( ) ( ) 1 ( ) Algebra Cheat Sheet ( ) (, ) = ( ) + ( ) ( )( ) Basic Properties & Facts Arithmetic Operations. Properties of Inequalities. b a.

Size: px
Start display at page:

Download "( ) ( ) 1 ( ) Algebra Cheat Sheet ( ) (, ) = ( ) + ( ) ( )( ) Basic Properties & Facts Arithmetic Operations. Properties of Inequalities. b a."

Transcription

1 Alger Chet Sheet Bsi Proerties & Fts Arithmeti Oertios Proerties of Iequlities If < the+ < + < + ( + ) If < > the < < If < < the > > Proerties of Asolute Vlue + if + if < , + + Trigle Iequlit Diste Formul Eoet Proerties If P (, ) P (, ) re two m + m m oits the iste etwee them is m m m m, m m m Proerties of Rils m m,if is o,if is eve (, ) ( ) + ( ) P P Comle Numers i i i ( + i) + ( + i) + + ( + ) i ( + i) ( + i) + ( ) i ( + )( + ) + ( + ) ( + i)( i) +, i i i + i + + i i + i + i + i Comle Moulus Comle Cojugte For omlete set of olie Alger otes visit htt://tutoril.mth.lmr.eu. 5 Pul Dwkis

2 Logrithms Log Proerties Defiitio log is equivlet to Emle log 5 euse Seil Logrithms l log turl log e log log ommo log where e.78888k Ftorig Formuls If is o the, + + L+ + ( )( L ) Solve 6 Logrithm Proerties log log log log log r rlog Ftorig Solvig log log + log log log log The omi of log is > Qurti Formul Solve + +, If If If ± 4 4 > - Two rel uequl sols. 4 - Reete rel solutio. 4 < - Two omle solutios. Squre Root Proert If the ± Asolute Vlue Equtios/Iequlities If is ositive umer or < < < > < or > Comletig the Squre (4) Ftor the left sie () Divie the oeffiiet of the 5 () Move the ostt to the other sie. 5 () Tke hlf the oeffiiet of, squre it it to oth sies (5) Use Squre Root Proert 9 9 ± ± 4 (6) Solve for 9 ± For omlete set of olie Alger otes visit htt://tutoril.mth.lmr.eu. 5 Pul Dwkis

3 Costt Futio or f Grh is horizotl lie ssig through the oit (, ). Lie/Lier Futio m+ or f m+ Grh is lie with oit (, ) sloe m. Sloe Sloe of the lie otiig the two,, is oits ( ) rise m ru Sloe iteret form The equtio of the lie with sloe m, is -iteret m+ Poit Sloe form The equtio of the lie with sloe m, is ssig through the oit ( ) + m( ) Prol/Qurti Futio h + k f h + k The grh is rol tht oes u if > or ow if < hs verte hk,. t Prol/Qurti Futio + + f + + The grh is rol tht oes u if > or ow if < hs verte t, f. Futios Grhs Prol/Qurti Futio + + g + + The grh is rol tht oes right if > or left if < hs verte t g,. Cirle h + k r Grh is irle with rius r eter hk,. Ellise ( h) ( k) + Grh is ellise with eter ( hk, ) with verties uits right/left from the eter verties uits u/ow from the eter. Herol ( h) ( k) Grh is herol tht oes left hk,, verties right, hs eter t uits left/right of eter smtotes tht ss through eter with sloe ±. Herol ( k) ( h) Grh is herol tht oes u hk,, verties ow, hs eter t uits u/ow from the eter smtotes tht ss through eter with sloe ±. For omlete set of olie Alger otes visit htt://tutoril.mth.lmr.eu. 5 Pul Dwkis

4 Commo Algeri Errors Error Reso/Corret/Justifitio/Emle Divisio zero is uefie! 9 ( ) , ( ) 9 Wth rethesis! ( ) A more omle versio of the revious error Bewre of iorret elig! + Mke sure ou istriute the -! See revious error ( + ) ( + ) ( + ) ( + ) More geerl versios of revious three errors Squre first the istriute! See the revious emle. You ot ftor out ostt if there is ower o the rethesis! Now see the revious error. For omlete set of olie Alger otes visit htt://tutoril.mth.lmr.eu. 5 Pul Dwkis

5 Right trigle efiitio For this efiitio we ssume tht < q < or < q < 9. oosite oosite siq hoteuse jet osq hoteuse oosite tq jet Trig Chet Sheet Defiitio of the Trig Futios hoteuse jet hoteuse sq oosite hoteuse seq jet jet otq oosite Uit irle efiitio For this efiitio q is gle. siq sq osq seq tq otq Fts Proerties Domi The omi is ll the vlues of q tht Perio e lugge ito the futio. The erio of futio is the umer, T, suh tht f ( q + T) f ( q). So, if w siq, q e gle is fie umer q is gle we osq, q e gle hve the followig erios. Ê tq, q Á+,, ±, ±, K Ë sq, q,, ±, ±, K Ê seq, q Á+,, ±, ±, K Ë otq, q,, ±, ±, K Rge The rge is ll ossile vlues to get out of the futio. - siq sq sq - - osq seq seq - - < tq < - < otq < q (, ) si ( wq) os( wq) Æ Æ t ( wq) Æ T s( wq) se( wq) Æ Æ q ot ( wq) Æ T T w T w w T w T w w 5 Pul Dwkis

