MTH213 Calculus. Trigonometry: Unit Circle ( ) ( ) ( )

Size: px
Start display at page:

Download "MTH213 Calculus. Trigonometry: Unit Circle ( ) ( ) ( )"

Transcription

1 MTH3 Clculus Formuls from Geometry: Trigle A = h Pythgore: + = c Prllelogrm A = h Trpezoi A = h ( + ) Circle A = π r C = π r = π Trigoometry: Uit Circle 0, π 3,, 3 35, 3π 4,, 50, 5π 6, 3, 90 π 0, Coe V = 3 A se h = 3 π r h Lterl Surfce: A = π r r + h Right Circulr Cylier V = A se h = π r h Lterl Surfce: A = π r h Sphere V = 4 3 π r3 Surfce Are = 4π r 60, π 3,, 3 45, π 4,, 30, π 6, 3, Defiitios: 80, π, (, 0) 0, 0,, 0 360, π,, 0 0, 7π 330, π 6, 3, 6, 3, 5, 5π 4,, 35, 7π 4,, 300, 5π 3,, 3 40, 4π 3,, π siθ = opp. hyp. cscθ = siθ 0, cosθ = j. hyp. secθ = cosθ tθ = opp. j. = siθ cosθ cotθ = tθ = cosθ siθ

2 Ietities Pythgore: si u + cos u = + t u = sec u + cot u = csc u Doule Agle Formuls: siu = siu cosu cosu = cos u si u = cos u = si u tu = tu t u Lw of Sies: si A = si B = c sic Power-Reucig Formuls: si u = ( cosu ) cos u = ( + cosu ) cosu t u = + cosu Lw of Cosies: = + c cos B Chpter Solutio: Ay ll vlues of the vrile which will mke sttemet TRUE. Grph: A picture, rw o pproprite coorite system, showig ll solutios to give sttemet. Itercepts: Where grph crosses oe of the xes. Fi the x-itercept(s): Set y = 0 solve for x Fi the y-itercept(s): Set x = 0 solve for y Symmetry of Grph - A grph is symmetric to: y-xis if replcig x with -x gives equivlet equtio x-xis if replcig y with -y gives equivlet equtio origi if replcig x with -x y with -y gives equivlet equtio Itersectios of Grphs Solve oth equtios for the sme vrile (e.g. oth for y) Set expressios i other vrile equl (e.g. sustitute for y to get equtio with x) Solve for the vrile (e.g. solve for ll vlues of x) Use solutios to fi coorites of itersectio(s) (e.g. use x vlues to fi (x, y)) Slope: Compriso of verticl chge to horizotl chge i grph. Slope is rise over ru Slope, m, of o-verticl lie through poits ( x, y ) ( x, y ): m = chge i y chge i x = y y = Δy x x Δx Lier Equtios Slope-Itercept Form y = mx + Poit-Slope Form y y = m x x Geerl Form Ax + By + C = 0 Verticl Lie x = Horizotl Lie y = Prllel Lies m = m Perpeiculr Lies m m = Grph Trsformtios (c > 0) Origil grph: y = f ( x) θ c

3 Horizotl shift c uits right: y = f x c Verticl shift ow: Reflectio out x-xis: Reflectio out origi: Rtiol Fuctio: Composite Fuctio: O-Eve Fuctio Tests Eve: f x Horizotl shift left: y = f ( x + c) y = f ( x) c Verticl shift up: y = f ( x) + c y = f ( x) Reflectio out y: y = f ( x) y = f ( x) f ( x) = p( x) q( x) for q( x) 0 ( f! g) ( x) = f ( g( x) ) = f ( x) Thik: f ( x) = x = f ( x) Thik: f ( x) = x O: f x Qurtic Equtio - Str Form: x + x + c = 0 Completig the Squre x + = 4c 4 eve power o power Qurtic Formul x = ± 4c Iverse Fuctios f (re: f iverse ) is the iverse of f if: ( ) = for i omi of f ] f ( f ( ) ) = for i omi of f ] f f Fuctio hs iverse oly if it is oe-to-oe (psses the horizotl lie test). Fuctios c e me to hve iverse y restrictig omi /or rge. Iverse Trig Fuctios: Domi Rge rcsie x x π y π rccosie x x 0 x π rctget x x π y π Expoetil Logrithmic Fuctios Logrithmic fuctio is iverse of expoetil: log x = log x = x Commo Logrithm: log x log 0 x = 0 = x Nturl Logrithm: l x log e x = e = x Ietities: log = 0 log = Properties: log xy = log x + log y x log y = log x log y log x = log x Gretest Iteger Fuctio: x]] = gretest iteger such tht x. E.g. 5.3]] = 5 -.3]] = -3

