Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible)

Size: px
Start display at page:

Download "Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible)"

Transcription

1 PG. Clculus BC Bile (rd most importt ook i the world) (To e used i cojuctio with the Clculus AB Bile) Topic Rectgulr d Prmetric Equtios (Arclegth, Speed) 4 Polr (Polr Are) 4 5 Itegrtio y Prts 5 Trigoometric Itegrls 7 Trigoometric Sustitutios 8 9 Itegrtio Techiques (Log Divisio, Prtil Frctios) 9 Improper Itegrls 0 Covergece/Divergece Tests Tylor/McLuri Series 4 Rdius d Itervl of Covergece 5 Writig Tylor series usig kow series 5 Seprtig Vriles L'Hopitl's Rule Work Hooke's Lw 7 Logisticl/Epoetil Growth 8 Euler's Method 8 Slope Fields 9 Lgrge Error Boud 9 Are s Limit 0 Summry of Tests for Covergece Power Series for Elemetry Fuctios Specil Itegrtio Techiques -4 After Clculus BC (Vector Clculus d Clculus III)

2 APPLICATIONS OF THE INTEGRAL Rectgulr Equtios y f () Legth of Curve (Arclegth) Surfce Are ( ) L + f d S.A. π f d + f '( ) Prmetric Equtios Prmetric equtios re set of equtios, oth fuctios of t such tht: f t y g( t) Legth of Curve ( ) + g' ( t) dt L f ' t or Surfce Are d dt + dt dt S.A. π g t ( f '( t) ) + g' ( t) dt Speed Equtio : speed dt + d dt EX# : If smooth curve c is give y the equtio, f (t) d y g(t), the the slope of c t (, y) is d dt, d dt d dt 0 d y d d d d d y d d d y d d d dt d d dt d dt d y d d dt t y 4 t 4 d dt t d dt d dt t t t 0 dt t Fid slope d cocvity t (, ) Must fid t t 4 (t 4) t 4 t 4 d (,) 8 d y d t 4 Cocve up d y d t t d y d t t t

3 Polr Coordites Polr coordites re defied s such: r cosθ r + y y r siθ θ t y Are Uder Curve A or ( f ( θ)) dθ A A r dθ A Are Betwee Two Curves ( f ( θ) ) g( θ) or ( R) r dθ dθ EX# : Fid the Are of oe lef of the three-lef rose r cos θ. (Oe lef is formed from -π to π ) π A (cos θ) dθ 9 π cos θ dθ 9 π π π 8 0 π 8 0 π π 4 π cosθ dθ π 9 si θ θ 4 8 π EX# : Fid the Ier Loop of r siθ. (siθ t π d 5π to form the ier loop) 5π 5π A π ( siθ) dθ π π π ( 4siθ + 4si θ) dθ π 5π ( 4siθ cosθ ) dθ siθ θ + cosθ π π EX# : π cosθ 4siθ + 4 dθ 5π π Fid the Totl Are of r siθ. (Hlf the figure is etwee 5π d π, so we doule tht re) π A 5π ( siθ) dθ π 5π π 5π ( 4siθ + 4 si θ) dθ ( 4siθ cosθ ) dθ θ + 4 cosθ si θ π EX#4 : π 5π π 5π cosθ 4siθ + 4 dθ 9π π + Fid the Are of the Outer Loop of r siθ. (Whole figure Ier Loop) A

4 EX#5 : Fid the Are of the eclosed regio etwee r cosθ d r cosθ. cosθ cosθ whe cosθ which is θ π d θ 5π. They form two ideticl eclosures. Fid the Are of oe eclosure d doule it. They meet t θ π i the first eclosure. You hve to figure out which equtio outlies your ecosure. r outlies the eclosure from θ 0 to θ π d r outlies the eclosure from θ π to θ π. π A ( cosθ) dθ + π 0 π ( cosθ) dθ π INTEGRATION TECHNIQUES Itegrtio y Prts Itegrtio y Prts is doe whe tkig the itegrl of product i which the terms hve othig to do with ech other. 5π u dv uv v du Refer to the Clculus AB Bile for the geerl techique. If the derivtive of oe product will evetully rech zero, use the tulr method. Tulr method : List the term tht will rech zero o the left d keep tkig the derivtive of tht term util it reches zero. List the other term o the right d tke the itegrl for s my times s it tkes for the left side to rech zero. EX : cos d + cos si 0 cos Multiply the terms s show. The first oe o the left multiplies with the secod oe o the right d the sig is positive, the secod term o the left mtches with the third oe o the right d is egtive, d cotiue o util the lst term o the right is mtched up, ltertig sigs s you go. cos d si + cos + C 4