6 Tget Cotget Ietities siq osq tq otq osq siq Reirol Ietities sq siq siq sq seq osq osq seq otq tq tq otq Pthgore Ietities si q + os q t q + se q + ot q s q Eve/O Formuls si - q -siq s - q -sq os - q osq se - q seq t - q -tq ot - q -otq Perioi Formuls If is iteger. si q + siq s q + sq os q + osq se q + seq t q + tq ot q + otq Doule Agle Formuls si q siqosq os os -si t q q q ( q ) q - os -si q tq - t q Degrees to Ris Formuls If is gle i egrees t is gle i ris the t 8 fi t t 8 8 Formuls Ietities Hlf Agle Formuls si q -os( q) os q + os( q) -os( q ) t q + os q Sum Differee Formuls si ± sios ± ossi os ± osos msisi t ± t t ( ± ) m t t Prout to Sum Formuls sisi Èos os Î osos Èos os Î sios Èsi( ) si ( ) Î ossi Èsi( + ) -si ( -) Î Sum to Prout Formuls Ê + Ê - si + si siá osá Ë Ë Ê + Ê - si - si osá si Á Ë Ë Ê + Ê - os + os osá osá Ë Ë Ê + Ê - os - os -siá si Á Ë Ë Cofutio Formuls Ê Ê siá - q osq osá - q siq Ë Ë Ê Ê sá - q seq seá - q sq Ë Ë Ê Ê tá - q otq otá - q tq Ë Ë 5 Pul Dwkis

7 Uit Cirle Ê Á- Ë Ê Á- Ë,, 5 6 Ê Á-, Ë (, ) Ê Á, Ë 4 Ê Á Ë 6, Ê Á Ë, (-,) 8 6 (, ) Ê Á-,- Ë 7 6 Ê Á-,- Ë 5 4 Ê Á-,- Ë (, - ) Ê Á,- Ë 6 Ê Á,- Ë Ê Á,- Ë For orere ir o the uit irle (, ) : osq siq Emle Ê5 Ê5 osá si Á - Ë Ë 5 Pul Dwkis

8 Defiitio - si is equivlet to si - os is equivlet to os - t is equivlet to t Domi Rge Futio Domi Rge - si os - - t - < < - < < Iverse Trig Futios Iverse Proerties - - os os os os q q ( -( ) ) -( ( q) ) -( ) -( q ) si si si si q t t t t q Alterte Nottio - si rsi os t - - ros rt Lw of Sies, Cosies Tgets g Lw of Sies si si sig Lw of Cosies + - os os osg Mollweie s Formul + os ( - ) si g Lw of Tgets - t - + t + ( -g) ( g) ( -g) ( g) - t + t + - t + t + 5 Pul Dwkis

9 Clulus Chet Sheet Limits Defiitios Preise Defiitio : We s lim f ( ) L if Æ for ever e > there is > suh tht wheever f - L < e. < - < the Workig Defiitio : We s lim f L if we mke f ( ) s lose to L s we wt tkig suffiietl lose to (o either sie of ) without lettig. Right h limit : lim + Æ Æ f L. This hs the sme efiitio s the limit eet it requires >. Left h limit : lim - Æ f L. This hs the Limit t Ifiit : We s lim sme efiitio s the limit eet it requires egtive. <. Reltioshi etwee the limit oe-sie limits lim f ( ) L fi lim f ( ) lim f ( ) L lim f ( ) lim f ( ) L Æ Æ Æ lim lim fi lim f f + - Æ Æ Assume lim lim f Æ Æ g. limèf ( ) lim f ( ) Î Æ Æ. limèf ( ) ± g( ) lim f ( ) ± lim g( ) Î Æ Æ Æ. limèf ( ) g( ) lim f ( ) lim g( ) Î Æ Æ Æ Note : sg( ) if >. lim e & lim e Æ Æ-. liml ( ) & lim l ( ) Æ Æ + Æ f L if we mke f ( ) s lose to L s we wt tkig lrge eough ositive. There is similr efiitio for lim Æ- eet we require lrge egtive. Ifiite Limit : We s lim f Æ f L if we mke f ( ) ritrril lrge ( ositive) tkig suffiietl lose to (o either sie of ) without lettig. There is similr efiitio for lim f Æ eet we mke f ( ) ritrril lrge Æ Æ f Æ fi lim Does Not Eist Proerties oth eist is umer the, 4. ( ) È f lim f Æ lim Í Æ Îg lim g Æ 5. limèf ( ) lim f ( ) È Î Î Æ Æ 6. limè f ( ) lim f ( ) Î Æ Æ Bsi Limit Evlutios t ± sg - if <. -. If r > the lim r Æ r 4. If r > is rel for egtive the lim r Æ- 5. eve : lim Ʊ 6. o : lim & lim Æ - f L Æ ( ) rovie g Æ Æ- lim - 7. eve : lim L sg Ʊ o : lim L sg Æ o : lim L sg Æ Visit htt://tutoril.mth.lmr.eu for omlete set of Clulus otes. 5 Pul Dwkis