4 Chpter Slope of Sect Lie of Fuctio: m sec = f ( x + Δx) f ( x) Δx Commo Resos why lim f x. f x. f x (Note: No limit. This is slope etwee two poits.) oes ot exist: pproches ifferet limit from the right s from the left icreses or ecreses without ou s x c oscilltes etwee two fixe vlues s x c 3. f x Defiitio of Limit (Mie): Let f e fuctio efie o ope itervl which cotis c. (Vlue f ( c) my or my ot exist.) lim f x = L mes tht for every ε > 0, there exists δ > 0 such tht if 0 < x c < δ, the 0 < f ( x) L < ε. Gettig close to the limit, L, of fuctio t vlue, c, mes fuctio vlue f x withi istce ±ε of the limit, L. If the limit exists, there must e vlue δ, istce from poit c, so if we choose our x withi tht istce from c, f x withi istce ±ε of L. If limit L exists, we c lwys fi smll eough umer δ so tht f x + δ will e withi the istce ±ε of the limit, L. Bsic Limits for Polyomil-Type Terms Limit of costt: lim = Limit of vrile: lim x = c Limit of power : x = c lim Properties of Limits (for lim Scler Multiple lim Sum or Differece Prouct Quotiet Power = L lim g( x) = K f ( x) = L f ( x) ± g( x) = L ± K f ( x) g( x) = L K f x lim lim f x lim = L g x K (If K is ot zero.) lim f x = L (Iclues ricls s frctiol powers.) f ( x)! g( x) f g( x) Composite Fuctio lim = lim = f K Limits of Trsceetl Fuctios: (All ehve s expecte for vlues c i omi) lim si x = sic lim sec x = secc lim cos x = cosc lim csc x = cscc lim t x = tc lim x = c ( > 0) lim cot x = cot c lim l x = l c is will e

5 Fuctios which gree t ll ut oe poit: If f x = g( x) for ll poits except for x = c, if lim lim = lim f x g x Three Specil Limits: (Note x 0 i ll cses) si x cos x lim = lim x 0 x x 0 x Defiitio of Cotiuity: ( Fuctio f is cotiuous t c if...). f ( x) is efie. lim f x g x exists, the = 0 lim ( + x) x = e x 0 exists 3. lim f x = f ( c) Existece of Limit: lim f ( x) = lim + f ( x) Properties of Cotiuity: If f ( x) g( x) re cotiuous t x = c, the the followig re lso cotiuous t c:. Scler multiple f c. Sum Differece f ( c) ± g( c) f ( c) g( c) if g( c) 0 ( c) = f ( g( c) ) 3. Prouct f ( c) g( c) 4. Quotiet 5. Composite f! g 6. Therefore Polyomil Fuctios, Rtiol Fuctios, Ricl Fuctios, Trigoometric Fuctios, Expoetil, Logrithmic Fuctios re cotiuous for ll vlues withi their omis. Itermeite Vlue Theorem: If f is cotiuous o the close itervl, ] k is y umer etwee f ( ), the there is t lest oe umer c, somewhere i,] such = k. f tht f c Verticl Asymptotes: Let f g e fuctios with o commo fctors cotiuous o ope itervl cotiig c. If f c 0 whe x c), the f ( x) g( x) g c Properties of Ifiite Limits: For lim. Sum or Differece lim f x 0 g( c) = 0 (BUT hs verticl symptote t x = c. = lim ± g( x) = g( x) g( x) g x. Prouct lim f x = + if L > 0 lim f x = if L < 0 g x 3. Quotiet lim = L if L 0 f ( x) = L

