Solar Neutrinos in Large Liquid Scintillator Detectors

Size: px
Start display at page:

Download "Solar Neutrinos in Large Liquid Scintillator Detectors"

Transcription

1 Solar Neutrinos in Large Liquid Scintillator Detectors M. Chen Queen s University DOANOW March 24, 2007

2 Low Energy Solar Neutrinos complete our understanding of neutrinos from the Sun pep, CNO, 7 Be, pp p-p Solar Fusion Chain p + p 2 H + e + + ν e p + e + p 2 H + ν e 2 H + p 3 He + γ 3 He + 3 He 4 He + 2 p 3 He + p 4 He + e + + ν e 3 He + 4 He 7 Be + γ 7 Be + e 7 Li + γ + ν e 7 Be + p 8 B + γ CNO Cycle 12 C + p 13 N + γ 13 N 13 C + e + + ν e 13 C + p 14 N + γ 14 N + p 15 O + γ 15 O 15 N + e + + ν e 7 Li + p α+ α 8 B 2 α + e + + ν e 15 N + p 12 C + α

3 Ga, Cl and SNO Data Distilled deduce the survival probability high energy: directly from SNO medium energy: Cl minus high low energy: Ga minus high, medium θ x is θ 13 we observe that the survival probability for solar neutrinos versus energy is not yet accurately determined from existing experiments transition between vacuum and matter oscillations in the Sun has not been accurately determined Barger, Marfatia, Whisnant, hep-ph/ there is even some tension in existing low and medium data

4 Things You Could Learn with precision data from low energy solar neutrinos fix Δm 2 with KamLAND data, vary θ 13 (with θ 12 fixed or varying) low energy solar neutrino data helps constrain θ 13 extract Δm 2 from solar data, strongly affected by the position of the transition low energy solar neutrino data are key compare with Δm 2 from KamLAND neutrinos versus antineutrinos, tests CPT invariance compare position/shape of the transition at lower energy with the prediction from LMA MSW oscillations might reveal deviations from Standard Model couplings (due to non-standard interactions or coupling to a sterile neutrino admixture) and many of these studies have been done, all pointing to the fact that at the transition (between 1-2 MeV) there is sensitivity to new neutrino physics! (e.g. Balantekin or Friedland, Peña-Garay, Lunardini, or Barger and colleagues )

5 Neutrino-Matter Interaction best-fit oscillation parameters suggest MSW occurs but we have no direct evidence of MSW day-night effect not observed no spectral distortion for 8 B ν s from Peña-Garay testing the vacuum-matter transition is sensitive to new physics for Δm 2 = ev 2, θ = 34 N e at the centre of the Sun E is 1-2 MeV Hamiltonian for neutrino propagation in the Sun

6 New Physics MSW is linear in G F and limits from ν-scattering experiments ( g 2 ) aren t that restrictive oscillation solutions with NSI can fit existing solar and atmospheric neutrino data NSI not currently constrained new pep solar ν data would reveal NSI good fit with NSI pep solar neutrinos are at the sweet spot to test for new physics Friedland, Lunardini, Peña-Garay, hep-ph/

7 Mass-Varying Neutrinos cosmological connection: mass scale of neutrinos and the mass scale of dark energy are similar postulating a scalar field and neutrino coupling results in neutrinos whose mass varies with the background field (e.g. of other neutrinos) Fardon, Nelson, Weiner, hep-ph/ solar neutrinos affected? pep ν: a sensitive probe pep Barger, Huber, Marfatia, hep-ph/

8 Why pep Solar Neutrinos? SSM pep flux: uncertainty ±1.5% known source known cross section (ν-e scattering) measuring the rate gives the survival probability precision test for neutrino physics with low energy solar neutrinos, have to achieve precision similar to SNO or better it s no longer sufficient to just detect the neutrinos pep solar neutrinos: E ν = 1.44 MeV are at the right energy to search for new physics P ee Solar Neutrino Survival Probability E ν [MeV] Sat Mar 19 17:13: pep ν stat + syst + SSM errors estimated Δm 2 = ev 2 tan 2 θ = 0.45 SNO CC/NC observing the rise confirms MSW and our understanding of solar neutrinos

9 Event Rates (Oscillated) 7 Be, pep and CNO Recoil Electron Spectrum events/kton/yr/bin Be solar neutrinos resolution with 450 photoelectrons/mev 3600 pep/year/kton >0.8 MeV 400 using BS05(OP) and best-fit LMA CNO/year/kton >0.8 MeV T e [MeV] Sat Mar 19 18:33:32 18:34:40 18:35:

10 Real KamLAND Backgrounds external pep window

11 pep Solar ν Backgrounds radiopurity requirements 40 K, 210 Bi (Rn daughter) 85 Kr, 210 Po (seen in KamLAND) not a problem since pep signal is at higher energy than 7 Be U, Thnot a problem if one can repeat KamLAND scintillator purity 14 C not a problem since pep signal is at higher energy

12 11 C Cosmogenic Background these plots from the KamLAND proposal muon rate in KamLAND: 26,000 d 1 compared with SNO: 70 d 1