10 Clulus Chet Sheet Cotiuous Futios If f ( ) is otiuous t the Cotiuous Futios Comositio f ( ) is otiuous t lim g ( ) the Æ ( ) lim lim f g f g f Æ Æ Ftor Cel lim lim Æ - Æ lim 4 Æ Rtiolize Numertor/Deomitor lim lim Æ9 9-8 Æ lim lim Æ9 Æ Comie Rtiol Eressios Ê Ê - ( + h) lim Á - lim hæ h h hæ Ë + há ( h) Ë + Ê -h - lim lim hæ há ( h) - hæ Ë + ( + h) Evlutio Tehiques L Hositl s Rule lim f f f Æ ( ) f If lim or lim Æ g Æ g f f lim lim Æ g Æ g ± ± the, is umer, or - Polomils t Ifiit q re olomils. To omute ( ) ( ) lim Ʊ q( ) of oth ( ) ftor lrgest ower of i q( ) out q the omute limit lim lim lim 5 - Æ- 5- Æ- Æ- - 5 ( -) Pieewise Futio Ï + 5 if <- lim g( ) where g( ) Ì Æ- Ó - if - Comute two oe sie limits, lim g lim Æ- Æ- lim g lim Æ- Æ- Oe sie limits re ifferet so lim g( ) Æ- oes t eist. If the two oe sie limits h lim g woul hve eiste ee equl the Æ- h the sme vlue. Some Cotiuous Futios Prtil list of otiuous futios the vlues of for whih the re otiuous.. Polomils for ll. 7. os( ) si ( ) for ll.. Rtiol futio, eet for s tht give ivisio zero. 8. t ( ) se( ) rovie. ( o) for ll. L, -,-,,, L 4. ( eve) for ll. 9. ot 5. e for ll. ( ) s( ) rovie 6. l for >. L, -, -,,,, L Itermeite Vlue Theorem Suose tht f ( ) is otiuous o [, ] let M e umer etwee f ( ) The there eists umer suh tht < < f ( ) M. f. Visit htt://tutoril.mth.lmr.eu for omlete set of Clulus otes. 5 Pul Dwkis

11 Clulus Chet Sheet Derivtives Defiitio Nottio If f ( ) the the erivtive is efie to e f ( ) ( + ) -. h h Æ f lim h f If f ( ) the ll of the followig re equivlet ottios for the erivtive. f f ( ) f ( ) Df If f ( ) ll of the followig re equivlet ottios for erivtive evlute t. f f Df If f ( ) the,. m f is the sloe of the tget lie to f ( ) t the equtio of the tget lie t is f + f -. give If f ( ). ( f ) f ( ) Iterrettio of the Derivtive f is the istteous rte of. hge of f ( ) t.. If f ( ) is the ositio of ojet t time the f is the veloit of the ojet t. Bsi Proerties Formuls g re ifferetile futios (the erivtive eists), re rel umers,. ( f ± g) f ( ) ± g ( ). fg f g+ fg Prout Rule Ê f f g- fg 4. Á Quotiet Rule Ë g g - Power Rule ( f ( g )) f g( ) g This is the Chi Rule 5. ( ) ( ) ( si) ( os) os - si ( t) se se set Commo Derivtives ( s) - sot ( ot) - s - ( si ) - - ( os ) ( t ) + ( ) l ( ) ( e ) e ( l ( ) ), > ( l ), ( log ( ) ), > l Visit htt://tutoril.mth.lmr.eu for omlete set of Clulus otes. 5 Pul Dwkis

