Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist

Size: px
Start display at page:

Download "Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist"

Transcription

1 Clulus Cht Sht Limits Dfiitios Pris Dfiitio : W sy lim f L if Limit t Ifiity : W sy lim f L if w for vry ε > 0 thr is δ > 0 suh tht mk f ( ) s los to L s w wt y whvr 0 < < δ th f L < ε. tkig lrg ough positiv. Workig Dfiitio : W sy lim f L if w mk f ( ) s los to L s w wt y tkig suffiitly los to (o ithr si of ) without lttig. Right h limit : lim + f L. This hs th sm fiitio s th limit pt it rquirs >. Lft h limit : lim f L. This hs th Thr is similr fiitio for lim sm fiitio s th limit pt it rquirs gtiv. <. Rltioship tw th limit o-si limits lim f L lim f lim f L lim f lim f L + + lim f lim f lim f ( ) Dos Not Eist + Assum lim f lim g. lim f lim f. lim f ± g lim f ± lim g. lim f g lim f lim g Proprtis oth ist is y umr th, 4. pt w rquir lrg gtiv. f L Ifiit Limit : W sy lim f if w mk f ( ) ritrrily lrg ( positiv) y tkig suffiitly los to (o ithr si of ) without lttig. Thr is similr fiitio for lim f pt w mk f ( ) ritrrily lrg f lim f lim g lim g lim 5. lim f lim f 6. lim f lim f Bsi Limit Evlutios t ± Not : sg ( ) if > 0 sg ( ) if < 0.. lim & lim 0 5. v : lim. lim l & lim l 0. If r > 0 th lim 0 r r 4. If r > 0 is rl for gtiv th lim 0 r ± f L provi g 6. o : lim & lim lim 0 7. v : lim sg ± 8. o : lim sg 9. o : lim sg Visit for omplt st of Clulus ots. 005 Pul Dwkis

2 Clulus Cht Sht Evlutio Thiqus Cotiuous Futios L Hospitl s Rul If f is otiuous t th lim f f f 0 f ± If lim or lim th, g 0 g ± Cotiuous Futios Compositio f f f ( ) is otiuous t lim g th lim lim is umr, or g g lim f ( g ) f ( lim g ) f ( Polyomils t Ifiity ) p ( ) q( ) r polyomils. To omput Ftor Cl p + 4 ( )( + 6) lim ftor lrgst powr of out of oth lim lim ± q ( ) p ( ) q( ) th omput limit lim ( ) Rtioliz Numrtor/Domitor lim lim lim ( ) + lim lim Piwis Futio if < 9 lim lim lim g whr g 9 9 ( 8)( + ) ( + 9)( + ) if Comput two o si limits, lim g ( 8)( 6) lim lim g lim Comi Rtiol Eprssios ( + h) O si limits r iffrt so lim g lim lim h0 h + h h0 h ( + h) os t ist. If th two o si limits h h qul th lim g woul hv ist lim lim h0 h ( + h) h0 ( + h) h th sm vlu. Som Cotiuous Futios Prtil list of otiuous futios th vlus of for whih thy r otiuous.. Polyomils for ll. 7. os( ) si ( ) for ll.. Rtiol futio, pt for s tht giv ivisio y zro. 8. t ( ) s( ) provi. ( o) for ll. π π π π,,,,, 4. ( v) for ll ot 5. for ll. ( ) s( ) provi 6. l for > 0., π, π,0, π, π, Itrmit Vlu Thorm Suppos tht f ( ) is otiuous o [, ] lt M y umr tw f ( ) Th thr ists umr suh tht < < f ( ) M. f. Visit for omplt st of Clulus ots. 005 Pul Dwkis

3 Clulus Cht Sht Drivtivs Dfiitio Nottio f ( + h) f If y f th th rivtiv is fi to f lim. h0 h If y f th ll of th followig r quivlt ottios for th rivtiv. f y f y f Df If y f ll of th followig r quivlt ottios for rivtiv vlut t. f y f y Df If y f th,. m f is th slop of th tgt li to y f t th qutio of th tgt li t is y f + f. giv y If f ( ) Itrprttio of th Drivtiv f is th isttous rt of. hg of f ( ) t.. If f ( ) is th positio of ojt t tim th f is th vloity of th ojt t. Bsi Proprtis Formuls g r iffrtil futios (th rivtiv ists), r y rl umrs,. ( f) f. ( f ± g) f ± g. ( f g) f g f g + Prout Rul f f g f g 4. Quotit Rul g g Powr Rul ( f ( g )) f g g This is th Chi Rul 5. ( ) ( ) ( si ) ( os ) os si ( t ) s s s t Commo Drivtivs ( s ) s ot ( ot ) s ( si ) ( os ) ( t ) + ( ) l ( ) ( ) ( l ), > 0 ( l ), 0 ( log ), > 0 l Visit for omplt st of Clulus ots. 005 Pul Dwkis