5 Specil cses (Itegrtio y Prts) ( l must e u whe doig itegrtio y prts ) u l l d l d l + C dv d du v (Whe either fuctio goes wy, you my pick either fuctio to e u, ut you must pick the sme kid of fuctio throughout) ( i.e. If you pick the trig. fuctio to e u the you must pick the trig. fuctio to e u the et time lso. You will perform itegrtio y prts twice.) st time e si d e si e cos d u si dv e e si e cos e si d du cos d v e e si e cos e si d (Add to other side) d time e si d u cos dv e e si d du si d v e Trigoometric Itegrls sim cos d if is odd, sustitute u si if m is odd, sustitute u cos e si e cos e si e cos + C Useful Idetity: cos si Useful idetity: si cos If m d re oth eve, the reduce so tht either m or re odd, usig trigoometric (doule gle) idetities. Doule gle idetities : si si cos cos cos si Hlf - Agle Idetities : si cos cos + cos EX# : si cos 4 d si ( cos )cos 4 d d du si cos 4 cos u 4 u (u cos du -si d) u5 5 + u7 7 + C 5 cos 5 + ( cos )7 7 + C EX# : si cos 5 d cos d si si (Ech cos si ) cos d du si si 4 + si u u 4 + u (u si du cos d) u u5 5 + u7 7 + C ( si ) si ( si )7 7 + C

6 EX# : si cos 4 d cos d si cos si + cos i d 8 si d + 8 si cos d si si cos d cos + cos si 8 cos 4 d + 8 u du u si du cos si u + C si 4 4 si + + C 48 cos 4 tm sec d If is eve, sustitute u t Useful idetity: t sec If m is odd, sustitute u sec Useful idetity: t sec If m is eve d is odd, reduce powers of sec loe Useful idetity: t sec EX# : sec 4 t d sec ( + t )t d ( sec + t ) d du sec t + t 4 u + u 4 (u t du sec d) u + u5 5 + C ( t ) + ( t )5 5 + C EX# : sec 5 t d d ( t sec ) d sec t sec 4 t d sec t sec 4 sec sec t sec 4 sec (u sec du sec t d) u 4 u du 5 u5 5 u7 7 + C sec 5 ( sec )7 7 + C Trigoometric Sustitutios If the itegrd cotis the sustitute siu d cosu du The rdicd ecomes ( si u) ( si u) cos u cosu If the itegrd cotis + the sustitute tu d sec u du The rdicd ecomes ( + t u) ( + t u) sec u secu If the itegrd cotis the sustitute secu d secu tu du The rdicd ecomes sec u ( sec u ) t u tu

7 EX# : 9 d 9 siθ cosθ dθ 9 si θ siθ 9cos θ cosθ dθ 9 cos θ d d cosθ dθ 9θ + 9si θ 4 + C 9 rcsi + 9 cosθ dθ 9 + cosθ dθ 9 + C 9 siθ 9 rcsi C siθ EX# : d + 5 EX# : d ( Sustitute 4 tθ d 4sec θ dθ ) Sustitute 5secθ d 5secθ tθ dθ 4 tθ 4 sec θ dθ 5sec θ 5 + t θ 5secθ tθ dθ 5secθ 4 tθ 4sec θ dθ 5 sec θ + t θ 5secθ tθ dθ 4 tθ 4 sec θ dθ sec θ 4 tθ secθ dθ 4 secθ + C C + C 5secθ 5 t θ 5secθ tθ dθ 5secθ 5 t θdθ 5( sec θ )dθ ( 5sec θ 5)dθ 5 tθ 5θ + C rcsec 5 + C 5 5rcsec 5 + C θ 4 tθ 4 tθ θ 4 + 5secθ 5 5 secθ θ 5 7

8 Itegrtio Techiques Log Divisio (Must use log divisio if the top fuctio hs the sme or greter power s the ottom fuctio) Step - Divide the umertor y the deomitor. Seprte the itegrd ito seprte itegrls for ech term EX. + d + d l Add d sutrct terms i the umertor + d C + + d ( + ) + 4 d l rct + + C d Prtil Frctios ( Used whe the deomitor is fctorle) Before performig prtil frctios, you must use log divisio if the degree of the umertor is greter or equl to the deomitor. Step - Fctor the deomitor of the fuctio Step - Seprte ito prtil frctios Rewrite s frctiol terms - ritrry costts divided y ech fctor of the deomitor. If fctor is repeted more th oce, write tht my terms for tht fctor 4 EX# : d 4 4 d A + B 4 + d ( + ) Multiply y the commo deomitor. 4 A + + B( 4) Plug i the roots of the deomitor d solve for the costts Let 4 5 7A A 5 7 Let 7B B 7 The itegrl hs ee reduced dow to somethig much more resole d ow we re le to itegrte. Therefore, 4 d d 5 7 l l + + C 8