6 Chpter 3 Defiitio of the Derivtive of Fuctio: f ( x) = lim Δx 0 f ( x) f x + Δx Δx f x or f ( c) = lim x c f ( c) x c Differetile Implies Cotiuity, ut NOT Vice Vers: If f is ifferetile t x = c, the f is cotiuous t x = c. However, f might e cotiuous, ut ot ifferetile, if f hs cusp t x = c. Geerl Differetitio Rules Let u v e ifferetile fuctios of x. The vlue, c, is costt Derivtive of Costt: x c ] = 0 Simple Power Rule: Costt Multiple Rule: Sum or Differece Rule: Prouct Rule: Quotiet Rule: Chi Rule: Geerl Power Rule (from Chi): ] = x x x x cu ] = c u x u ± v ] = u ± v x u v ] = u v + v u u x v = v u u v v x f ( u )] = f ( u) u = f u u x ] x u = u u x x ] = Derivtives of Trigoometric Fuctios x siu] = cosu x u] x cosu] = siu x u] x tu ] = sec u x u ] x cscu x secu ] = cscu cotu x u] ] = secu tu x u] x cotu ] = csc u x u ] Derivtives of Expoetil Logrithmic Fuctios = e u x u] x eu x lu ] = u x u ] x u x log u = ( l) u x u] ] = ( l)u x u ]

7 Positio, Velocity, Accelertio: If s( t) is the positio fuctio of oject (for fllig oy: s( t) = gt + v 0 t + s 0 ) = = = s ( t) The velocity fuctio is v t s t The ccelertio fuctio is t v t Explicit - Implicit forms of Fuctio: Explicit: y is give s fuctio i x ( y = x ) Implicit: x y re oth ivolve i the equtio together ( xy =) Guielies for Implicit Differetitio:. Differetite oth sies with respect to x usig the chi rule o y o-x vriles.. Collect y x 3. Solve for y x Derivtive of Iverse Fuctio f ] x = terms o left sie fctor out y x f f x y iviig y fctor multiplie times the y x. ( ) Derivtives of the Iverse Trig Fuctios x rcsiu u ] = u x rctu] = u + u rc cot u x rc sec u x ] = u rc sec u u u x x rccosu ] = u u u + u u ] = ] = u u Relte Rtes. Fi equtio (formul) which reltes the esire qutities.. Differetite with respect to time to fi the relte rtes of chge of the qutities. Newto s Metho of Approximtig the Zero of Fuctio. Mke iitil estimte, x, close to the root.. Clculte ew estimte, x, usig the formul: x = x f x f x 3. Repet s ecessry util esire ccurcy is ttie.

8 Chpter 4 Criticl Numer: c is criticl umer if: ) f ( c) = 0 ) f is ot ifferetile t c. Guielies for fiig extrem i the itervl,]:. Fi the criticl umer of f i (,).. Evlute f t ech criticl umer. 3. Evlute f t ech e poit. Rolle s Theorem Let f e cotiuous o the close itervl, (,). If f ( ) = f ( ), the there is t lest oe c i, Me Vlue Theorem Let f e cotiuous o the close itervl, (,). There exists umer c i, ] ifferetile o the ope itervl where f ( c) = 0. ] ifferetile o the ope itervl where f ( c) = f ( ) f ( ). The erivtive of f evlute t c will equl the slope of the sect lie etwee the epoits.] Icresig Fuctio Decresig Fuctio. If x < x implies f ( x ) < f ( x ).. If x < x implies f ( x ) > f ( x ). > 0. < 0.. If f x. If f x Test for Reltive Miimum If c is criticl umer:. If f ( x) chges from egtive to positive t c.. If f ( c) > 0 (Seco Derivtive Test) Test for Reltive Mximum If c is criticl umer:. If f ( x) chges from positive to egtive t c.. If f ( c) < 0 (Seco Derivtive Test) Cocvity If f ( x) > 0, grph is cocve upwrs. Alt. f ( x) is icresig i the itervl. If f ( x) < 0, grph is cocve owwrs. Alt. f x Poit of Iflectio Poit t which grph chges from cocve up to cocve ow or vice vers. Is the poit ( c, f ( c) ) if f ( c) = 0 or if f ( c) oes ot exist. Domi of fuctio f(x): Vlues of x for which fuctio f exists. Look for:. Deomitor = 0?. Negtive umer uer the ricl for eve-umer root? is icresig i the itervl. 3. Other vlues where f is ot efie (E.g. t π, l( ), etc.)? Verticl Asymptotes i Rtiol Fuctios At vlues of x which mke eomitor = 0 Exceptio: Commo fctors etwee umertor eomitor crete holes, ot symptotes.