13 Requirements for a Liquid Scintillator pep Solar ν Detector depth to reduce/eliminate 11 C background good light output from the scintillator studied the effect of varying the energy resolution; found not a steep dependence radiopurity control of Rn exposure because of 210 Bi eliminate 40 K internal contamination

14 Depth Matters! Depth Matters!

15 11 C Rate versus Depth P is the rate of 11 C produced per day in 100 tons does not depend all that much on E μ SNO tons has signal: 3600 pep/year 11 C background: 550 events/year Hanohano 10 kton has signal: 36,000 pep/year 11 C background: <550,000 events/year from Galbiati et al. approximately same depth (slightly greater) as Gran Sasso horizontal overburden is superior

16 11 C Tagging Galbiati et al. looked at the efficiency of tagging the 11 C cosmogenic events cannot tag based on just the muon and a delayed cosmogenic event too many muons and 11 C half-life is 20 minutes require a muon and a neutron to tag a delayed cosmogenic event even still, there s a tagging inefficiency of 5-10% 11 C production without detectable neutron muon-induced neutron rate determines the dead time at 4000 m.w.e.: ~40 per day in 100 tons if for each tag you re dead for 2 hours you want each volume firing the veto only 4 times per day or less to successfully tag 11 C events in Hanohano requires muon track determination of a volume of 10 tons out of 10,000 tons

17 Sudbury Neutrino Observatory 1000 tonnes D 2 O 12 m diameter Acrylic Vessel 18 m diameter support structure; 9500 PMTs (~60% photocathode coverage) 1700 tonnes inner shielding H 2 O 5300 tonnes outer shielding H 2 O Urylon liner radon seal depth: 2092 m (~6010 m.w.e.) ~70 muons/day

18 SNO+ we plan to fill the SNO detector with liquid scintillator after the heavy water is removed SNO+ will be: deep (and large) enough to make a precision measurement of the pep solar ν survival probability capable of detecting geoneutrinos with a smaller background from reactor neutrinos (compared to KamLAND) dominant source of neutrinos is the Archean continental crust in the Canadian Shield, surrounding Sudbury

19 Requirements for a Liquid Scintillator pep Solar ν Detector depth to reduce/eliminate 11 C background good light output from the scintillator studied and not a steep dependence radiopurity control of Rn exposure because of 210 Bi eliminate 40 K internal contamination

20 SNO+ Liquid Scintillator new liquid scintillator identified linear alkylbenzene compatible with acrylic, undiluted high light yield pure (light attenuation length, in excess of 20 m at 420 nm) low cost high flash point safe low toxicity safe smallest scattering of all scintillating solvents investigated density ρ = 0.86 g/cm 3 SNO+ light output (photoelectrons/mev) will be approximately 3-4 that of KamLAND ~900 p.e./mev for 54% PMT area coverage

21 LAB Scintillator Optimization safe scintillators LAB has 50-75% greater light yield than KamLAND scintillator

22 SNO+ Signals and Backgrounds resolution with 450 photoelectrons/mev 7 Be solar neutrinos

23 Requirements for a Liquid Scintillator pep Solar ν Detector depth to reduce/eliminate 11 C background good light output from the scintillator studied and not a steep dependence radiopurity control of Rn exposure because of 210 Bi eliminate 40 K internal contamination

24 SNO+ Solar Neutrino Prospects with backgrounds at KamLAND levels U, Th achieved 210 Pb and 40 K post-purification KamLAND targets external γ backgrounds use SNO external activities define fiducial volume we already know there is a reasonable-sized fiducial volume that can be defined

25 Solar Signals with Backgrounds

26 Solar Signals with Backgrounds

27 pep Sensitivity Study 210 Pb at equilibrium with U levels KamLAND post-purification purification targets for 40 K U and Th at current KamLAND levels 3 years livetime 3.4% pep uncertainty, 5.1% CNO uncertainty with 210 Bi constrained

28 SNO+ Summary diverse and exciting physics goals solar neutrinos, precision test of neutrino interactions and MSW, reactor oscillation confirmation, geo-neutrinos in a geologicallyinteresting location, supernova neutrino watch, possibility of a competitive double beta decay experiment relatively low-cost continuation of an existing detector we are planning to make the transition from SNO to SNO+ this year and next new collaborators needed and welcome

Scintillator phase of the SNO+ experiment

Scintillator phase of the SNO+ experiment Mathematik und Naturwissenschaften Institut für Kern- und Teilchen Physik Scintillator phase of the experiment Valentina Lozza On behalf of Collaboration TAUP2011, 05.09.2011 Munich Outline = SNO + Liquid

More information

Present and future of SNO: SNO, SNO+ and SNOLAB. Aksel Hallin,Queen s University for the SNO Collaboration NDM, Paris, September 2006

Present and future of SNO: SNO, SNO+ and SNOLAB. Aksel Hallin,Queen s University for the SNO Collaboration NDM, Paris, September 2006 Present and future of SNO: SNO, SNO+ and SNOLAB Aksel Hallin,Queen s University for the SNO Collaboration NDM, Paris, September 2006 Sudbury Neutrino Observatory 1000 tonnes D 2 O Support Structure for