4 Clulus Cht Sht Chi Rul Vrits Th hi rul ppli to som spifi futios.. ( f ) f f 5. ( os f ) f si f f f. ( ) f 6. ( t f ) f s f f. ( l f ) 7. s [ ] s t f f 4. ( si f ) f os f 8. ( t f ) + f ( f ) f [ f ] [ f ] Highr Orr Drivtivs Th So Drivtiv is ot s Th th Drivtiv is ot s ( ) f ( f f is fi s ) f f is fi s f ( f ( )), i.. th rivtiv of th ( ) ( ) f ( f ), i.. th rivtiv of first rivtiv, f. th (-) st rivtiv, f. Impliit Diffrtitio 9y Fi y if + y si ( y) +. Rmmr y y hr, so prouts/quotits of y will us th prout/quotit rul rivtivs of y will us th hi rul. Th trik is to iffrtit s orml vry tim you iffrtit y you tk o y (from th hi rul). Aftr iffrtitig solv for y. ( y ) y y y ( y) y y y 9y os + y + y + y y y y + y 9y 9y 9 os y 9 os y y y 9 9 Critil Poits is ritil poit of f. f ( ) 0 or. f ( ) Irsig/Drsig Cov Up/Cov Dow os t ist. provi ithr Irsig/Drsig f > for ll i itrvl I th. If 0 f ( ) is irsig o th itrvl I.. If f 0 f ( ) is rsig o th itrvl I.. If f 0 f ( ) is ostt o th itrvl I. < for ll i itrvl I th for ll i itrvl I th 9y y y 9y 9 os ( y) Cov Up/Cov Dow. If f > 0 for ll i itrvl I th f ( ) is ov up o th itrvl I.. If f 0 f ( ) is ov ow o th itrvl I. < for ll i itrvl I th Ifltio Poits ovity hgs t is ifltio poit of f. if th Visit for omplt st of Clulus ots. 005 Pul Dwkis

5 Asolut Etrm. is solut mimum of f ( ) if f ( ) f for ll i th omi. is solut miimum of f ( ). if f ( ) f for ll i th omi. Frmt s Thorm f hs rltiv (or lol) trm t If, th is ritil poit of Clulus Cht Sht f. Etrm Vlu Thorm f is otiuous o th los itrvl If [, ] th thr ist umrs so tht,,. f ( ) is th s. m. i., [, ],. f is th s. mi. i [, ]. Fiig Asolut Etrm To fi th solut trm of th otiuous futio f ( ) o th itrvl [, ] us th followig pross.,.. Fi ll ritil poits of f ( ) i [ ]. Evlut f ( ) t ll poits fou i Stp.. Evlut f ( ) f ( ). 4. Itify th s. m. (lrgst futio vlu) th s. mi.(smllst futio vlu) from th vlutios i Stps &. Etrm Rltiv (lol) Etrm. is rltiv (or lol) mimum of f ( ) if f ( ) f for ll r.. is rltiv (or lol) miimum of f f for ll r. f ( ) if st Drivtiv Tst If f th is is ritil poit of. rl. m. of f ( ) if f 0 of f 0. rl. mi. of f ( ) if f 0 of f 0. ot rltiv trm of f ( ) if f > to th lft < to th right of. < to th lft > to th right of. is th sm sig o oth sis of. Drivtiv Tst If M Vlu Thorm, is ritil poit of f ( ) suh tht f ( ) 0 th. is rltiv mimum of f ( ) if f ( ) 0. is rltiv miimum of f ( ) if f ( ) 0 <. >.. my rltiv mimum, rltiv f. miimum, or ithr if 0 Fiig Rltiv Etrm /or Clssify Critil Poits. Fi ll ritil poits of f ( ).. Us th st rivtiv tst or th rivtiv tst o h ritil poit. If f ( ) is otiuous o th los itrvl [ ] iffrtil o th op itrvl (, ) f f th thr is umr < < suh tht f ( ). Nwto s Mtho If is th th guss for th root/solutio of f ( ) 0 th (+) st guss is provi f ( ) ists. f + f ( ) ( ) Visit for omplt st of Clulus ots. 005 Pul Dwkis

