMA/LIBRA CRESST CUORE GERDA LVD Limestone coverage of ~1300 m (3800 m.w.e.) DarkSide- 50 Muon flux measured to be >1x10 6 % decrease from muon flux at sea level

19 Backgrounds to particle physics experiments γ Rays from natural radioactivity 238 U t 1/2 = 4. 5e9 yr 232 Th t 1/2 = 14e9 yr Long- lived radioisotopes exist in trace amounts all over the environment! Sometimes they exist in secular equilibrium meaning all daughter isotopes in equal parts α s and β s are stopped by material, but γ s can travel far! 40 K t 1/2 = 1. 3e9 yr

20 How to reduce natural radioactivity related backgrounds? Build a big shield! Water shield: Attenuation of water to a 2.6 MeV gamma ( 208 Tl) ~ 2 m Lead shield: Attenuation of lead to a 2.6 MeV gamma ( 208 Tl) ~ 2 cm Majorana 0υββ Experiment Xenon- 1T Water Tank

21 How to reduce natural radioactivity related backgrounds? Choose radiopure materials for the detector! More on this later!

22 Backgrounds to particle physics experiments Neutrons Elastic neutron scatter: Inelastic neutron scatter: n n n γ Recoil (Z, A) (Z, A+1)* Causes a nucleus to recoil Creates an ionizing track Neutron is captured into nucleus Excited nucleus decays, emitting gammas Sometimes left as a radioactive isotope

23 Sources of Neutrons Cosmogenic: Radiogenic: Spontaneous fission: μ # n 235 U (Z,A) (Z+2, A+3)* n Alphas are emitted in the 238 U and 232 Th chains! n n

24 How to reduce neutron related backgrounds? Active Vetos! Muon Veto: Water Cherenkov Detector Neutron Capture Veto: DarkSide- 50 Scintillating Muon Veto VETO PANELS Panels LZ Schematic 10 B+n! (1775keV) + 7 Li 10 B+n! (1471keV) + 7 Li (6.4%) (93.6%) EXO Li! 7 Li + (478keV)

25 How to reduce neutron related backgrounds? Choose radiopure materials for the detector! More on this later!

26 Backgrounds to particle physics experiments Radon Backgrounds Rn is a noble gas easily separated from parent material Can easily enter a liquid or gas stream From 222 Rn to 210 Pb is only a 4 day half- life can have many α s, β s, γ s from daughters 210 Pb can Plate out on surfaces, causing a longer- lived backgrounds

27 Backgrounds to particle physics experiments Radon Backgrounds use as calibration? 214 Bi - > 214 Po has a short half- live (164 us) Can be used for counting total internal radon background, or even for calibration! Event viewer from EXO- 200

28 How to reduce radon related backgrounds? Suppress radon in your experiment s environment! Sanford Laboratory (where LUX/LZ lives) *Filtering by carbon absorption Choose radiopure materials for the detector! More on this later!

29 Choosing low background materials An important part of a low background experiment! Different assay techniques exist choose the one that works best for the material in question Passive gamma analysis Neutron activation analysis (NAA) Inductively- coupled plasma mass spectroscopy (ICP- MS) Radon emanation system Beta cage

30 Passive Gamma Analysis (in HPGe detector) Leave materials in a clean, shielded detector for a long time Backgrounds from the environment and detector itself can mask the measurement of U, Th, K Use of underground facilities Radiopure materials in detector itself Environment purged of Rn or flushed with nitrogen Use of ancient or low radioactivity lead (no cosmogenically activated isotopes) Sometimes Monte Carlo is required to fit spectra Low Background Counting Facitlity, Sanford Underground Research Facility

31 Ancient lead Shipwreck BC CUORE 0υββ experiment Ancient lead from shipwrecks used in many low background experiments!

32 Neutron Activation Analysis Irradiate materials in a neutron flux, count γ rays from products in a γ- counter 238 U(n, γ) 239 U (t 1/2 =23.5 m) - > 239 Np (γ s at 103, 106, 228, 278 kev) (t 1/2 =2.35 d) 232 Th(n, γ) 233 Th (t 1/2 =21.8m) - > 233 Pa (γ s at 300, 312 kev) (t 1/2 =27 d) 41 K(n, γ) 42 K (γ at 1524 kev) (t 1/2 =12.4 h) - - get 40 K from natural abundance Not good for materials that irradiate to something radioactive!