More information

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration NOW 2014, Otranto, Lecce, Italy September 7-14, 2014 Intro Neutrino physics with the SNO+ detector 2 Intro What we know:! Neutrinos

More information

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO Lea Di Noto on behalf of the Borexino collaboration Vulcano Workshop 20 th -26 th May 2018 [cm -2 s -1 MeV -1 ] SOLAR NEUTRINOS Electrons neutrinos are produced

More information

BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS

BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS Alex Wright Princeton University University of Chicago HEP Seminar May 10 th, 2010 Solar Neutrino Production p-p Solar

More information

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory Review of Solar Neutrinos Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory Solar Neutrinos pp chain: 4p + 2e 4 He + 2ν e + 26.7

More information

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff Solar Neutrinos: Status and Prospects Marianne Göger-Neff NIC 2014, Debrecen TU München Solar Neutrinos Objective of the first solar neutrino experiment: to see into the interior of a star and thus verify

More information

Recent Discoveries in Neutrino Physics

Recent Discoveries in Neutrino Physics Recent Discoveries in Neutrino Physics Experiments with Reactor Antineutrinos Karsten Heeger http://neutrino.physics.wisc.edu/ Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 Standard Model and

More information

KamLAND. Introduction Data Analysis First Results Implications Future

KamLAND. Introduction Data Analysis First Results Implications Future KamLAND Introduction Data Analysis First Results Implications Future Bruce Berger 1 Tohoku University, Sendai, Japan University of Alabama University of California at Berkeley/LBNL California Institute

More information

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington USING NEUTRINOS TO STUDY THE EARTH Nikolai Tolich University of Washington Outline Introduction Recent results The future Structure of the Earth Seismic data splits Earth into 5 basic regions: inner core,

More information

192 days of Borexino. Neutrino 2008 Christchurch, New Zeland May 26, Cristiano Galbiati on behalf of Borexino Collaboration

192 days of Borexino. Neutrino 2008 Christchurch, New Zeland May 26, Cristiano Galbiati on behalf of Borexino Collaboration 192 days of Borexino Neutrino 2008 Christchurch, New Zeland May 26, 2008 Cristiano Galbiati on behalf of Borexino Collaboration 2 Solar Neutrinos Spectrum 3 Solar Neutrinos Spectrum SNO, SuperK 3 Solar

More information

Past, Present, and Future of Solar Neutrino Physics

Past, Present, and Future of Solar Neutrino Physics Past, Present, and Future of Solar Neutrino Physics A.B. Balantekin University of Wisconsin SMU ebubble Workshop January 22, 2008 ...to see into the interior of a star and thus verify directly the hypothesis

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Solar Neutrino Oscillations

Solar Neutrino Oscillations Solar Neutrino Oscillations ( m 2, θ 12 ) Background (aka where we were): Radiochemical experiments Kamiokande and Super-K Where we are: Recent results SNO and KamLAND Global picture Where we are going:

More information

Muons in Borexino. SFB Block Meeting. Daniel Bick Universität Hamburg. D. Bick (Uni HH) Muons in Borexino

Muons in Borexino. SFB Block Meeting. Daniel Bick Universität Hamburg. D. Bick (Uni HH) Muons in Borexino Muons in Borexino SFB Block Meeting Daniel Bick Universität Hamburg 24.03.2010 D. Bick (Uni HH) Muons in Borexino 24.03.2010 1 / 30 Overview 1 Motivation Physics at Borexino Neutrino Detection in Liquid

More information

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso 1 RADIOCHEMICAL Integrated in energy and time CHERENKOV Less than 0.01% of the solar neutrino flux is been measured in

More information

Neutron background and possibility for shallow experiments

Neutron background and possibility for shallow experiments Neutron background and possibility for shallow experiments Tadao Mitsui Research Center for Neutrino Science, Tohoku University 14-16 December, 2005 Neutrino Sciences 2005, Neutrino Geophysics, Honolulu,

More information

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV SOLAR NEUTRINOS Solar spectrum Nuclear burning in the sun produce Heat, Luminosity and Neutrinos pp neutrinos < 0.4 MeV Beryllium neutrinos 0.86 MeV Monochromatic since 2 body decay 2 kev width due to

More information

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50 A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50 International Meeting for Large Neutrino Infrastructures Ecole Architecture Paris Val de Seine, APPEC, 23-24 June, 2014 Soo-Bong

More information

Neutrinos from the Sun and other sources: Results from the Borexino experiment

Neutrinos from the Sun and other sources: Results from the Borexino experiment Neutrinos from the Sun and other sources: Results from the Borexino experiment Marianne Göger-Neff 23.05.2014 Neutrinos from the Sun and other sources: Results from the Borexino experiment Motivation:

More information

Results from Borexino on solar (and geo-neutrinos) Gemma Testera

Results from Borexino on solar (and geo-neutrinos) Gemma Testera Results from Borexino on solar (and geo-neutrinos) Gemma Testera Istituto Nazionale di Fisica Nucleare (Genova) On behalf of the Borexino collaboration Scintillator: 270 t PC+PPO (1.5 g/l) in a 150 mm

More information

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico Results on geoneutrinos at Borexino experiment Heavy Quarks and Leptons 2018 - Yamagata Davide Basilico Outline 1. Geoneutrinos 2. Borexino 3. Analysis and results 2 What are geoneutrinos? Distribution

More information

Neutrinoless double beta decay with SNO+

Neutrinoless double beta decay with SNO+ Neutrinoless double beta decay with SNO+ - 0!"" with SNO+ - Backgrounds - Schedule Freija Descamps for the SNO+ collaboration 1 SNO+ detector 6000 m.w.e Deck with DAQ SNO+ operator ~780T LAB liquid organic

More information

Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration

Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration Moscow, 15/10/2005 Aldo Ianni, INFN LNGS 1 Outline Borexino: Italian-Russian cooperation

More information

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos 14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin The Solar Neutrinos 14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009

More information

KamLAND. Studying Neutrinos from Reactor

KamLAND. Studying Neutrinos from Reactor KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KEK : High Energy Accelerator Research Organization KamLAND Collaboration Outline 1. KamLAND Overview 2. Reactor Neutrinos 3. e Detection in Liquid

More information

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future Karsten M. Heeger Lawrence Berkeley National Laboratory 8 7 6 5 4 3 2 1 SNO φ ES SNO φ CC SNO φ NC SSM φ NC 0 0 1 2 3 4 5 6

More information

Results from Borexino 26th Rencontres de Blois

Results from Borexino 26th Rencontres de Blois Results from Borexino 26th Rencontres de Blois - 2014 Marco G. Giammarchi Istituto Nazionale di Fisica Nucleare Via Celoria 16 20133 Milano (Italy) marco.giammarchi@mi.infn.it http://pcgiammarchi.mi.infn.it/giammarchi/

More information

Neutrino Experiments with Reactors

Neutrino Experiments with Reactors Neutrino Experiments with Reactors 1 Ed Blucher, Chicago Lecture 2 Reactors as antineutrino sources Antineutrino detection Reines-Cowan experiment Oscillation Experiments Solar Δm 2 (KAMLAND) Atmospheric

More information

Outline. (1) Physics motivations. (2) Project status

Outline. (1) Physics motivations. (2) Project status Yu-Feng Li Institute of High Energy Physics, Beijing On behalf of the JUNO collaboration 2014-10-10, Hsinchu/Fo-Guang-Shan 2nd International Workshop on Particle Physics and Cosmology after Higgs and Planck

More information

Neutrinoless Double Beta Decay Search with SNO+

Neutrinoless Double Beta Decay Search with SNO+ Neutrinoless Double Beta Decay Search with SNO+ Kalpana Singh for the SNO+ Collaboration University of Alberta 8th Nov. 2016 1 Location 8th Nov. 2016 2 Location, 5890 mwe 8th Nov. 2016 3 63 muons/ day

More information

Daya Bay and joint reactor neutrino analysis

Daya Bay and joint reactor neutrino analysis Daya Bay and joint reactor neutrino analysis Logan Lebanowski (Tsinghua University) on behalf of the Daya Bay collaboration 2016/11/4 - NNN16, Beijing 1 Contents Daya Bay Reactor Neutrino Experiment Introduction

More information

Metallicities in stars - what solar neutrinos can do

Metallicities in stars - what solar neutrinos can do - what solar neutrinos can do Institute for Nuclear and Particle Physics, Technical University Dresden, 01069 Dresden, Germany E-mail: zuber@physik.tu-dresden.de New elemental abundance determinations

More information

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011 Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011 First Borexino proposal: 1991 Main goal: real time measurement of sub-mev solar neutrinos Why? To solve the Solar Neutrino Puzzle (missingsolarneutrinos)

More information

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015 Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015 Signals in Borexino Solar n Anti-n from the Earth (see A. Ianni talk) Anti-n (or n) from a radioactive source (SOX,

More information

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM Solar Neutrinos & MSW Effect Pouya Bakhti General Seminar Course Nov. 2012 - IPM Outline Introduction Neutrino Oscillation Solar Neutrinos Solar Neutrino Experiments Conclusions Summary Introduction Introduction

More information

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing 章飞虹 ZHANG FeiHong zhangfh@ihep.ac.cn Ph.D. student from Institute of High Energy Physics, Beijing INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS 2012 Erice, 23 June 2 July 2012 1 Before Hunting Introduction

More information

Current Results from Reactor Neutrino Experiments

Current Results from Reactor Neutrino Experiments Current Results from Reactor Neutrino Experiments Soo-Bong Kim (KNRC, Seoul National University) Tsukuba Global Science Week (TGSW015), Tsukuba, Sep. 8-30, 015 Neutrino Physics with Reactor 1956 Discovery

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Suggested reading: C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press

More information

4p 4 He + 2e + +2ν e. (1)

4p 4 He + 2e + +2ν e. (1) 1 SOLAR NEUTRINOS Revised September 2001 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan). 1. Introduction: The Sun is a main-sequence star at a stage of stable hydrogen burning.