9 EX# : d + + d A + B + + Multiply y the commo deomitor. + A + + B( + ) + C Plug i the roots of the deomitor d solve for the costts Let 0 A Let C C Let 5 4A + B + C B C ( + ) d The itegrl hs ee reduced dow to somethig much more resole d ow we re le to itegrte. Therefore, + + d + + d l l C Simple prtil frctios ( Other method) EX# : 8 + ( 5) d A + B + 5 d d l + + l 5 + C 8 A( 5) + B( + ) 8 A 5A + B + B l C A + B 0 A + B 0 5A + B 8 5A + B 8 8A 8 A B Improper Itegrls f ( ) d lim f ( ) d d f ( ) d + f ( ) f I the first cse: If f ( )coverges the the itegrl eists If f ( )diverges the the itegrl is or EX # : e d lim e d lim c e ( ) lim e c d + e 0 + e e So e d coverges EX # : d d l lim l l So d diverges. EX # : d d lim 0 + So d coverges. EX #4 : d 0 d 0 0 lim 0 + So d diverges. 0 9

10 Geerl Series d Sequeces For the sequece { } m, if lim eists, the the sequece coverge to L. If lim does ot eist, the the sequece diverges to or. Boudess refers to whether or ot sequece hs fiite rge If If { } m { } m The th prtil sum S coverges, the diverges, the { } m { } m is ouded is uouded refers to the sum of the first terms of sequece. If d oth coverge, the + does lso d + + Covergece Tests ( PARTING CC) th term test (Used to show immedite divergece) If top power is the sme or greter th the ottom power the the series is diverget. If ottom power is greter we must proceed d use differet test, ecuse this test cot prove covergece. + ( ) EX# : d 5 These re diverget y the th term test. 5 + P -Series EX# : EX# : d d coverges if p > d diverges if p p Coverge y p-series. Diverge y p-series Itegrl Test for Covergece (for oegtive sequeces) (Used if you kow the itegrl of the series) EX# : EX# : 0 + coverges iff f ( )d coverges diverges iff f ( )d diverges 0 + d rct 0 lim rct rct 0 π 0 π d l lim l l 0 so series Diverges so series Coverges 0

11 Altertig Series Test for Covergece (for ltertig sequeces) EX# : The series ( ) coverges if { } is positive decresig sequece d lim 0. ( ) Coverges ecuse the deomitor is lrger i the ltertig series. + Altertig series c ot e used to prove divergece. Direct Compriso Test for Covergece d Divergece (for positive sequeces) EX# : EX# : If coverges d 0 the coverges If diverges d 0 the Diverges sice Coverges sice > d we kow 7 + < 7 diverges d we kow diverges y p-series. 7 coverges y geometric series. Limit Compriso Test (for oegtive sequeces) (Used o messy lgeric series) Assume lim > 0 If coverges, the EX# : 0 lim lim Diverges sice we compred with diverget series. EX# : lim lim Coverges sice we compred with coverget series. Geometric Series Test EX# : coverges. If diverges, the diverges. Limit is fiite d positive. 7 Limit is fiite d positive. A geometric series r coverges iff r <. A geometric series r diverges iff r. m If geometric series coverges, the r r m Sum : S r r m 5 Coverges ecuse r 0 5. The sum of the series is S 5 5 m EX# : 7 Diverges ecuse r 7. No sum sice series diverges. 0

12 Rtio Test (for oegtive series) (Used for relly ugly prolems) EX# : EX# : The series coverges if lim The series diverges if lim If lim + ( )! lim e ( ) 5 lim + + < >, the this test is icoclusive. ( + )! e +! e ( + ) ( + )! lim e lim + 5 e! lim Root Test for Covergece (for oegtive series) EX# : The sequece coverges if lim < The sequece diverges if lim > If lim ( ) lim e, the this test is icoclusive. e lim e e ( + ) e 5 + lim 5 so series Coverges so series Diverges so series Coverges EX# : ( ) 7 lim lim so series Diverges Telescopig Series ( Limit 0 d the terms get smller s we pproch ) If series is telescopig series the it is coverget. EX# : EX# : + is coverget. The sum is coverget. The sum