33 Inductively- Coupled Plasma Mass Spectrometry (ICPMS) Fragments of a material s surface are ionized and analyzed with a mass spectrometer particle beam Material sample Plasma Mass spectrometer

34 Radon Emanation Material samples are placed in a vial and allowed to outgas the radon component Decaying radon daughters are detected with a pin diode Outgassed radon enters a gas flow *Photos taken from a Xenon collaboration presentation

35 Beta Cage Directly measures β or α emissions from a thin film of material Important for experiments with materials close to the active volume, such as CMDS or CUORE Filled with a noble gas One of the CDMS Detectors

36 Conclusions: Particle physicists are trying to answer some big questions by detecting rare particle interactions Ultra- low backgrounds are required to reach interesting sensitivities There are some different techniques available; the use of the material and composition of the material itself guide determine what method is best

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Technical Specifications and Requirements on Direct detection for Dark Matter Searches Technical Specifications and Requirements on Direct detection for Dark Matter Searches Jin Li THU/IHEP Symposium of the Sino-German GDT Cooperation 04/08/2013 Tübingen Outline Introduction Direct detection

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

Down-to-earth searches for cosmological dark matter

Down-to-earth searches for cosmological dark matter Down-to-earth searches for cosmological dark matter Carter Hall, University of Maryland October 19, 2016 Astrophysical evidence for dark matter Galaxy cluster collisions Rotation curves Ω 380,000 years

More information

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso 1 RADIOCHEMICAL Integrated in energy and time CHERENKOV Less than 0.01% of the solar neutrino flux is been measured in

More information

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration CANDLES Experiment Current Status and Future Plan X. Li for the CANDLES Collaboration 1 Neutrinoless Double Beta Decay (0νββ) 2νββ decay 0νββ decay (A, Z) => (A, Z+2) + 2e - process beyond Standard Model

More information

Dark Matter Searches. Marijke Haffke University of Zürich

Dark Matter Searches. Marijke Haffke University of Zürich University of Zürich Structure Ι. Introduction - Dark Matter - WIMPs Ι Ι. ΙΙΙ. ΙV. V. Detection - Philosophy & Methods - Direct Detection Detectors - Scintillators - Bolometer - Liquid Noble Gas Detectors

More information

Par$cle and Neutrino Physics. Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014

Par$cle and Neutrino Physics. Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014 Par$cle and Neutrino Physics Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014 1 SNOWMASS on the Mississippi Community study 2013 for the high energy community 10 year plan

More information

Studies of the XENON100 Electromagnetic Background

Studies of the XENON100 Electromagnetic Background Studies of the XENON100 Electromagnetic Background Daniel Mayani Physik-Institut University of Zurich PhD Seminar PSI, August 26-27, 2015 Searching for elusive particles The main challenge for experiments

More information

The Search for Dark Matter with the XENON Experiment

The Search for Dark Matter with the XENON Experiment The Search for Dark Matter with the XENON Experiment Elena Aprile Columbia University Paris TPC Workshop December 19, 2008 World Wide Dark Matter Searches Yangyang KIMS Homestake LUX SNOLAB DEAP/CLEAN

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

Low Background NAA: A powerful tool for Physics of Rare Experiments and Environmental Sciences

Low Background NAA: A powerful tool for Physics of Rare Experiments and Environmental Sciences UNIMIB - Dipartimento di Fisica G. Occhialini INFN Sezione di Milano Bicocca UNIPV- LENA UNIMIB-DISAT Low Background NAA: A powerful tool for Physics of Rare Experiments and Environmental Sciences Massimiliano

More information

Direct Detection of Dark Matter. Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014

Direct Detection of Dark Matter. Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014 Direct Detection of Dark Matter Lauren Hsu Fermilab Center for Particle Astrophysics TRISEP Summer School, June 10, 2014 Direct Detection of Dark Matter Lecture 1 How to detect dark matter Lecture 2 Review