More information

0νββ Physics in WbLS. Andy Mastbaum University of Pennsylvania. WbLS Workshop LBNL 17 May 2014

0νββ Physics in WbLS. Andy Mastbaum University of Pennsylvania. WbLS Workshop LBNL 17 May 2014 0νββ Physics in WbLS Andy Mastbaum University of Pennsylvania WbLS Workshop LBNL 17 May 2014 Requirements Future detectors must: Reach a sensitivity of 15 mev at the 3σ CL after years of running, according

More information

Study of solar neutrino energy spectrum above 4.5 MeV in Super Kamiokande I

Study of solar neutrino energy spectrum above 4.5 MeV in Super Kamiokande I Study of solar neutrino energy spectrum above 4.5 MeV in Super Kamiokande I 16, Feb. 2004 in ICEPP symposium Niigata Univ. C.Mitsuda for Super Kamiokande collaboration 1, Solar Neutrino Oscillation 2,

More information

Low Energy 8 B Solar Neutrinos in SNO+: Controlling and Constraining Radon Backgrounds

Low Energy 8 B Solar Neutrinos in SNO+: Controlling and Constraining Radon Backgrounds Low Energy 8 B Solar Neutrinos in SNO+: Controlling and Constraining Radon Backgrounds by Maryam Seddighin A thesis submitted to the Department of Physics, Engineering Physics and Astronomy in conformity

More information

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory Measuring sin 2 2θ 13 with Reactor Antineutrinos at Daya Bay An Underground Laboratory for a Multi-Detector Experiment Karsten Heeger Lawrence Berkeley National Laboratory On behalf of the Daya Bay collaboration

More information

Li in a WbLS Detector

Li in a WbLS Detector 7 Li in a WbLS Detector Gabriel D. Orebi Gann JinPing Solar Workshop, LBNL June 10th, 2014 U. C. Berkeley & LBNL Probing the Transition Region: why we need 8 B Largest affect on shape of survival probability

More information

Neutrino detectors. V. Lozza,

Neutrino detectors. V. Lozza, Neutrino detectors, 5.10.2011 Outline - Introduction to neutrinos Sources of neutrinos Detection techniques Why we need to go underground? Background components What to do? Summary A brief of history 1914:

More information

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos Stefania Ricciardi HEP PostGraduate Lectures 2016 University of London 1 Neutrino Sources Artificial: nuclear reactors

More information

Neutrino Experiments with Reactors

Neutrino Experiments with Reactors Neutrino Experiments with Reactors 1 Ed Blucher, Chicago Reactors as antineutrino sources Antineutrino detection Reines-Cowan experiment Oscillation Experiments Solar Δm 2 (KAMLAND) Atmospheric Δm 2 --

More information

Low Energy Neutrino Astronomy and Results from BOREXINO

Low Energy Neutrino Astronomy and Results from BOREXINO Low Energy Neutrino Astronomy and Results from BOREXINO DESY Hamburg / DESY Zeuthen March 25 th and 26th Lothar Oberauer, Physikdepartment E15, TU München Charge 0-1 +2/3-1/3 Neutrinos as probes? Neutrinos

More information

Solar Neutrino Road Map. Carlos Pena Garay IAS

Solar Neutrino Road Map. Carlos Pena Garay IAS α Solar Neutrino Road Map Carlos Pena Garay IAS ~ February 11, 004 NOON004 Be + p-p p p (pep) measurements Why perform low-energy solar neutrino experiments? Amazing progress on how the Sun shines, the

More information

SNO+ ARTFEST, MAY 2014, KINGSTON DR. CHRISTINE KRAUS, LAURENTIAN UNIVERSITY

SNO+ ARTFEST, MAY 2014, KINGSTON DR. CHRISTINE KRAUS, LAURENTIAN UNIVERSITY SNO+ ARTFEST, MAY 2014, KINGSTON DR. CHRISTINE KRAUS, LAURENTIAN UNIVERSITY SNO+ IS LOCATED AT SNOLAB 300 km Canada Ontario Sudbury Creighton mine use existing SNO cavity 2 km or 6000 m.w.e. Artfest 2014,

More information

Status of Solar Neutrino Oscillations

Status of Solar Neutrino Oscillations Status of Solar Neutrino Oscillations With many thanks to Dave Wark - RAL/ University of Sussex and Stephen Brice - Fermilab The Solar Neutrino Problem Next three plots adapted from http://www.sns.ias.edu/~jnb/

More information

Particle Physics: Neutrinos part I

Particle Physics: Neutrinos part I Particle Physics: Neutrinos part I José I. Crespo-Anadón Week 8: November 10, 2017 Columbia University Science Honors Program Course policies Attendance record counts Up to four absences Lateness or leaving

More information

Reactor-based Neutrino Experiment

Reactor-based Neutrino Experiment Reactor-based Neutrino Experiment Haoqi Lu Institute of High Energy physics, China Member of the Daya Bay collaboration 2013PIC, Beijing 1 Outline Introduction Reactor-based neutrino experiment Results

More information

Solar and atmospheric ν s

Solar and atmospheric ν s Solar and atmospheric ν s Masato SHIOZAWA Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (WPI),

More information

SOLAR NEUTRINOS REVIEW Revised December 2007 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan).