9 Horizotl Asymptote Lie y = L is horizotl symptote if lim f x x Limits t Ifiity If r is positive rtiol c is rel umer: Rtiol Fuctios lim x c x = L or lim r = 0 lim x + x + c x r = 0 Expoetil Fuctios lim e x = 0 lim e x = 0 x x + Horizotl Olique Asymptotes of Rtiol Fuctios f ( x) = L Rtiol fuctio is rtio of polyomils: R( x) = x + x + x +... m x m + m x m + m x m +... Degree of umertor = egree of eomitor = m. If - m >, there is o symptote.. Fctor x from ech term i umertor x m from ech term i eomitor. Ccel x with x m. 3. Tke the limit s x goes to ifiity of the tht expressio. 4. Result is the equtio of the symptote: If - m =, the equtio will e lier equtio i x olique (slt) symptote. If = m, it will e the horizotl lie m If < m, it will e the x xis. Optimizig (Mximum or Miimum) Prolems. Write primry equtio: (Qutity to e optimize) = (formul to clculte).. Cosier the omi of the primry fuctio i the cotext of the prolem. For wht vlues oes the equtio mke sese?. Ietify ecessry equtios which c e sustitute ito primry equtio to yiel: (Qutity to e optimize) = (expressio i sigle, iepeet vrile) 3. Differetite with respect to the iepeet vrile 4. Set erivtive equl to zero. 5. Solve for vlue(s) of iepeet vrile tht mke sese for the prolem. x Differetils: Differetil of y is y = f x Error Propgtio Uses tget lie to fuctio to estimte the fuctio vlue er give poit. y = f ( x) x Where y is error i y crete y (propgte) error of mesuremet i x, x. Error of mesurmet Rememer: Percet Error = Vlue of Mesuremet Estimtig Fuctio Vlue t Poit x + Δx f x + Δx f x f x f ( x) + x or ifferece i y is f ( x + Δx) f ( x) y = x

10 Chpter 5 Bsic Itegrl (ti-erivtive) Formule Powers Lier Comitios: k u = k u + C k f ( u) u = k f ( u) u u u = ± g( u) ]u = f ( u) u ± g u u + + C, f u + Trig Fuctios: siu u = cosu + C cosu u tu u = lcosu + C cot u u sec u u = lsec u + tu + C csc u u = siu + C = lsiu + C = lcsc u + cot u + C Specil Trig Fuctios: sec u u = tu + C csc u u = cot u + C sec utu u = sec u + C csc ucot u u = csc u + C Logrithmic Expoetil Fuctios: e x x = e x + C x x = x + C l x x = x x = l x + C Itegrls Usig Logrithmic Itegrtio: u u u = l u + C lterte: u x = l u + C Itegrls Usig Iverse Trigoometric Fuctios: u = rcsi u u + C u u u = rcsec u + C u u + = rct u + C u Summtios: Properties: Formule: i = !+ i= k i = k i i= i= c = c i= i i= ( + ) = + 6 i ± i = i i= i= i = + i= i 3 i= ± = + 4 i= i