6 Clulus Cht Sht Rlt Rts Skth pitur itify kow/ukow qutitis. Writ ow qutio rltig qutitis iffrtit with rspt to t usig impliit iffrtitio (i.. o rivtiv vry tim you iffrtit futio of t). Plug i kow qutitis solv for th ukow qutity. E. A 5 foot lr is rstig gist wll. Th ottom is iitilly 0 ft wy is ig push towrs th wll t 4 ft/s. How fst is th top movig ftr s? E. Two popl r 50 ft prt wh o strts wlkig orth. Th glθ hgs t 0.0 r/mi. At wht rt is th ist tw thm hgig wh θ 0.5 r? is gtiv us is rsig. Usig Pythgor Thorm iffrtitig, + y 5 + y y Aftr s w hv so y Plug i solv for y. 7 7( 4 ) + 76 y 0 y ft/s W hv θ 0.0 r/mi. wt to fi. W us vrious trig fs ut sist is, sθ sθ tθ θ W kowθ 0.05 so plug i θ solv. s( 0.5) t ( 0.5)( 0.0) ft/s Rmmr to hv lultor i ris! Optimiztio Skth pitur if, writ ow qutio to optimiz ostrit. Solv ostrit for o of th two vrils plug ito first qutio. Fi ritil poits of qutio i rg of vrils vrify tht thy r mi/m s. E. W r losig rtgulr fil with E. Dtrmi poit(s) o y + tht r 500 ft of f mtril o si of th losst to (0,). fil is uilig. Dtrmi imsios tht will mimiz th los r. Mimiz A y sujt to ostrit of + y 500. Solv ostrit for plug ito r. A y( 500 y) 500 y 500y y Diffrtit fi ritil poit(s). A 500 4y y 5 By riv. tst this is rl. m. so is th swr whr ftr. Filly, fi Th imsios r th Miimiz f ( 0) ( y ) ostrit is + th y +. Solv ostrit for plug ito th futio. y f y + y + y y y+ Diffrtit fi ritil poit(s). f y y By th rivtiv tst this is rl. mi. so ll w to o is fi vlu(s). ± Th poits r th (, ) (, ). Visit for omplt st of Clulus ots. 005 Pul Dwkis

7 Clulus Cht Sht Itgrls Dfiitios Dfiit Itgrl: Suppos f ( ) is otiuous Ati-Drivtiv : A ti-rivtiv of f ( ) o [, ]. Divi [, ] ito suitrvls of is futio, F( ), suh tht F f. * with Δ hoos i from h itrvl. Ifiit Itgrl : f F + * Th f ( ) lim f ( i ) Δ. whr F( ) is ti-rivtiv of f ( ). i Fumtl Thorm of Clulus f is otiuous o [, ] th Vrits of Prt I : u g f ( t) t is lso otiuous o [, ] f () t t u f u g f t t f. f () t t v f v v f is otiuous o[, ], F( ) is u f () t t u f u v f v F f ) Prt I : If () Prt II : ti-rivtiv of f ( )(i.. th f F F. ± ± ± ± f g f g f g f g f ( ) 0 f f If f g o th If f 0 o th 0 Proprtis f f [ ] [ v ], is ostt f f, is ostt f g f f f t t f f If m f M o th m ( ) f( ) M( ) + + k k+ + +, + l + + l l uu ul ( u) u+ u u u + Commo Itgrls osuu si u+ si uu osu+ s uu t u+ sut uu su+ su ot uu su + s uu ot u+ t uu l su + suu l su+ t u + u u u + + u si + t u u Visit for omplt st of Clulus ots. 005 Pul Dwkis