12 Clulus Chet Sheet Chi Rule Vrits The hi rule lie to some seifi futios. -. ( Èf ( ) ) Èf ( ) f ( ) Î Î 5. ( osèf ( ) ) f ( ) si f ( ) Î - ÈÎ f ( ) f ( ). ( e ) f ( ) e 6. ( tèf ( ) ) f ( ) se f ( ) Î ÈÎ f ( ). ( l Èf ( ) ) 7. se Î [ ] se t f ( ) f ( ) 4. ( sièf ( ) ) f ( ) os Èf ( ) 8. ( t - Èf ( ) ) Î Î Î +ÈÎf ( ) ( f ( ) ) f ( ) [ f ( ) ] [ f ( ) ] Higher Orer Derivtives The Seo Derivtive is eote s The th Derivtive is eote s ( ) f ( f f ( ) is efie s ) f f ( ) is efie s f ( ) f ( ) -, i.e. the erivtive of the f f, i.e. the erivtive of. first erivtive, f ( ) ( ( ) ) the (-) st erivtive, f ( - ) ( ) Imliit Differetitio + si + here, so routs/quotiets of -9 Fi if e. Rememer will use the rout/quotiet rule erivtives of will use the hi rule. The trik is to ifferetite s orml ever time ou ifferetite ou tk o (from the hi rule). After ifferetitig solve for. e ( ) e ( ) - - e e os fi -9-9 e 9 os 9 os 9 9 Critil Poits is ritil oit of f. f ( ) or. f ( ) Iresig/Deresig Cove U/Cove Dow oes t eist. rovie either Iresig/Deresig. If f ( ) > for ll i itervl I the f ( ) is iresig o the itervl I. < for ll i itervl I the. If f ( ) f ( ) is eresig o the itervl I. for ll i itervl I the. If f ( ) f ( ) is ostt o the itervl I e e -os ( ) Cove U/Cove Dow. If f ( ) > for ll i itervl I the f ( ) is ove u o the itervl I. < for ll i itervl I the. If f ( ) f ( ) is ove ow o the itervl I. Ifletio Poits is ifletio oit of f ovit hges t. if the Visit htt://tutoril.mth.lmr.eu for omlete set of Clulus otes. 5 Pul Dwkis

13 Asolute Etrem. is solute mimum of f ( ) if f ( ) f ( ) for ll i the omi. is solute miimum of f ( ). if f ( ) f ( ) for ll i the omi. Fermt s Theorem f hs reltive (or lol) etrem t If, the is ritil oit of Clulus Chet Sheet f. Etreme Vlue Theorem f is otiuous o the lose itervl If [, ] the there eist umers so tht,.,,. f ( ) is the s. m. i [, ],. f is the s. mi. i [, ]. Fiig Asolute Etrem To fi the solute etrem of the otiuous, use the futio f ( ) o the itervl [ ] followig roess.. Fi ll ritil oits of f ( ) i [, ].. Evlute f ( ) t ll oits fou i Ste.. Evlute f ( ) f ( ). 4. Ietif the s. m. (lrgest futio vlue) the s. mi.(smllest futio vlue) from the evlutios i Stes &. Etrem Reltive (lol) Etrem. is reltive (or lol) mimum of f f for ll er. f ( ) if. is reltive (or lol) miimum of f f for ll er. f ( ) if st Derivtive Test If is ritil oit of. rel. m. of f ( ) if f ( ) f the is > to the left of f ( ) < to the right of.. rel. mi. of f ( ) if f ( ) < to the left of f ( ) > to the right of. is. ot reltive etrem of f ( ) if f ( ) the sme sig o oth sies of Derivtive Test If Me Vlue Theorem,. is ritil oit of f ( ) suh tht f ( ) the. is reltive mimum of f ( ) if f ( ). is reltive miimum of f ( ) if f ( ). m e reltive mimum, reltive miimum, or either if f ( ). Fiig Reltive Etrem /or Clssif Critil Poits. Fi ll ritil oits of f ( ).. Use the st erivtive test or the erivtive test o eh ritil oit. <. >. If f ( ) is otiuous o the lose itervl [ ] ifferetile o the oe itervl (, ) f - f the there is umer < < suh tht f ( ). - Newto s Metho If is the th guess for the root/solutio of f ( ) the (+) st guess is rovie f ( ) eists. f - + f ( ) ( ) Visit htt://tutoril.mth.lmr.eu for omlete set of Clulus otes. 5 Pul Dwkis

14 Clulus Chet Sheet Relte Rtes Sketh iture ietif kow/ukow qutities. Write ow equtio reltig qutities ifferetite with reset to t usig imliit ifferetitio (i.e. o erivtive ever time ou ifferetite futio of t). Plug i kow qutities solve for the ukow qutit. E. A 5 foot ler is restig gist wll. The ottom is iitill ft w is eig ushe towrs the wll t 4 ft/se. How fst is the to movig fter se? E. Two eole re 5 ft rt whe oe strts wlkig orth. The gleq hges t. r/mi. At wht rte is the iste etwee them hgig whe q.5 r? is egtive euse is eresig. Usig Pthgore Theorem ifferetitig, + 5 fi + After se we hve - 7 so Plug i solve for. 7 7( - 4 ) + 76 fi ft/se We hve q. r/mi. wt to fi. We use vrious trig fs ut esiest is, seq fi seq tqq 5 5 We kowq.5 so lug i q solve. se(.5) t(.5)(.) 5. ft/se Rememer to hve lultor i ris! Otimiztio Sketh iture if eee, write ow equtio to e otimize ostrit. Solve ostrit for oe of the two vriles lug ito first equtio. Fi ritil oits of equtio i rge of vriles verif tht the re mi/m s eee. E. We re elosig retgulr fiel with E. Determie oit(s) o + tht re 5 ft of fee mteril oe sie of the losest to (,). fiel is uilig. Determie imesios tht will mimize the elose re. Mimize A sujet to ostrit of + 5. Solve ostrit for lug ito re. A ( 5-) 5- fi 5 - Differetite fi ritil oit(s). A 5-4 fi 5 B eriv. test this is rel. m. so is the swer we re fter. Fill, fi The imesios re the 5 5. Visit htt://tutoril.mth.lmr.eu for omlete set of Clulus otes. Miimize f ( ) ( ) ostrit is the +. Solve ostrit for lug ito the futio. f - fi Differetite fi ritil oit(s). f - fi B the erivtive test this is rel. mi. so ll we ee to o is fi vlue(s). - fi ± The oits re the (, ) (, ) -. 5 Pul Dwkis