11 Are oue y grph of f, the x-xis, verticl lies x = x = Are = lim f ( c )Δx, Δx = i= Are = f x x x i c i x i Properties of the Defiite Itegrl: f ( x) x = 0 f ( x) x = f ( x) x k f ( x) x = k f ( x) x f ( x) ± g( x) x = f ( x) x ± g( x) x c f ( x) x = f ( x) x + f ( x) x for < c < c Averge Vlue of Fuctio o Itervl, ]: f ( x) x Fumetl Theorem of Clculus (I): f x x = F ( x)] = F ( ) F ( ) Trpezoil Rule for Numericl Itegrtio: f ( x) x f ( x 0 ) + f ( x ) + f x ( Error: E ) 3 mx f ( x) ], x Fumetl Theorem of Clculus (II): x f ( t) t x = f ( x ) +!+ f ( x ) + f ( x )] Simpso's Rule for Numericl Itegrtio ( must e eve): f ( x) x f ( x 0 ) + 4 f ( x ) + f ( x ) + 4 f x 3 3 ( Error: E ) mx f ( 4) ( x ), x +!+ 4 f ( x ) + f ( x )] Hyperolic Fuctios Defiitios: sih x = e x e x cosh x = e x + e x th x = sih x cosh x csch x = sih x, x 0 sech x = cosh x coth x = th x, x 0

12 Hyperolic Fuctio Ietities: cosh x sih x = th x + sech x = coth x csch x = sih + coshx x = sihx = sih x cosh x = sih x cosh y + cosh x sih y = sih x cosh y cosh x sih y = cosh x cosh y + sih x sih y = cosh x cosh y sih x sih y sih x + y sih x y cosh x + y cosh x y cosh x = + coshx coshx = cosh x + sih x Derivtives Itegrls of Hyperolic Fuctios: x sihu x cosh u x thu x cothu x sechu ] = ( cosh u) u ] = ( sihu) u u u ] = sech u ] = csch u ] = ( sech uthu) u x cschu ] = ( csch ucothu) u coshu u = sihu + C sihu u = cosh u + C sech u u = thu + C csch u u = cothu + C sechuthu u = sechu + C csch ucoth u u = cschu + C Iverse Hyperolic Fuctios: sih x = l x + x + Domi:, + cosh x = l x + x Domi:, ) th x = x + l x Domi: (, ) coth x = x + l x sech x = l + x x csch x = l x + + x x Domi: (, ) (, + ) Domi: ( 0,] Domi: (, 0) ( 0, + )

Harold s Calculus Notes Cheat Sheet 15 December 2015

Harold s Calculus Notes Cheat Sheet 15 December 2015 Hrol s Clculus Notes Chet Sheet 5 Decemer 05 AP Clculus Limits Defiitio of Limit Let f e fuctio efie o ope itervl cotiig c let L e rel umer. The sttemet: lim x f(x) = L mes tht for ech ε > 0 there exists

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

Calculus Summary Sheet

Calculus Summary Sheet Clculus Summry Sheet Limits Trigoometric Limits: siθ lim θ 0 θ = 1, lim 1 cosθ = 0 θ 0 θ Squeeze Theorem: If f(x) g(x) h(x) if lim f(x) = lim h(x) = L, the lim g(x) = L x x x Ietermite Forms: 0 0,,, 0,

More information

Calculus Definitions, Theorems

Calculus Definitions, Theorems Sectio 1.1 A Itrouctio To Limits Clculus Defiitios, Theorems f(c + ) f(c) m sec = = c + - c f(c + ) f(c) Sectio 1. Properties of Limits Theorem Some Bsic Limits Let b c be rel umbers let be positive iteger.

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

Differentiation Formulas

Differentiation Formulas AP CALCULUS BC Fil Notes Trigoometric Formuls si θ + cos θ = + t θ = sec θ 3 + cot θ = csc θ 4 si( θ ) = siθ 5 cos( θ ) = cosθ 6 t( θ ) = tθ 7 si( A + B) = si Acos B + si B cos A 8 si( A B) = si Acos B

More information

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6) WQ017 MAT16B Lecture : Mrch 8, 017 Aoucemets W -4p Wellm 115-4p Wellm 115 Q4 ue F T 3/1 10:30-1:30 FINAL Expoetil Logrithmic Fuctios (4.1, 4., 4.4, 4.6) Properties of Expoets Let b be positive rel umbers.