SOLAR NEUTRINOS REVIEW Revised December 2007 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan). 1 SOLAR NEUTRINOS REVIEW Revised December 2007 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan). 1. Introduction The Sun is a main-sequence star at a stage of stable hydrogen

More information

( Some of the ) Lateset results from Super-Kamiokande

( Some of the ) Lateset results from Super-Kamiokande 1 ( Some of the ) Lateset results from Super-Kamiokande Yoshinari Hayato ( Kamioka, ICRR ) for the SK collaboration 1. About Super-Kamiokande 2. Solar neutrino studies in SK 3. Atmospheric neutrino studies

More information

Purification of Liquid Scintillator and Monte Carlo Simulations of Relevant Internal Backgrounds in SNO+

Purification of Liquid Scintillator and Monte Carlo Simulations of Relevant Internal Backgrounds in SNO+ Purification of Liquid Scintillator and Monte Carlo Simulations of Relevant Internal Backgrounds in SNO+ by Sarah Elizabeth Quirk A thesis submitted to the Department of Physics, Engineering Physics and

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Supervisor: Kai Schweda 5/18/2009 Johannes Stiller 1 Outline The Standard (Solar) Model Detecting Neutrinos The Solar Neutrino Problem Neutrino Oscillations Neutrino Interactions

More information

1. Introduction on Astroparticle Physics Research options

1. Introduction on Astroparticle Physics Research options Research options Large variety of topics in astro physics and particle physics Cosmic rays (sources, production and acceleration mechanisms) Stability of matter or proton decay (GUTs) Solar neutrinos (the

More information

Recent results from Borexino. Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration

Recent results from Borexino. Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration Recent results from Borexino Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration Borexino physics! Data-taking since May 2007 : many relevant results on solar/geo ν physics and

More information

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

MiniBooNE, LSND, and Future Very-Short Baseline Experiments 1 MiniBooNE, LSND, and Future Very-Short Baseline Experiments Mike Shaevitz - Columbia University BLV2011 - September, 2011 - Gatlinburg, Tennessee Neutrino Oscillation Summary 2! µ "! Sterile "! e New

More information

- Future Prospects in Oscillation Physics -

- Future Prospects in Oscillation Physics - Measuring θ 13 and the Search for Leptonic CP Violation - Future Prospects in Oscillation Physics - Karsten M. Heeger Lawrence Berkeley National Laboratory ν e flux θ 13 =? P ee, (4 MeV) 1/r 2 Evidence

More information

THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory

THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory Introduction Highlights of SNO Results NCD Phase Update Future Analysis Plan Keith Rielage on behalf

More information

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC The Search for θ13 : First Results from Double Chooz Jaime Dawson, APC Contents Brief reminder θ13 current knowledge Reactor experiments Double Chooz Far detector Calibration Neutrinos & Backgrounds Oscillation

More information

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012 Background Characterization and Rejection in the LZ Detector David Malling Brown University IDM 2012 July 25, 2012 LZ Construction 2 Background Sources Ti cryostats 1500 kg

More information

Reactor Neutrino Oscillation Experiments: Status and Prospects

Reactor Neutrino Oscillation Experiments: Status and Prospects 6! 5! 4! 1 2! 3!! Reactor Neutrino Oscillation Experiments: Status and Prospects Survival Probability 1 0.8 0.6 0.4 0.2 0 20 4! 15 Karsten M. Heeger University of Wisconsin Data - BG - Geo & e 99.73% C.L.

More information

Solar Neutrinos with Borexino Low Background Lessons for the JinPing Laboratory

Solar Neutrinos with Borexino Low Background Lessons for the JinPing Laboratory Solar Neutrinos with Borexino Low Background Lessons for the JinPing Laboratory Frank Calaprice and Jingke Xu Department of Physics Princeton University 4/10/2014 Solar Neutrinos at Jin Ping 1 Solar Neutrinos

More information

The Double Chooz Project

The Double Chooz Project The Double Chooz Project Progress and Expected Sensitivity David McKee, KSU 13 17 July 2009 TeVPA @ SLAC Outline I. Neutrino mixing and θ 13 II. Existing θ 13 measurements III. This is hard with a single

More information

SOLAR NEUTRINO EXPERIMENTS: STATUS AND PROSPECTS M. C. Chen

SOLAR NEUTRINO EXPERIMENTS: STATUS AND PROSPECTS M. C. Chen ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2011.. 42.. 4 SOLAR NEUTRINO EXPERIMENTS: STATUS AND PROSPECTS M. C. Chen Department of Physics, Queen's University, Kingston, Ontario, Canada NEUTRINOS FROM THE SUN 1087 CHLORINE EXPERIMENT