More information

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Jingke Xu Princeton University June 7 th, 2013 1 Evidences for Dark Matter Rotation Curve Gravitational Lensing CMB Power Spectrum

More information

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Esperimenti bolometrici al Gran Sasso: CUORE e CRESST Marco Vignati 24 Ottobre 2011 0νDBD in Theory Nuclear process: (A,Z) (A,Z+2) + 2 e - Can only happen if lepton number is not conserved. The decay probability

More information

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration NOW 2014, Otranto, Lecce, Italy September 7-14, 2014 Intro Neutrino physics with the SNO+ detector 2 Intro What we know:! Neutrinos

More information

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration SuperCDMS SNOLAB: A G2 Dark Matter Search Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration A bit of background Astronomical data at all scales indicates dark

More information

Nuclear Chemistry. Nuclear Terminology

Nuclear Chemistry. Nuclear Terminology Nuclear Chemistry Up to now, we have been concerned mainly with the electrons in the elements the nucleus has just been a positively charged things that attracts electrons The nucleus may also undergo

More information

arxiv: v1 [physics.ins-det] 20 Dec 2017

arxiv: v1 [physics.ins-det] 20 Dec 2017 Prepared for submission to JINST LIDINE 2017: LIght Detection In Noble Elements 22-24 September 2017 SLAC National Accelerator Laboratory arxiv:1712.07471v1 [physics.ins-det] 20 Dec 2017 Radon background

More information

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v Background rejection techniques in Germanium 0νββ-decay experiments n p ν=v n eep II. Physikalisches Institut Universität Göttingen Institutsseminar des Inst. für Kern- und Teilchenphysik, Outline Neutrinos

More information

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration Status of CUORE and Results from CUORICINO SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration 11th Seminar on Innovative Particle and Radiation Detectors Siena, 1 October 2008

More information

Distillation purification and radon assay of liquid xenon

Distillation purification and radon assay of liquid xenon Distillation purification and radon assay of liquid xenon Yasuo Takeuchi Kamioka Observatory, ICRR, Univ. of Tokyo, Kamioka-cho, Hida-shi, Gifu 56-125, Japan Abstract. We succeeded to reduce the Kr contamination

More information

Direct Dark Matter Search with Noble Liquids

Direct Dark Matter Search with Noble Liquids Direct Dark Matter Search with Noble Liquids Marc Schumann Physik Institut, Universität Zürich Recontres de Moriond 2012, Cosmology Session, La Thuile, March 2012 marc.schumann@physik.uzh.ch www.physik.uzh.ch/groups/groupbaudis/xenon/

More information

Publications of Francesco Arneodo: journal articles

Publications of Francesco Arneodo: journal articles Publications of Francesco Arneodo: journal articles Figure 1: Citation report from ISI Web of Science (IF=31.0) [1] E. Aprile et al., First Axion Results from the XENON100 Experiment, arxiv.org (submitted

More information

Two Neutrino Double Beta (2νββ) Decays into Excited States

Two Neutrino Double Beta (2νββ) Decays into Excited States Two Neutrino Double Beta (2νββ) Decays into Excited States International School of Subnuclear Physics 54 th Course: The new physics frontiers in the LHC-2 era Erice, 17/06/2016 Björn Lehnert TU-Dresden,

More information

Dark Matter. and TPC Technologies

Dark Matter. and TPC Technologies Dark Matter and TPC Technologies The Physics Case for WIMPs Status of the Field:event by event discrimination Elements of a roadmap Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute for

More information

The Search for Dark Matter. Jim Musser

The Search for Dark Matter. Jim Musser The Search for Dark Matter Jim Musser Composition of the Universe Dark Matter There is an emerging consensus that the Universe is made of of roughly 70% Dark Energy, (see Stu s talk), 25% Dark Matter,

More information

Study well-shaped germanium detectors for lowbackground

Study well-shaped germanium detectors for lowbackground Journal of Physics: Conference Series PAPER OPEN ACCESS Study well-shaped germanium detectors for lowbackground counting To cite this article: W-Z Wei et al 2015 J. Phys.: Conf. Ser. 606 012019 View the

More information

DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update INTRODUCTION AND EXPERIMENTAL GOALS SUMMARY OF RECENT ACHIEVEMENTS AND EFFORTS

DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update INTRODUCTION AND EXPERIMENTAL GOALS SUMMARY OF RECENT ACHIEVEMENTS AND EFFORTS DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update María Luisa Sarsa (Universidad de Zaragoza) On behalf of ANAIS & ROSEBUD Collaborations OUTLINE ANAIS INTRODUCTION AND EXPERIMENTAL GOALS

More information

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie Radioactivity Toward the end of the 19 th century, minerals were found that would darken a photographic plate even in the absence of light. This phenomenon is now called radioactivity. Marie and Pierre

More information

Alpha-Energies of different sources with Multi Channel Analyzer

Alpha-Energies of different sources with Multi Channel Analyzer Physical Structure of Matter Radioactivity Alpha-Energies of different sources with Multi Channel Analyzer What you can learn about Decay series Radioactive equilibrium Isotopic properties Decay energy

More information

=> Ωmatter >> Ωbaryon

=> Ωmatter >> Ωbaryon Cryogenic Detectors Direct Search Cryogenic Detectors CRESST Project Cosmic Microwave Background Matter-Density Ωmatter Anisotropy: Angular scale => geometry, Ωtot Wilkinson Microwave Anisotropy Probe

More information

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico Results on geoneutrinos at Borexino experiment Heavy Quarks and Leptons 2018 - Yamagata Davide Basilico Outline 1. Geoneutrinos 2. Borexino 3. Analysis and results 2 What are geoneutrinos? Distribution

More information

The DarkSide-50 Outer Detectors

The DarkSide-50 Outer Detectors The DarkSide-50 Outer Detectors Shawn Westerdale Princeton University (for the DarkSide Collaboration) TAUP 2015 Torino Thursday, Sept 10, 2015 The DarkSide-50 Experiment Located in Hall C of Laboratori

More information

Cryogenic Detectors Direct Dark Matter Search. Dark Matter

Cryogenic Detectors Direct Dark Matter Search. Dark Matter Cryogenic Detectors Direct Search Matter in the Universe - Composition ν too light => most of the is cold Ωmat = 0.27 0.04 u d of so far unknown weakly interacting, massive particles WIMPs normal baryonic

More information

Neutrino mass and neutrino dark matter. Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86 (2009) 59001

Neutrino mass and neutrino dark matter. Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86 (2009) 59001 Neutrino mass and neutrino dark matter Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86 (2009) 59001 Dr. Theo M. Nieuwenhuizen Institute for Theoretical Physics University

More information

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose Introduction to Radiological Sciences Neutron Detectors Neutron counting Theory of operation Slow neutrons Fast neutrons Types of detectors Source calibration Survey for Dose 2 Neutrons, what are they?

More information

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48 Introduction to Environmental Measurement Techniques 2016 Radioactivity Dana Pittauer (dpittauer@marum.de) 1of 48 Introduction Radioisotopes are of interest in environmental physics for several reasons:

More information

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia)

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia) Shedding Light on Dark Matter from Deep Underground with XENON Kaixuan Ni (Columbia) University of Maryland, 11-25-2008 A well-known mystery for astronomers Fritz Zwicky, The Astrophysical Journal, 85

More information

Ultra-Low Background Counting and Assay Studies At SNOLAB

Ultra-Low Background Counting and Assay Studies At SNOLAB Ultra-Low Background Counting and Assay Studies At SNOLAB Ian Lawson SNOLAB 2015 CAP Congress University of Alberta 1 Outline Motivation for Low Background Counters Advantages of being deep Current Facilities

More information

The Majorana Neutrinoless Double-Beta Decay Experiment

The Majorana Neutrinoless Double-Beta Decay Experiment The Majorana Neutrinoless Double-Beta Decay Experiment A proposed detector to search for neutrinoless double-beta decay Reyco Henning Lawrence Berkeley National Laboratory for the Majorana Collaboration

More information

Status of Dark Matter Detection Experiments

Status of Dark Matter Detection Experiments Status of Dark Matter Detection Experiments Debasish Majumdar Astroparticle Physics and Cosmology Division Saha Institute of Nuclear Physics Kolkata WIMP Hunting Going beyond gravity, three ways to detect