15 Defiite Itegrl: Suose f o [, ]. Divie [, ] with D hoose Clulus Chet Sheet Itegrls Defiitios is otiuous ito suitervls of from eh itervl. * i * The limâ ( i ) f f D. Æ i Ati-Derivtive : A ti-erivtive of f ( ) is futio, F( ), suh tht F ( ) f ( ). Iefiite Itegrl : f ( ) F( ) + where F( ) is ti-erivtive of f ( ). Fumetl Theorem of Clulus f is otiuous o [, ] the Vrits of Prt I : u g( ) f () t t is lso otiuous o [, ] f () t t u ( ) f u( ) È Î g f t t f. f () t t v ( ) f v( ) - È v Î f is otiuous o[, ], F( ) is u f () t t u f u v f - v F f ) Prt I : If () Prt II : ti-erivtive of f ( ) (i.e. f F F. the - ± ± ± ± f g f g f g f g f - f f If f ( ) g( ) o the If f ( ) o the Proerties f f [ ] [ v ], is ostt f ( ) f ( ), is ostt () f g f f f t t f f If m f ( ) M o the m ( - ) f ( ) M ( -) k k+ + +, - + l + + l luu ul ( u) - u+ u u e u e + Commo Itegrls osuu si u+ siuu - osu+ se uu t u+ seutuu seu+ suotuu - su+ s uu - ot u+ tuu l seu + seuu l seu+ t u + u u - t u + + u u - si u + - Visit htt://tutoril.mth.lmr.eu for omlete set of Clulus otes. 5 Pul Dwkis

16 Clulus Chet Sheet Str Itegrtio Tehiques Note tht t m shools ll ut the Sustitutio Rule te to e tught i Clulus II lss. u Sustitutio : The sustitutio u g( ) will overt u g. For iefiite itegrls ro the limits of itegrtio. E. 5 os u fi u fi u :: 8 fi u fi u Itegrtio Prts : uv uv- vu g f ( g ) g ( ) f ( u) u usig g si( u) ( si( 8) -si() ) 8 5 itegrl omute u ifferetitig u omute v usig v E u v e fi u v-e e - e + e -e - e + 5 os os u u uv uv - vu. Choose u v from E. 5 l v. u l v fi u v ( ) l l - l - 5l 5 -l - Prouts (some) Quotiets of Trig Futios m m For si os we hve the followig : For t se we hve the followig :. o. Stri sie out overt rest to osies usig si - os, the use the sustitutio u os.. m o. Stri osie out overt rest to sies usig os - si, the use the sustitutio u si.. m oth o. Use either. or. 4. m oth eve. Use oule gle /or hlf gle formuls to reue the itegrl ito form tht e itegrte.. o. Stri tget set out overt the rest to sets usig t se -, the use the sustitutio u se.. m eve. Stri sets out overt rest to tgets usig se + t, the use the sustitutio u t.. o m eve. Use either. or. 4. eve m o. Eh itegrl will e elt with ifferetl. si si os os os si - os Trig Formuls :, +, E. t se 5 4 ( se se ) tse 4 ( u ) uu ( u se ) 5 4 t se t se t se - - se - se E. si5 os 5 4 si si si (si ) si os os os (-os ) si os (-u) u u4 - u u u ( os ) u u se + l os - os + Visit htt://tutoril.mth.lmr.eu for omlete set of Clulus otes. 5 Pul Dwkis

17 Clulus Chet Sheet Trig Sustitutios : If the itegrl otis the followig root use the give sustitutio formul to overt ito itegrl ivolvig trig futios. - fi siq os q - si q - fi seq t q se q - + fi tq se q + t q 6 E. 4-9 si q fi osq q 4 4si 4os q q os q - Rell. Beuse we hve iefiite itegrl we ll ssume ositive ro solute vlue rs. If we h efiite itegrl we ee to omute q s remove solute vlue rs se o tht, Ï if Ì Ó - if < I this se we hve 4-9 osq. Û ı 6 4 si q q si q 9 ( os ) ( os ) q q q s ot q - q + Use Right Trigle Trig to go k to s. From sustitutio we hve siq so, From this we see tht ot 4-9 q. So, Prtil Frtios : If itegrtig P where the egree of Q P is smller th the egree of Q( ). Ftor eomitor s omletel s ossile fi the rtil frtio eomositio of the rtiol eressio. Itegrte the rtil frtio eomositio (P.F.D.). For eh ftor i the eomitor we get term(s) i the eomositio orig to the followig tle. Ftor i Q( ) Term i P.F.D Ftor i Q( ) + A + A+ B + + ( + ) k ( + + ) + + k Term i P.F.D A A Ak + + L A + B A k + Bk + L k k 7+ ( - )( + 4) E ( )( 4) ( ) 4l - + l t Here is rtil frtio form reomie. A ( A B+ C + 4) + ( B+ C)( -) -+ Set umertors equl ollet like terms. 7 + A+ B + C- B + 4A- C Set oeffiiets equl to get sstem solve to get ostts. A+ B 7 C- B 4A- C A 4 B C 6 A lterte metho tht sometimes works to fi ostts. Strt with settig umertors equl i 7 + A B+ C -. Chose ie vlues of lug i. revious emle : For emle if we get 5A whih gives A 4. This wo t lws work esil. Visit htt://tutoril.mth.lmr.eu for omlete set of Clulus otes. 5 Pul Dwkis