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

National Quali cations SPECIMEN ONLY

National Quali cations SPECIMEN ONLY AH Ntiol Quli ctios SPECIMEN ONLY SQ/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite workig.

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Mathematical Notation Math Calculus for Business and Social Science

Mathematical Notation Math Calculus for Business and Social Science Mthemticl Nottio Mth 190 - Clculus for Busiess d Socil Sciece Use Word or WordPerfect to recrete the followig documets. Ech rticle is worth 10 poits d should e emiled to the istructor t jmes@richld.edu.

More information

For students entering Honors Precalculus Summer Packet

For students entering Honors Precalculus Summer Packet Hoors PreClculus Summer Review For studets eterig Hoors Preclculus Summer Pcket The prolems i this pcket re desiged to help ou review topics from previous mthemtics courses tht re importt to our success

More information

BC Calculus Path to a Five Problems

BC Calculus Path to a Five Problems BC Clculus Pth to Five Problems # Topic Completed U -Substitutio Rule Itegrtio by Prts 3 Prtil Frctios 4 Improper Itegrls 5 Arc Legth 6 Euler s Method 7 Logistic Growth 8 Vectors & Prmetrics 9 Polr Grphig

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

Sharjah Institute of Technology

Sharjah Institute of Technology For commets, correctios, etc Plese cotct Ahf Abbs: hf@mthrds.com Shrh Istitute of Techolog echicl Egieerig Yer Thermofluids sheet ALGERA Lws of Idices:. m m + m m. ( ).. 4. m m 5. Defiitio of logrithm:

More information

The Exponential Function

The Exponential Function The Epoetil Fuctio Defiitio: A epoetil fuctio with bse is defied s P for some costt P where 0 d. The most frequetly used bse for epoetil fuctio is the fmous umber e.788... E.: It hs bee foud tht oyge cosumptio

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

Review Handout For Math 2280

Review Handout For Math 2280 Review Hout For Mth 80 si(α ± β siαcos β ± cos α si β si θ 1 [1 cos(θ] cos si α cos β 1 [si(α + β + si(α β] si cos α cos β 1 [cos(α + β + cos(α β] si x +siy si ( ( x+y cos x y Trigoometric Ietites cos(α

More information

Math Notebook for Students

Math Notebook for Students Mth Notebook for Stuets 50 Essetil Mthemticl Formuls Equtios b Peter I. Ktt Petr Books www.petrbooks.com Mth Notebook for Stuets Peter I. Ktt, PhD Correspoece bout this book m be set to the uthor t oe

More information

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range.

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range. -. ALGEBRA () Fuctios A reltioship etwee two vriles tht ssigs to ech elemet i the domi ectly oe elemet i the rge. () Fctorig Aother ottio for fuctio of is f e.g. Domi: The domi of fuctio Rge: The rge of

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible)

Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible) PG. Clculus BC Bile (rd most importt ook i the world) (To e used i cojuctio with the Clculus AB Bile) Topic Rectgulr d Prmetric Equtios (Arclegth, Speed) 4 Polr (Polr Are) 4 5 Itegrtio y Prts 5 Trigoometric

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Objective Mathematics

Objective Mathematics . o o o o {cos 4 cos 9 si cos 65 } si 7º () cos 6º si 8º. If x R oe of these, the mximum vlue of the expressio si x si x.cos x c cos x ( c) is : () c c c c c c. If ( cos )cos cos ; 0, the vlue of 4. The

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible)

Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible) PG. Clculus BC Bile (3rd most importt ook i the world) (To e used i cojuctio with the Clculus AB Bile) Topic Rectgulr d Prmetric Equtios (Arclegth, Speed) 3 4 Polr (Polr Are) 4 5 Itegrtio y Prts 5 Trigoometric

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions!