More information

Neutrino Masses and Mixing

Neutrino Masses and Mixing Neutrino Masses and Mixing < Why so different??? (Harrison, Perkins, Scott 1999) The Mass Puzzle Seesaw mechanism L R m m D m 2 D M m D M m D L R M Heavy Majorana Neutrino Connection with high mass scales

More information

Background and sensitivity predictions for XENON1T

Background and sensitivity predictions for XENON1T Background and sensitivity predictions for XENON1T Marco Selvi INFN - Sezione di Bologna (on behalf of the XENON collaboration) Feb 19 th 016, UCLA Dark Matter 016 1 Outline Description of the detector;

More information

Neutrino detectors. V. Lozza,

Neutrino detectors. V. Lozza, Neutrino detectors, 5.10.2011 Outline - Introduction to neutrinos Sources of neutrinos Detection techniques Why we need to go underground? Background components What to do? Summary A brief of history 1914:

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

L esperimento GERDA. GERDA - gruppo INFN. L Aquila, Congresso SIF, 30/09/2011. OUTLINE: GERDA Motivations GERDA Status GERDA Future plans

L esperimento GERDA. GERDA - gruppo INFN. L Aquila, Congresso SIF, 30/09/2011. OUTLINE: GERDA Motivations GERDA Status GERDA Future plans L esperimento GERDA Balata M., Bellotti E., Benato G., Bettini A., Brugnera R., Cattadori C., Garfagnini A., Hemmer S., Iannucci L., Junker M., Laubenstein M., Nisi S., Pandola L., Pullia A., Riboldi S.,

More information

Backgrounds in PICO. Eric Vázquez Jáuregui SNOLAB. AARM Meeting Fermilab; Batavia IL, USA; March 19, 2014

Backgrounds in PICO. Eric Vázquez Jáuregui SNOLAB. AARM Meeting Fermilab; Batavia IL, USA; March 19, 2014 Backgrounds in PICO Eric Vázquez Jáuregui SNOLAB AARM Meeting Fermilab; Batavia IL, USA; March 19, 2014 PICO at SNOLAB SNOLAB deepest and cleanest large-space international facility in the world 2 km

More information

Particle Physics: Neutrinos part II

Particle Physics: Neutrinos part II Particle Physics: Neutrinos part II José I. Crespo-Anadón Week 9: April 1, 2017 Columbia University Science Honors Program Course Policies Attendance Up to four absences Send email notifications of all

More information

Dark Matter search with bolometric detectors. PhD Student: Filippo Orio Dottorato in Fisica XXIII Ciclo Supervisor: prof.

Dark Matter search with bolometric detectors. PhD Student: Filippo Orio Dottorato in Fisica XXIII Ciclo Supervisor: prof. Dark Matter search with bolometric detectors PhD Student: Filippo Orio Dottorato in Fisica XXIII Ciclo Supervisor: prof. Fernando Ferroni Seminario di Dottorato - 4 giugno 29 1 Outline Introduction to

More information

Neutrinos and the Universe

Neutrinos and the Universe Neutrinos and the Universe Susan Cartwright University of Sheffield Neutrinos and the Universe Discovering neutrinos Detecting neutrinos Neutrinos and the Sun Neutrinos and Supernovae Neutrinos and Dark

More information

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University Temple University E-mail: cmartoff@gmail.com The DarkSide Dark Matter Search Program is a direct-detection search for dark matter using a Liquid Argon Time Projection Chamber. The detector is designed

More information

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011 Background Modeling and Materials Screening for the LUX and LZ Detectors David Malling Brown University LUX Collaboration AARM Meeting February 2011 1 Summary LUX screening program limits background contributions

More information

Quality Assurance. Purity control. Polycrystalline Ingots

Quality Assurance. Purity control. Polycrystalline Ingots Quality Assurance Purity control Polycrystalline Ingots 1 Gamma Spectrometry Nuclide Identification Detection of Impurity Traces 1.1 Nuclides Notation: Atomic Mass Atomic Number Element Neutron Atomic

More information

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge Allen Caldwell Max-Planck-Institut für Physik What we know Mass Scale NORMAL INVERTED m 12 2 known m 13 2 known Mixing