18 f Clulus Chet Sheet Alitios of Itegrls Net Are : ( ) reresets the et re etwee f the -is with re ove -is ositive re elow -is egtive. Are Betwee Curves : The geerl formuls for the two mi ses for eh re, Èuer futio È Îlower futio Î & fi Îright futio - Îleft futio f fi A - È È f A If the urves iterset the the re of eh ortio must e fou iiviull. Here re some skethes of oule ossile situtios formuls for oule of ossile ses. A f ( ) -g( ) A f -g Volumes of Revolutio : The two mi formuls re V A f g g f A V A( ). Here is some geerl iformtio out eh metho of omutig some emles. Rigs Cliers A (( outer rius) - ( ier rius) ) A ( rius)( with / height) Limits: / of right/ot rig to / of left/to rig Limits : / of ier l. to / of outer l. f, f, f, f, Horz. Ais use g( ), A( ). Vert. Ais use g( ), A( ). Horz. Ais use g( ), A( ). Vert. Ais use g( ), A( ). E. Ais : > E. Ais : E. Ais : > E. Ais : outer rius : - f ( ) ier rius : - g( ) outer rius: + g( ) ier rius: + f ( ) rius : - with : f ( ) - g( ) rius : + with : f ( ) - g( ) These re ol few ses for horizotl is of rottio. If is of rottio is the -is use the se with. For vertil is of rottio ( > ) iterhge to get rorite formuls. Visit htt://tutoril.mth.lmr.eu for omlete set of Clulus otes. 5 Pul Dwkis

19 Work : If fore of F( ) moves ojet i, the work oe is W Clulus Chet Sheet F Averge Futio Vlue : The verge vlue of f ( ) o is fvg f ( ) - Ar Legth Surfe Are : Note tht this is ofte Cl II toi. The three si formuls re, L s SA s (rotte out -is) SA s (rotte out -is) where s is eeet uo the form of the futio eig worke with s follows. ( ) s + if f, s + if f, () () s + t if f t, g t, t t t r s r + q if r f q, q With surfe re ou m hve to sustitute i for the or eeig o our hoie of s to mth the ifferetil i the s. With rmetri olr ou will lws ee to sustitute. Imroer Itegrl A imroer itegrl is itegrl with oe or more ifiite limits /or isotiuous itegrs. Itegrl is lle overget if the limit eists hs fiite vlue iverget if the limit oes t eist or hs ifiite vlue. This is till Cl II toi. Ifiite Limit. lim t f f ( ). f ( ) lim f ( ) tæ. + + tæ t q - tæ- f f - - f rovie BOTH itegrls re overget. Disotiuous Itegr t. Disot. t : f ( ) lim f ( ). Disot. t : f ( ) lim f ( ) -. Disotiuit t < < : + t tæ f f f rovie oth re overget. Comriso Test for Imroer Itegrls : If f ( ) g( ) o [, ) f the,. If ov. the ov.. If ivg. the Useful ft : If > the For give itegrl f ( ) ivie [, ] g g overges if > iverges for. f ivg. Aroimtig Defiite Itegrls - (must e eve for Simso s Rule) efie D ito suitervls [, ], [, ],, [ ] - with, * * * Mioit Rule : ªD È ( ) ( ) the, f f f f * Î L, i i-, i D f ª Èf + f ++ f + + f f - + Î L D f ª Èf + 4f + f + + f 4f f Î L is mioit [ ] Trezoi Rule : Simso s Rule : Visit htt://tutoril.mth.lmr.eu for omlete set of Clulus otes. 5 Pul Dwkis

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits Clulus Chet Sheet Limits Deiitios Preise Deiitio : We sy lim ( ) L i Æ or every e > 0 there is > 0 suh tht wheever 0 L < e. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig

More information

except we make f ( x ) arbitrarily large and Relationship between the limit and one-sided limits Properties both exist and c is any number then, Î Î

except we make f ( x ) arbitrarily large and Relationship between the limit and one-sided limits Properties both exist and c is any number then, Î Î Limits Deiitios Preise Deiitio : We sy lim L i Æ or every e > 0 there is > 0 suh tht wheever 0 L < e. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig suiietly lose to (o either

More information

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits Clulus Chet Sheet Limits Deiitios Preise Deiitio : We sy lim L i or every ε > 0 there is δ > 0 suh tht wheever 0 δ L < ε. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig suiietly

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * *

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * * Dmis o Mrie Biologil Resores A FUNCTION * * * REVIEW OF SOME MATHEMATICS * * * z () z g(,) A tio is rle or orml whih estlishes reltioshi etwee deedet vrile (z) d oe or more ideedet vriles (,) sh tht there

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

Example 3 Find the tangent line to the following function at.