More information

ν?? Solar & Atmospheric Oscillation Experiments Greg Sullivan University of Maryland Aspen Winter Conference January 21, 1999 )Past )Present )Future

ν?? Solar & Atmospheric Oscillation Experiments Greg Sullivan University of Maryland Aspen Winter Conference January 21, 1999 )Past )Present )Future Solar & Atmospheric Oscillation Experiments Greg Sullivan of Maryland Aspen Winter Conference January 21, 1999 ν?? e )Past z Neutrino Mass Mass & Oscillations )Present z Atmospheric neutrinos z Solar Solar

More information

Studies of the XENON100 Electromagnetic Background

Studies of the XENON100 Electromagnetic Background Studies of the XENON100 Electromagnetic Background Daniel Mayani Physik-Institut University of Zurich PhD Seminar PSI, August 26-27, 2015 Searching for elusive particles The main challenge for experiments

More information

arxiv: v1 [hep-ex] 22 Jan 2009

arxiv: v1 [hep-ex] 22 Jan 2009 Solar neutrino detection Lino Miramonti Physics department of Milano University and INFN arxiv:0901.3443v1 [hep-ex] 22 Jan 2009 Abstract. More than 40 years ago, neutrinos where conceived as a way to test

More information

The JUNO veto detector system. Haoqi Lu Institute of High Energy physics (On Behalf of the JUNO Collaboration) TIPP2017, May22-26,Beijing

The JUNO veto detector system. Haoqi Lu Institute of High Energy physics (On Behalf of the JUNO Collaboration) TIPP2017, May22-26,Beijing The JUNO veto detector system Haoqi Lu Institute of High Energy physics (On Behalf of the JUNO Collaboration) TIPP2017, May22-26,Beijing 1 The Jiangmen Underground Neutrino Observatory (JUNO) Detector

More information

Andrey Formozov The University of Milan INFN Milan

Andrey Formozov The University of Milan INFN Milan T h e i nv e s t i g a t i o n of l i q u i d s c i n t i l l a t o r p ro p e r t i e s, e n e r g y a n d s p a t i a l re s o l u t i o n fo r JUNO re a c t o r n e u t r i n o e x p e r i m e n t Andrey

More information

SNO+ and Geoneutrino Physics

SNO+ and Geoneutrino Physics SNO+ and Geoneutrino Physics by Chunlin Lan A thesis submitted to the Department of Physics, Engineering Physics and Astronomy in conformity with the requirements for the degree of Master of Science Queen

More information

Proton decay and neutrino astrophysics with the future LENA detector

Proton decay and neutrino astrophysics with the future LENA detector Proton decay and neutrino astrophysics with the future LENA detector Teresa Marrodán Undagoitia tmarroda@ph.tum.de Institut E15 Physik-Department Technische Universität München Paris, 11.09.08 Outline

More information

Neutrino oscillation experiments: Recent results and implications

Neutrino oscillation experiments: Recent results and implications Title transparency Neutrino oscillation experiments: Recent results and implications W. Hampel MPI Kernphysik Heidelberg Motivation for talk On the way from the Standard Model to String Theory: appropriate

More information

arxiv: v1 [hep-ex] 22 Nov 2012

arxiv: v1 [hep-ex] 22 Nov 2012 PRAMANA journal of physics Indian Academy of Sciences Low Energy Neutrino Measurements arxiv:1211.5359v1 [hep-ex] 22 Nov 2012 DAVIDE D ANGELO a, a Università degli Studi di Milano e I.N.F.N. sez. di Milano

More information

Neutrinos. Why measure them? Why are they difficult to observe?

Neutrinos. Why measure them? Why are they difficult to observe? Outline What is a neutrino? Why do we want to study them? Building a detector to detect the undetectable What does a neutrino detector see? How do you seperate a neutrino signal from the background? Neutrinos

More information

Precision Measurement of the Low Energy Solar Neutrino Spectrum with the LENS Experiment Mark Pitt * Virginia Tech for the LENS Collaboration

Precision Measurement of the Low Energy Solar Neutrino Spectrum with the LENS Experiment Mark Pitt * Virginia Tech for the LENS Collaboration Precision Measurement of the Low Energy Solar Neutrino Spectrum with the LENS Experiment Mark Pitt * Virginia Tech for the LENS Collaboration 2009 Meeting of the Division of Particles and Fields of the

More information

arxiv: v1 [hep-ex] 14 May 2015

arxiv: v1 [hep-ex] 14 May 2015 arxiv:1505.03641v1 [hep-ex] 14 May 2015 Recent Results from Daya Bay Reactor Neutrino Experiment B. Z. HU on behalf of the Daya Bay collaboration Department of Physics, National Taiwan University, No.

More information

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

Neutrino mixing II. Can ν e ν µ ν τ? If this happens: Can ν e ν µ ν τ? If this happens: Neutrino mixing II neutrinos have mass (though there are some subtleties involving the MSW mechanism) physics beyond the (perturbative) Standard Model participates Outline:

More information

Searching for rare nuclear processes at low energies development of background reduction techniques for cutting-edge experiments.