8 Clulus Cht Sht Str Itgrtio Thiqus Not tht t my shools ll ut th Sustitutio Rul t to tught i Clulus II lss. u Sustitutio : Th sustitutio u g will ovrt u g. For ifiit itgrls rop th limits of itgrtio. E. 5 os u u u u :: u 8 Itgrtio y Prts : uv uv vu g f ( g ) g f ( u) u usig g si ( u) ( si ( 8) si ( ) ) os os u uv uv vu. Choos u v from itgrl omput u y iffrtitig u omput v usig v v. E. 5 E. l u v u v u l v u v l l l ( ) l 5 l Prouts (som) Quotits of Trig Futios m m For si os w hv th followig : For t s w hv th followig :. o. Strip si out ovrt rst to osis usig si os, th us th sustitutio u os.. m o. Strip osi out ovrt rst to sis usig os si, th us th sustitutio u si.. m oth o. Us ithr. or. 4. m oth v. Us oul gl /or hlf gl formuls to ru th itgrl ito form tht itgrt.. o. Strip tgt st out ovrt th rst to sts usig t s, th us th sustitutio u s.. m v. Strip sts out ovrt rst to tgts usig s + t, th us th sustitutio u t.. o m v. Us ithr. or. 4. v m o. Eh itgrl will lt with iffrtly. si si os os os si os Trig Formuls :, ( + ), ( ) E. t s 5 4 ( s ) s t s 4 ( u ) u u ( u s) 5 4 t s t s t s s s E. si5 os 5 4 si si si (si ) si os os os (os ) si os ( u) u u4 u + u u ( os ) u u s + l os os + Visit for omplt st of Clulus ots. 005 Pul Dwkis

9 Clulus Cht Sht Trig Sustitutios : If th itgrl otis th followig root us th giv sustitutio formul to ovrt ito itgrl ivolvig trig futios. siθ os θ si θ sθ t θ s θ + tθ s θ + t θ 6 E. 49 siθ osθ θ 4 4si 4os os 4 9 θ θ θ Rll. Bus w hv ifiit itgrl w ll ssum positiv rop solut vlu rs. If w h fiit itgrl w to omput θ s rmov solut vlu rs s o tht, if 0 if < 0 I this s w hv 4 9 osθ. 6 4 si θ θ si θ 9 ( os ) ( os ) θ θ θ s θ otθ + Us Right Trigl Trig to go k to s. From sustitutio w hv siθ so, From this w s tht 49 otθ So, + Prtil Frtios : If itgrtig P whr th gr of Q P is smllr th th gr of Q( ). Ftor omitor s ompltly s possil fi th prtil frtio ompositio of th rtiol prssio. Itgrt th prtil frtio ompositio (P.F.D.). For h ftor i th omitor w gt trm(s) i th ompositio orig to th followig tl. Ftor i Q( ) Trm i P.F.D Ftor i Q + A + A+ B + + ( + ) k ( + + ) + + k Trm i P.F.D A A Ak A + B A k + Bk k k 7+ ( )( + 4) E ( )( 4) ( ) 4l + l t Hr is prtil frtio form romi. A ( A B+ C + 4) + ( B+ C ) ( ) + St umrtors qul ollt lik trms. 7 + A+ B + C B + 4A C St offiits qul to gt systm solv to gt ostts. A+ B 7 C B 4A C 0 A 4 B C 6 A ltrt mtho tht somtims works to fi ostts. Strt with sttig umrtors qul i prvious mpl : 7 + A( + 4) + ( B+ C) ( ). Chos i vlus of plug i. For mpl if w gt 0 5A whih givs A 4. This wo t lwys work sily. Visit for omplt st of Clulus ots. 005 Pul Dwkis

10 f Clulus Cht Sht Applitios of Itgrls Nt Ar : ( ) rprsts th t r tw f th -is with r ov -is positiv r low -is gtiv. Ar Btw Curvs : Th grl formuls for th two mi ss for h r, y f A f y A y uppr futio lowr futio & right futio lft futio If th urvs itrst th th r of h portio must fou iiviully. Hr r som skths of oupl possil situtios formuls for oupl of possil ss. A f ( y) g( y) y + A f g A f g g f Volums of Rvolutio : Th two mi formuls r V A V A y y. Hr is som grl iformtio out h mtho of omputig som mpls. Rigs Cylirs A π ( outr rius) ( ir rius) A π ( rius) ( with / hight) Limits: /y of right/ot rig to /y of lft/top rig f, f y, Horz. Ais us g( ), A( ). Vrt. Ais us g( y ), A( y ) y. Limits : /y of ir yl. to /y of outr yl. f y, f, Horz. Ais us g( y ), A( y ) y. Vrt. Ais us g( ), A( ). E. Ais : y > 0 E. Ais : y 0 E. Ais : y > 0 E. Ais : y 0 outr rius : f ir rius : g outr rius: + g ir rius: + f rius : y with : f ( y) g( y) rius : + y with : f ( y) g( y) Ths r oly fw ss for horizotl is of rottio. If is of rottio is th -is us th y 0 s with 0. For vrtil is of rottio ( > 0 0 ) itrhg y to gt pproprit formuls. Visit for omplt st of Clulus ots. 005 Pul Dwkis