Example 3 Find the tangent line to the following function at. Emple Given n fin eh of the following. () () () () Emple Given fin. Emple Fin the tngent line to the following funtion t. Now ll tht we nee is the funtion vlue n erivtive (for the slope) t. The tngent

More information

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6) WQ017 MAT16B Lecture : Mrch 8, 017 Aoucemets W -4p Wellm 115-4p Wellm 115 Q4 ue F T 3/1 10:30-1:30 FINAL Expoetil Logrithmic Fuctios (4.1, 4., 4.4, 4.6) Properties of Expoets Let b be positive rel umbers.

More information

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know P Clls BC Formls, Deiitios, Coepts & Theorems to Kow Deiitio o e : solte Vle: i 0 i 0 e lim Deiitio o Derivtive: h lim h0 h ltertive orm o De o Derivtive: lim Deiitio o Cotiity: is otios t i oly i lim

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

Calculus Summary Sheet

Calculus Summary Sheet Clculus Summry Sheet Limits Trigoometric Limits: siθ lim θ 0 θ = 1, lim 1 cosθ = 0 θ 0 θ Squeeze Theorem: If f(x) g(x) h(x) if lim f(x) = lim h(x) = L, the lim g(x) = L x x x Ietermite Forms: 0 0,,, 0,

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Calculus Definitions, Theorems

Calculus Definitions, Theorems Sectio 1.1 A Itrouctio To Limits Clculus Defiitios, Theorems f(c + ) f(c) m sec = = c + - c f(c + ) f(c) Sectio 1. Properties of Limits Theorem Some Bsic Limits Let b c be rel umbers let be positive iteger.

More information

Harold s Calculus Notes Cheat Sheet 15 December 2015

Harold s Calculus Notes Cheat Sheet 15 December 2015 Hrol s Clculus Notes Chet Sheet 5 Decemer 05 AP Clculus Limits Defiitio of Limit Let f e fuctio efie o ope itervl cotiig c let L e rel umer. The sttemet: lim x f(x) = L mes tht for ech ε > 0 there exists

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS Appedi A Emples for Ls,,. FACTORING POLYNOMIALS Tere re m stdrd metods of fctorig tt ou ve lered i previous courses. You will uild o tese fctorig metods i our preclculus course to ele ou to fctor epressios

More information

For students entering Honors Precalculus Summer Packet

For students entering Honors Precalculus Summer Packet Hoors PreClculus Summer Review For studets eterig Hoors Preclculus Summer Pcket The prolems i this pcket re desiged to help ou review topics from previous mthemtics courses tht re importt to our success

More information

AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by

AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by AIEEE CBSE ENG. A futio f from the set of turl umers to itegers defied y, whe is odd f (), whe is eve is (A) oe oe ut ot oto (B) oto ut ot oe oe (C) oe oe d oto oth (D) either oe oe or oto. Let z d z e

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

A.P. Calculus Formulas. 1. floor function (def) Greatest integer that is less than or equal to x.

A.P. Calculus Formulas. 1. floor function (def) Greatest integer that is less than or equal to x. A.P. Clls Formls. floor ftio (ef) Gretest iteger tht is less th or eql to.. (grph). eilig ftio (ef) Lest iteger tht is greter th or eql to. 4. (grph) 5. 6. g h g h Pge 7. f ( ) (grph) - - - - - - 8. Chge

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Mathematical Notation Math Calculus for Business and Social Science

Mathematical Notation Math Calculus for Business and Social Science Mthemticl Nottio Mth 190 - Clculus for Busiess d Socil Sciece Use Word or WordPerfect to recrete the followig documets. Ech rticle is worth 10 poits d should e emiled to the istructor t jmes@richld.edu.

More information

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist Clulus Cht Sht Limits Dfiitios Pris Dfiitio : W sy lim f L if Limit t Ifiity : W sy lim f L if w for vry ε > 0 thr is δ > 0 suh tht mk f ( ) s los to L s w wt y whvr 0 < < δ th f L < ε. tkig lrg ough positiv.

More information

A.P. Calculus Formulas Hanford High School, Richland, Washington revised 8/25/08

A.P. Calculus Formulas Hanford High School, Richland, Washington revised 8/25/08 A.P. Clls Formls 008-009 Hfor High Shool, Rihl, Wshigto revise 8/5/08. floor ftio (ef) Gretest iteger tht is less th or eql to.. (grph) 3. eilig ftio (ef) Lest iteger tht is greter th or eql to. 4. (grph)

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

AP Calculus Formulas Matawan Regional High School Calculus BC only material has a box around it.