More information

Radioactive Decay and Radiometric Dating

Radioactive Decay and Radiometric Dating Radioactive Decay and Radiometric Dating Extra credit: chapter 7 in Bryson See online (link fixed) or moodle Radioactivity and radiometric dating Atomic nucleus Radioactivity Allows us to put numerical

More information

7.2 RADIOACTIVE DECAY HW/Study Packet

7.2 RADIOACTIVE DECAY HW/Study Packet 7.2 RADIOACTIVE DECAY HW/Study Packet Required: Tsokos, pp 373-378 Hamper pp 244-255 SL/HL Supplemental: Cutnell and Johnson, pp 963-979, 986-990 REMEMBER TO. Work through all of the example problems in

More information

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS Eric B. Norman Dept. of Nuclear Engineering Univ. of California, Berkeley, CA U. S. A. Recent results in n physics Neutrinos

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO Lea Di Noto on behalf of the Borexino collaboration Vulcano Workshop 20 th -26 th May 2018 [cm -2 s -1 MeV -1 ] SOLAR NEUTRINOS Electrons neutrinos are produced

More information

World Underground Labs: Status and Plans. Mark Chen Queen s University ICFA Seminar October 29, 2008

World Underground Labs: Status and Plans. Mark Chen Queen s University ICFA Seminar October 29, 2008 World Underground Labs: Status and Plans Mark Chen Queen s University ICFA Seminar October 29, 2008 Acknowledgements thanks for sending slides J.-E. Campagne, E. Coccia, F. Duncan, L. Mosca, F. Piquemal,

More information

Is the Neutrino its Own Antiparticle?

Is the Neutrino its Own Antiparticle? Is the Neutrino its Own Antiparticle? CENPA REU Summer Seminar Series University of Washington, Seattle, WA July 22, 2013 Outline What s a neutrino? The case for Majorana neutrinos Probing the nature of

More information

Ultra-Low Background Measurement Capabilities At SNOLAB

Ultra-Low Background Measurement Capabilities At SNOLAB Ultra-Low Background Measurement Capabilities At SNOLAB Ian Lawson SNOLAB Greater Sudbury, Canada Torino, Italy 1 Brief Outline Motivation for low background counters Advantages of being deep Current facilities

More information

Dark matter search with the SABRE experiment

Dark matter search with the SABRE experiment Dark matter search with the SABRE experiment Giulia D Imperio* for the SABRE collaboration *INFN Roma 1 25-07-2017 TAUP 2017 Sudbury, Canada 1 Dark matter detection through annual modulation WIMP is one

More information

The GERmanium Detector Array

The GERmanium Detector Array The GERmanium Detector Array n n ν=v p e - e - p Outline: Exp. issues of 0νββ-decay of 76 Ge Concept of GERDA Status of the experiment Summary and conclusions Kevin Kröninger (Max-Planck-Institut für Physik,

More information

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1 DarkSide Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1 DARKSIDE MAIN FEATURES Dark Matter direct detection WIMP induced nuclear recoils Double

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Neutrinoless Double Beta Decay for Particle Physicists

Neutrinoless Double Beta Decay for Particle Physicists Neutrinoless Double Beta Decay for Particle Physicists GK PhD Presentation Björn Lehnert Institut für Kern- und Teilchenphysik Berlin, 04/10/2011 About this talk Double beta decay: Particle physics implications

More information

Nuclear Physics Part 2A: Radioactive Decays

Nuclear Physics Part 2A: Radioactive Decays Nuclear Physics Part 2A: Radioactive Decays Last modified: 23/10/2018 Links What is a Decay? Alpha Decay Definition Q-value Example Not Every Alpha Decay is Possible Beta Decay β rays are electrons Anti-particles

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

Deep Underground Labs and the Search for Dark Matter

Deep Underground Labs and the Search for Dark Matter Deep Underground Labs and the Search for Dark Matter Sujeewa Kumaratunga Feb 16th, 2013 Sujeewa Kumaratunga, TRIUMF Saturday Morning Lectures 1 /38 Outline Dark Matter, a brief history Underground Labs,