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions! Nme: ARCC Midterm Review Uit 1: Fuctios d Reltios Kow your pret fuctios! 1. The ccompyig grph shows the mout of rdio-ctivity over time. Defiitio of fuctio. Defiitio of 1-1. Which digrm represets oe-to-oe

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

denominator, think trig! Memorize the following two formulas; you will use them often!

denominator, think trig! Memorize the following two formulas; you will use them often! 7. Bsic Itegrtio Rules Some itegrls re esier to evlute th others. The three problems give i Emple, for istce, hve very similr itegrds. I fct, they oly differ by the power of i the umertor. Eve smll chges

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents Algebr II, Chpter 7 Hrdig Chrter Prep 06-07 Dr. Michel T. Lewchuk Test scores re vilble olie. I will ot discuss the test. st retke opportuit Sturd Dec. If ou hve ot tke the test, it is our resposibilit

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Mathematics Last Minutes Review

Mathematics Last Minutes Review Mthemtics Lst Miutes Review 60606 Form 5 Fil Emitio Dte: 6 Jue 06 (Thursdy) Time: 09:00-:5 (Pper ) :45-3:00 (Pper ) Veue: School Hll Chpters i Form 5 Chpter : Bsic Properties of Circles Chpter : Tgets

More information

AP Calculus Formulas Matawan Regional High School Calculus BC only material has a box around it.

AP Calculus Formulas Matawan Regional High School Calculus BC only material has a box around it. AP Clcls Formls Mtw Regiol High School Clcls BC oly mteril hs bo ro it.. floor fctio (ef) Gretest iteger tht is less th or eql to.. (grph) 3. ceilig fctio (ef) Lest iteger tht is greter th or eql to. 4.

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION TEST SAMPLE TEST III - P APER Questio Distributio INSTRUCTIONS:. Attempt ALL questios.. Uless otherwise specified, ll worig must be

More information

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS Appedi A Emples for Ls,,. FACTORING POLYNOMIALS Tere re m stdrd metods of fctorig tt ou ve lered i previous courses. You will uild o tese fctorig metods i our preclculus course to ele ou to fctor epressios

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Impedance Matching Equation: Developed Using Wheeler s Methodology

Impedance Matching Equation: Developed Using Wheeler s Methodology Impedce Mtchig Equtio: Developed Usig Wheeler s Methodology IEEE Log Isld Sectio Ates & Propgtio Society Presettio December 4, 0 y Alfred R. Lopez Outlie. ckgroud Iformtio. The Impedce Mtchig Equtio. The

More information

Impedance Matching Equation: Developed Using Wheeler s Methodology

Impedance Matching Equation: Developed Using Wheeler s Methodology Impedce Mtchig Equtio: Developed Usig Wheeler s Methodology IEEE Log Isld Sectio Ates & Propgtio Society Presettio December 4, 03 By Alfred R. Lopez Outlie. Bckgroud Iformtio. The Impedce Mtchig Equtio

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the Lecture. Rtiol Epoets d Rdicls Rtiol Epoets d Rdicls Lier Equtios d Iequlities i Oe Vrile Qudrtic Equtios Appedi A6 Nth Root - Defiitio Rtiol Epoets d Rdicls For turl umer, c e epressed usig the r is th

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

REVISION SHEET FP1 (AQA) ALGEBRA. E.g., if 2x

REVISION SHEET FP1 (AQA) ALGEBRA. E.g., if 2x The mi ides re: The reltioships betwee roots d coefficiets i polyomil (qudrtic) equtios Fidig polyomil equtios with roots relted to tht of give oe the Further Mthemtics etwork wwwfmetworkorguk V 7 REVISION

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Synopsis Grade 12 Math Part II

Synopsis Grade 12 Math Part II Syopsis Grde 1 Mth Prt II Chpter 7: Itegrls d Itegrtio is the iverse process of differetitio. If f ( ) g ( ), the we c write g( ) = f () + C. This is clled the geerl or the idefiite itegrl d C is clled

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information