AP Calculus Formulas Matawan Regional High School Calculus BC only material has a box around it. AP Clcls Formls Mtw Regiol High School Clcls BC oly mteril hs bo ro it.. floor fctio (ef) Gretest iteger tht is less th or eql to.. (grph) 3. ceilig fctio (ef) Lest iteger tht is greter th or eql to. 4.

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the Lecture. Rtiol Epoets d Rdicls Rtiol Epoets d Rdicls Lier Equtios d Iequlities i Oe Vrile Qudrtic Equtios Appedi A6 Nth Root - Defiitio Rtiol Epoets d Rdicls For turl umer, c e epressed usig the r is th

More information

0 dx C. k dx kx C. e dx e C. u C. sec u. sec. u u 1. Ch 05 Summary Sheet Basic Integration Rules = Antiderivatives Pattern Recognition Related Rules:

0 dx C. k dx kx C. e dx e C. u C. sec u. sec. u u 1. Ch 05 Summary Sheet Basic Integration Rules = Antiderivatives Pattern Recognition Related Rules: Ch 05 Smmry Sheet Bic Itegrtio Rle = Atierivtive Ptter Recogitio Relte Rle: ( ) kf ( ) kf ( ) k f ( ) Cott oly! ( ) g ( ) f ( ) g ( ) f ( ) g( ) f ( ) g( ) Bic Atierivtive: C 0 0 C k k k k C 1 1 1 Mlt.

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions!

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions! Nme: ARCC Midterm Review Uit 1: Fuctios d Reltios Kow your pret fuctios! 1. The ccompyig grph shows the mout of rdio-ctivity over time. Defiitio of fuctio. Defiitio of 1-1. Which digrm represets oe-to-oe

More information

MTH213 Calculus. Trigonometry: Unit Circle ( ) ( ) ( )

MTH213 Calculus. Trigonometry: Unit Circle ( ) ( ) ( ) MTH3 Clculus Formuls from Geometry: Trigle A = h Pythgore: + = c Prllelogrm A = h Trpezoi A = h ( + ) Circle A = π r C = π r = π Trigoometry: Uit Circle 0, π 3,, 3 35, 3π 4,, 50, 5π 6, 3, 90 π 0, Coe V

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles. AP Clculus Notes: Uit 6 Defiite Itegrls Sllus Ojective:.4 The studet will pproimte defiite itegrl usig rectgles. Recll: If cr is trvelig t costt rte (cruise cotrol), the its distce trveled is equl to rte

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

Differentiation Formulas

Differentiation Formulas AP CALCULUS BC Fil Notes Trigoometric Formuls si θ + cos θ = + t θ = sec θ 3 + cot θ = csc θ 4 si( θ ) = siθ 5 cos( θ ) = cosθ 6 t( θ ) = tθ 7 si( A + B) = si Acos B + si B cos A 8 si( A B) = si Acos B

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Chapter 5. Integration

Chapter 5. Integration Chpter 5 Itegrtio Itrodutio The term "itegrtio" hs severl meigs It is usully met s the reverse proess to differetitio, ie fidig ti-derivtive to futio A ti-derivtive of futio f is futio F suh tht its derivtive

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

ALGEBRA II CHAPTER 7 NOTES. Name

ALGEBRA II CHAPTER 7 NOTES. Name ALGEBRA II CHAPTER 7 NOTES Ne Algebr II 7. th Roots d Rtiol Expoets Tody I evlutig th roots of rel ubers usig both rdicl d rtiol expoet ottio. I successful tody whe I c evlute th roots. It is iportt for

More information

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS REVIEW OF CHAPTER 5 MATH 4 (SECTION C): EEMENTARY CACUUS.. Are.. Are d Estimtig with Fiite Sums Emple. Approimte the re of the shded regio R tht is lies ove the -is, elow the grph of =, d etwee the verticl

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

Trig Cheat Sheet. Formulas and Identities Tangent and Cotangent Identities

Trig Cheat Sheet. Formulas and Identities Tangent and Cotangent Identities Trig Chet Sheet Definition of the Trig Funtions Right tringle efinition For this efinition e ssume tht Unit irle efinition For this efinition is n ngle. 0 < < or 0 < < 90. oosite oosite sin hotenuse jent

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range.

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range. -. ALGEBRA () Fuctios A reltioship etwee two vriles tht ssigs to ech elemet i the domi ectly oe elemet i the rge. () Fctorig Aother ottio for fuctio of is f e.g. Domi: The domi of fuctio Rge: The rge of

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin Topic Fourier Series si Fourier Series Music is more th just pitch mplitue it s lso out timre. The richess o sou or ote prouce y musicl istrumet is escrie i terms o sum o umer o istict requecies clle hrmoics.

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information