More information

DUSEL Initial Suite of Experiments (ISE) 1

DUSEL Initial Suite of Experiments (ISE) 1 Dark Matter (WIMPS) Sensitivity 10^-44-10^-45 Noble Liquid (2 phase) 100 250 4100 LUX 300 proposal for Sanford Lab (2008) (Xe) CDMS Experiment in Soudan (running) Low Temperature Solid State 100 250 2000

More information

SOURCES of RADIOACTIVITY

SOURCES of RADIOACTIVITY Section 9: SOURCES of RADIOACTIVITY This section briefly describes various sources of radioactive nuclei, both naturally occurring and those produced artificially (man-made) in, for example, reactors or

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

Cosmogenic background for the GERDA experiment. Luciano Pandola INFN, Laboratori del Gran Sasso, Italy

Cosmogenic background for the GERDA experiment. Luciano Pandola INFN, Laboratori del Gran Sasso, Italy Cosmogenic background for the GERDA experiment Luciano Pandola INFN, Laboratori del Gran Sasso, Italy Cosmogenic Activity and Background Workshop, Berkeley April 15 th, 2011 GERDA experiment at LNGS The

More information

Results from 730 kg days of the CRESST-II Dark Matter Search

Results from 730 kg days of the CRESST-II Dark Matter Search Results from 730 kg days of the CRESST-II Dark Matter Search Federica Petricca on behalf of the CRESST collaboration: Max-Planck-Institut für Physik, München TU München University of Oxford Universität

More information

Low energy neutron propagation in MCNPX and GEANT4

Low energy neutron propagation in MCNPX and GEANT4 Low energy neutron propagation in and R. Lemrani a M. Robinson b V. A. Kudryavtsev b M. De Jesus c G. Gerbier a N. J. C. Spooner b arxiv:hep-ex/06030 v1 17 Jan 2006 a DAPNIA-SPP, CEA-Saclay, Gif-Sur-Yvette,

More information

nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON

nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON Dark Matter XENON nerix Project 1-> PMT Calibration Project 2-> Neutron Generator Simulation

More information

CHAPTER 7 TEST REVIEW

CHAPTER 7 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min S. Fiorucci Brown University UCLA Dark Matter 2014 Symposium Origins and Distributions of the Backgrounds 15 min What is a signal for LUX? Nuclear recoil Single scatter Signal Low energy, typically < 25

More information

The Search for Dark Matter, and Xenon1TP

The Search for Dark Matter, and Xenon1TP The Search for Dark Matter, and Xenon1TP by Jamin Rager Hillsdale College Assistant Prof. Rafael Lang Purdue University Dept. of Physics Galaxy NGC 3198 2 Galaxy NGC 3198 Rotation Curves http://bustard.phys.nd.edu/phys171/lectures/dm.html

More information

Project Paper May 13, A Selection of Dark Matter Candidates

Project Paper May 13, A Selection of Dark Matter Candidates A688R Holly Sheets Project Paper May 13, 2008 A Selection of Dark Matter Candidates Dark matter was first introduced as a solution to the unexpected shape of our galactic rotation curve; instead of showing

More information

COUPP: Bubble Chambers for Dark Matter Detection

COUPP: Bubble Chambers for Dark Matter Detection COUPP: Bubble Chambers for Dark Matter Detection Eric Vázquez Jáuregui SNOLAB Rencontres de Moriond 2013 La Thuille, Italy; March 9-16, 2013 COUPP bubble chambers Target material: superheated CF 3 I spin-dependent/independent

More information

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich) GERDA experiment A search for neutrinoless double beta decay Roberto Santorelli (Physik-Institut der Universität Zürich) on behalf of the GERDA collaboration ÖPG/SPS/ÖGAA meeting 04/09/09 Neutrinos mixing

More information

Chapter 30 Nuclear Physics and Radioactivity

Chapter 30 Nuclear Physics and Radioactivity Chapter 30 Nuclear Physics and Radioactivity 30.1 Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: 30.1 Structure

More information

Chapter 3 Radioactivity

Chapter 3 Radioactivity Chapter 3 Radioactivity Marie Curie 1867 1934 Discovered new radioactive elements Shared Nobel Prize in physics in 1903 Nobel Prize in Chemistry in 1911 Radioactivity Radioactivity is the spontaneous emission

More information

Neutrinos. Why measure them? Why are they difficult to observe?