11 Work : If for of F movs ojt, th work o is W i Clulus Cht Sht F Avrg Futio Vlu : Th vrg vlu of f ( ) o is fvg f Ar Lgth Surf Ar : Not tht this is oft Cl II topi. Th thr si formuls r, L s SA π y s (rott out -is) SA π s (rott out y-is) whr s is pt upo th form of th futio ig work with s follows. y ( ) s + if y f, s + y if f y, y y y () () s + t if f t, y g t, t t t r s r + θ if r f θ, θ With surf r you my hv to sustitut i for th or y pig o your hoi of s to mth th iffrtil i th s. With prmtri polr you will lwys to sustitut. Impropr Itgrl A impropr itgrl is itgrl with o or mor ifiit limits /or isotiuous itgrs. Itgrl is ll ovrgt if th limit ists hs fiit vlu ivrgt if th limit os t ist or hs ifiit vlu. This is typilly Cl II topi. Ifiit Limit. f ( ) lim t f ( ) t. lim f f tt. f ( ) f ( ) f ( ) + provi BOTH itgrls r ovrgt. Disotiuous Itgr t f lim f f lim f. Disot. t :. Disot. t :. Disotiuity t + t t θ < < : + t f f f provi oth r ovrgt. Compriso Tst for Impropr Itgrls : If f g 0 o [, ) th,. If ov. th ov.. If ivg. th f Usful ft : If > 0 th For giv itgrl f ( ) ivi [, ] g p ovrgs if g p > ivrgs for p. f ivg. Approimtig Dfiit Itgrls (must v for Simpso s Rul) fi Δ ito suitrvls [, ], [, ],, [ ] 0 with 0, * * * Mipoit Rul : Δ ( ) ( ) th, f f f f *, i i, i Δ f f 0 + f ++ f + + f + f Δ f f 0 + 4f + f + + f + 4f + f is mipoit [ ] Trpzoi Rul : Simpso s Rul : Visit for omplt st of Clulus ots. 005 Pul Dwkis

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits Clulus Chet Sheet Limits Deiitios Preise Deiitio : We sy lim L i or every ε > 0 there is δ > 0 suh tht wheever 0 δ L < ε. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig suiietly

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits Clulus Chet Sheet Limits Deiitios Preise Deiitio : We sy lim ( ) L i Æ or every e > 0 there is > 0 suh tht wheever 0 L < e. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig

More information

except we make f ( x ) arbitrarily large and Relationship between the limit and one-sided limits Properties both exist and c is any number then, Î Î

except we make f ( x ) arbitrarily large and Relationship between the limit and one-sided limits Properties both exist and c is any number then, Î Î Limits Deiitios Preise Deiitio : We sy lim L i Æ or every e > 0 there is > 0 suh tht wheever 0 L < e. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig suiietly lose to (o either

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Chapter 3 Higher Order Linear ODEs

Chapter 3 Higher Order Linear ODEs ht High Od i ODEs. Hoogous i ODEs A li qutio: is lld ohoogous. is lld hoogous. Tho. Sus d ostt ultils of solutios of o so o itvl I gi solutios of o I. Dfiitio. futios lld lil iddt o so itvl I if th qutio

More information

Example 3 Find the tangent line to the following function at.

Example 3 Find the tangent line to the following function at. Emple Given n fin eh of the following. () () () () Emple Given fin. Emple Fin the tngent line to the following funtion t. Now ll tht we nee is the funtion vlue n erivtive (for the slope) t. The tngent

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

( ) ( ) 1 ( ) Algebra Cheat Sheet ( ) (, ) = ( ) + ( ) ( )( ) Basic Properties & Facts Arithmetic Operations. Properties of Inequalities. b a.