Searching for rare nuclear processes at low energies development of background reduction techniques for cutting-edge experiments. Searching for rare nuclear processes at low energies development of background reduction techniques for cutting-edge experiments Grzegorz Zuzel March 3, 2017 Jagiellonian University in Kraków Department

More information

The Daya Bay Reactor Neutrino Experiment

The Daya Bay Reactor Neutrino Experiment The Daya Bay Reactor Neutrino Experiment Ming-chung Chu The Chinese University of Hong Kong, Hong Kong On behalf of the Daya Bay Collaboration Partial support: CUHK VC Discretionary Fund, RGC CUHK3/CRF/10R

More information

New results from RENO and prospects with RENO-50

New results from RENO and prospects with RENO-50 New results from RENO and prospects with RENO-50 Soo-Bong Kim KNRC, Department of Physics and Astronomy, Seoul National University, Seoul 151-742, South Korea Abstract RENO (Reactor Experiment for Neutrino

More information

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012 NEW νe Appearance Results from the T2K Experiment Matthew Malek Imperial College London University of Birmingham HEP Seminar 13 June 2012 Outline Physics motivation: Neutrinos & Oscillations Overview of

More information

Recent results from Super-Kamiokande

Recent results from Super-Kamiokande Recent results from Super-Kamiokande ~ atmospheric neutrino ~ Yoshinari Hayato ( Kamioka, ICRR, U-Tokyo ) for the Super-Kamiokande collaboration 1 41.4m Super-Kamiokande detector 50000 tons Ring imaging

More information

LENS Prototyping Status Report

LENS Prototyping Status Report LENS Prototyping Status Report Presented by For the LENS Collaboration Supported by the National Science Foundation Solar Neutrino Spectrum Measurements limited to 8 BatE>2.8MeV, 7 Be, and pep Needed--

More information

Super-Kamiokande ~The Status of n Oscillation ~

Super-Kamiokande ~The Status of n Oscillation ~ May 26, 2006 Vulcano Workshop 2006 Super-Kamiokande ~The Status of n Oscillation ~ Yoshihisa OBAYASHI (ICRR, Univ. of Tokyo) for Super-Kamiokande Collaboration May 26, 2006 Y.Obayashi @ Vulcano 2006 1

More information

Search for Sterile Neutrinos with the Borexino Detector

Search for Sterile Neutrinos with the Borexino Detector Search for Sterile Neutrinos with the Borexino Detector PANIC 2014 Hamburg on behalf of the BOREXINO Collaboration Institut für Experimentalphysik (Universität Hamburg) Borexino Detector Site 1400 m of

More information

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15 MINOS Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15 2 Overview and Current Status Beam Detectors Analyses Neutrino Charged Current

More information

NEUTRINO OSCILLATION EXPERIMENTS AT NUCLEAR REACTORS

NEUTRINO OSCILLATION EXPERIMENTS AT NUCLEAR REACTORS NEUTRINO OSCILLATION EXPERIMENTS AT NUCLEAR REACTORS GIORGIO GRATTA Physics Department, Stanford University, Stanford, CA 94305, USA E-mail: gratta@hep.stanford.edu In this paper I give an overview of

More information

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011 Searching for Supernova Relic Neutrinos Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011 Outline Introduction: A Brief History of Neutrinos Theory Supernova Neutrino Emission Supernova

More information

Leaching Studies for the SNO+ Experiment

Leaching Studies for the SNO+ Experiment Leaching Studies for the SNO+ Experiment Pouya Khaghani Laurentian University SNOLAB Users Meeting Symposium September 2 nd 2016 1 SNO+ Physics SNOLAB, Creighton Mine (2070m 6000 m. w. e) Linear Alkyl

More information

The LENA Neutrino Observatory

The LENA Neutrino Observatory The LENA Neutrino Observatory for the LENA Collaboration 1 Consortium of European science institutions and industry partners Design studies funded by the European Community (FP7) LAGUNA: detector site,

More information

Other Physics with Geo-Neutrino Detectors

Other Physics with Geo-Neutrino Detectors Other Physics with Geo-Neutrino Detectors M. Lindner Technical University Munich Neutrino Geophysics Workshop Hawaii, Dec. 14-16, 2005 Neutrinos & New Physics neutrinos as probes neutrino properties &

More information

Precise measurement of reactor antineutrino oscillations at Daya Bay

Precise measurement of reactor antineutrino oscillations at Daya Bay Precise measurement of reactor antineutrino oscillations at Daya Bay Vít Vorobel (on behalf of the Daya Bay Collaboration) Charles University in Prague HEP2007 Conference, Manchester, Jul. 19, 2007 1 The

More information

RENO Reactor Neutrino Experiment

RENO Reactor Neutrino Experiment RENO Reactor Neutrino Experiment "Reactor neutrino oscillation" and "Development of liquid scintillators for the neutrino experiments RENO = Reactor Experiment for Neutrino Oscillation (On behalf of RENO

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information