Neutrinos. Why measure them? Why are they difficult to observe? Outline What is a neutrino? Why do we want to study them? Building a detector to detect the undetectable What does a neutrino detector see? How do you seperate a neutrino signal from the background? Neutrinos

More information

First tests of the big volume ultra low background gamma spectrometer

First tests of the big volume ultra low background gamma spectrometer First tests of the big volume ultra low background gamma spectrometer N. Todorović,, D. MrđaM rđa,, I. Bikit, M. Vesković,, S. Forkapić,, J. Slivka Departman za fiziku, PMF, Novi Sad 1. Introduction Even

More information

Measuring Dark Matter Properties with High-Energy Colliders

Measuring Dark Matter Properties with High-Energy Colliders Measuring Dark Matter Properties with High-Energy Colliders The Dark Matter Problem The energy density of the universe is mostly unidentified Baryons: 5% Dark Matter: 20% Dark Energy: 75% The dark matter

More information

Solar Neutrinos in Large Liquid Scintillator Detectors

Solar Neutrinos in Large Liquid Scintillator Detectors Solar Neutrinos in Large Liquid Scintillator Detectors M. Chen Queen s University DOANOW March 24, 2007 Low Energy Solar Neutrinos complete our understanding of neutrinos from the Sun pep, CNO, 7 Be, pp

More information

arxiv:astro-ph/ v1 15 Feb 2005

arxiv:astro-ph/ v1 15 Feb 2005 The XENON Dark Matter Experiment Elena Aprile (on behalf of the XENON collaboration) Physics Department and Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027 age@astro.columbia.edu

More information

Neutron Activation of 76Ge

Neutron Activation of 76Ge Neutron Activation of 76Ge Georg Meierhofer people involved: P. Grabmayr J. Jochum Kepler Center for Astro and Particle Physics University Tübingen P. Kudejova L. Canella J. Jolie IKP, Universität zu Köln

More information

Daya Bay and joint reactor neutrino analysis

Daya Bay and joint reactor neutrino analysis Daya Bay and joint reactor neutrino analysis Logan Lebanowski (Tsinghua University) on behalf of the Daya Bay collaboration 2016/11/4 - NNN16, Beijing 1 Contents Daya Bay Reactor Neutrino Experiment Introduction

More information

Background Studies for the XENON100 Experiment. Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH

Background Studies for the XENON100 Experiment. Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH Background Studies for the XENON100 Experiment Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH The XENON dark matter search program Target Volume 62 kg Total

More information

XENONNT AND BEYOND. Hardy Simgen. WIN 2015 MPIK Heidelberg. Max-Planck-Institut für Kernphysik Heidelberg

XENONNT AND BEYOND. Hardy Simgen. WIN 2015 MPIK Heidelberg. Max-Planck-Institut für Kernphysik Heidelberg XENONNT AND BEYOND Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg WIN 2015 MPIK Heidelberg THE XENON PROGRAM FOR DIRECT DARK MATTER SEARCH 1 THE PRESENT: XENON1T! LXe TPC under construction

More information

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of the CUORE and CUORE-0 experiments at Gran Sasso Status of the CUORE and CUORE-0 experiments at Gran Sasso S. Di Domizio INFN and University of Genova for the CUORE collaboration Weak Interactions and Neutrinos Natal, September 19 2013 Neutrinoless double

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

Introduction to Ionizing Radiation

Introduction to Ionizing Radiation Introduction to Ionizing Radiation Bob Curtis OSHA Salt Lake Technical Center Supplement to Lecture Outline V. 10.02 Basic Model of a Neutral Atom Electrons(-) orbiting nucleus of protons(+) and neutrons.

More information

DarkSide-50: performance and results from the first atmospheric argon run

DarkSide-50: performance and results from the first atmospheric argon run DarkSide-50: performance and results from the first atmospheric argon run Yann Guardincerri on behalf of the DarkSide Collaboration August 27th, 2014 1 / 21 DarkSide Direct detection search for WIMP dark

More information