( ) ( ) 1 ( ) Algebra Cheat Sheet ( ) (, ) = ( ) + ( ) ( )( ) Basic Properties & Facts Arithmetic Operations. Properties of Inequalities. b a. Alger Chet Sheet Bsi Proerties & Fts Arithmeti Oertios Proerties of Iequlities If < the+ < + < + ( + ) If < > the < < If < < the > > Proerties of Asolute Vlue + if + if < + + + +, + + Trigle Iequlit Diste

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

On Gaussian Distribution

On Gaussian Distribution Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. Gui itributio i i ollow O Gui Ditributio π Th utio i lrl poitiv vlu. Bor llig thi utio probbilit it utio w houl h whthr th r ur th urv i qul to

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know P Clls BC Formls, Deiitios, Coepts & Theorems to Kow Deiitio o e : solte Vle: i 0 i 0 e lim Deiitio o Derivtive: h lim h0 h ltertive orm o De o Derivtive: lim Deiitio o Cotiity: is otios t i oly i lim

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem Avll t http:pvu.u Appl. Appl. Mth. ISSN: 9-9466 Vol. 0 Issu Dr 05 pp. 007-08 Appltos Appl Mthts: A Itrtol Jourl AAM Etso oruls of Lurll s utos Appltos of Do s Suto Thor Ah Al Atsh Dprtt of Mthts A Uvrst

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai Clssil Thoy o Foi Sis : Dmystii Glis VIVEK V RANE Th Istitt o Si 5 Mm Cm Ro Mmbi-4 3 -mil ss : v_v_@yhoooi Abstt : Fo Rim itgbl tio o itvl o poit thi w i Foi Sis t th poit o th itvl big ot how wh th tio

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Model of the multi-level laser

Model of the multi-level laser Modl of th multilvl lsr Trih Dih Chi Fulty of Physis, Collg of turl Sis, oi tiol Uivrsity Tr Mh ug, Dih u Kho Fulty of Physis, Vih Uivrsity Astrt. Th lsr hrtristis dpd o th rgylvl digrm. A rsol rgylvl

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

A.P. Calculus Formulas Hanford High School, Richland, Washington revised 8/25/08

A.P. Calculus Formulas Hanford High School, Richland, Washington revised 8/25/08 A.P. Clls Formls 008-009 Hfor High Shool, Rihl, Wshigto revise 8/5/08. floor ftio (ef) Gretest iteger tht is less th or eql to.. (grph) 3. eilig ftio (ef) Lest iteger tht is greter th or eql to. 4. (grph)

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

ENGO 431 Analytical Photogrammetry

ENGO 431 Analytical Photogrammetry EGO Altil Phtgmmt Fll 00 LAB : SIGLE PHOTO RESECTIO u t: vm 00 Ojtiv: tmi th Eti Oitti Pmts EOP f sigl ht usig lst squs justmt u. Giv:. Iti Oitti Pmts IOP f th m fm th Cm Cliti Ctifit CCC; Clit fl lgth

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

minimize c'x subject to subject to subject to

minimize c'x subject to subject to subject to z ' sut to ' M ' M N uostrd N z ' sut to ' z ' sut to ' sl vrls vtor of : vrls surplus vtor of : uostrd s s s s s s z sut to whr : ut ost of :out of : out of ( ' gr of h food ( utrt : rqurt for h utrt

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

Calculus Summary Sheet

Calculus Summary Sheet Clculus Summry Sheet Limits Trigoometric Limits: siθ lim θ 0 θ = 1, lim 1 cosθ = 0 θ 0 θ Squeeze Theorem: If f(x) g(x) h(x) if lim f(x) = lim h(x) = L, the lim g(x) = L x x x Ietermite Forms: 0 0,,, 0,

More information

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE FOR DETAILS

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE   FOR DETAILS uortig Iormtio: Pti moiitio oirmtio vi 1 MR: j 5 FEFEFKFK 8.6.. 8.6 1 13 1 11 1 9 8 7 6 5 3 1 FEFEFKFK moii 1 13 1 11 1 9 8 7 6 5 3 1 m - - 3 3 g i o i o g m l g m l - - h k 3 h k 3 Figur 1: 1 -MR or th

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information