13 SERIES AND SEQUENCES Power Series : A power series is defied s c c 0 + c + c + c Tylor s Theorem d Relted Series (If the series is cetered t c 0 the it is McLuri Series) to the th term: f ( ) f ( c) + f ( c) ( c) + f ( c) ( c) + f ( c) ( c) f (c) Tylor s theorem for pproimtig f Tylor series of f ( ) this is power series!! 0! f c! ( c)! ( c) EX# : Fid the fourth degree McLuri Series cetered t c 0 f ( ) cos f ( 0) f ( ) f f f f 4 ( ) si f 0 ( ) cos f 0 ( ) si f ( 0) 0 ( ) cos f 4 ( 0) for f ( ) cos.! 0 f ( ) 0 f ( )!! + 4 4! 0! ! + 0 4! ( )! ! EX# : Fid the fourth degree Tylor Series for f f ( ) l f 0 f ( ) 0 + f f f f 4 ( ) ( ) f ( ) f l cetered t c. f f ( ) ( )!!! f ( ) ( ) ( ) f 4 4 +! +! + 4! ( )4 4! ( ) + + EX # : f 5 f 4 f f 7 rd Degree Tylor Polyomil : P ( ) 5 + 4! Usig rd Degree Tylor Polyomil to pproimte.: P (.) 5 + 4(. ) +.! + 7 (. )! ( )!

14 Rdius of covergece / Itervl of covergece EX# : Fid the rdius d itervl of covergece ( +) 0 + < + < < + < < < + Geometric Series 0 < Coverges iff r < Do't hve to check edpoits ecuse edpoits of geometric series ever work. I'll check ywy. Check edpoits Check, Check, 0 Diverges ( ) Diverges 0 EX# : Fid the rdius d itervl of covergece ( ) ( 4) Use Rtio Test 0 lim ( 4) + ( +) + ( 4) ( 4) lim + < 4 < < 4 < < < 7 Check edpoits Check, ( ) Diverges 0 ( ) Check 7, Coverges 0 Sice 7 works iclude 7 i itervl. Ceter of covergece: Rdius of covergece: Itervl of Covergece: < < Ceter of covergece: 4 Rdius of covergece: Itervl of Covergece: < 7 Whe fidig the itervl of covergece usig rtio test : If lim 0 the the series coverges from to. If lim the the series coverges t the ceter c oly. EX# : ( 4) lim! 0 so the series coverges from to. EX# : ( +)! lim 0 ( 4) + + ( +)! ( 4) + ( 4) lim + ( +)!! ( 4) lim! ( +) + ( +)! + ( +)! so the series coverges t the ceter oly. ( +) + ( +)! lim + ( 4) ( +) 0 ( +)! lim ( +) ( +) 4

15 Memorize these kow series Series for e : + +! +! +... Series for! Series for si : EX# : 0 + : ! + 5 5!... Series for cos : ( + )!! + 4 4!...! Use the series from ove to write ech of the followig series f ( ) cos f ( ) 4! + 8 f ( ) cos f ( )! + 5 f ( ) si f ( )! + 5 f ( ) e f ( ) + + e f f ( ) f ( ) 0 d f 0 4 4!... ( Replce with ( i the kow cosie series) )! 0 + 4!... (Multiply the kow cosie series y )! 0 + 5!... (Tke the itegrl of the kow cosie series) ( + )!! ( )! : (Replce with i the kow e series)! 0! + 4! : DIFFERENTIAL EQUATIONS ( Seprtig Vriles) Seprle Differetil Equtios 0 If P( ) + Q( y) d 0 the Q y EX# : Fid the geerl solutio give d y d y y d y d 0 0 (Tke the defiite itegrl of e ) (Replce with i the kow series (Multiply the foud series ) + y ) P ( )d the Q ( y ) P( )d EX# : Fid the prticulr solutio y f () for EX# give (, 5) y + C y + C y + C C 7 C y + 7 y + 7 EX# : Fid the prticulr solutio y f () give d d y y d ( 0, 5 ) d y l y + C y e +C 5 y C e 5 C y 5e

16 f () L Hôpitl s Rule : If lim g() 0 0 or, the lim EX # : EX # : e lim lim e so lim lim e so lim 9 0 Idetermite forms : 0,,, 0, 0 0 f () g() lim f '() g'() lim e Remider: I limits 0 d 0 Idetermite forms must e chged to 0 0 or EX # : lim l 0 so we must covert to lim l so lim 0 + lim EX #4 : l y lim l y lim Work lim + l + + W F d cosθ so we must rig dow the so let y lim + l y lim l y l + 0 y e or the dot product of the Force vector d the distce vector. W F d W F d ; where F is cotiuously vryig force. l + l y lim 0 0 d tke l of oth sides. l y lim Hooke s Lw : The force F required to compress or stretch sprig (withi its elstic limits) is proportiol to the distce d tht the sprig is compressed or stretched from its origil legth. Tht is, F k d W k d + where the costt of proportiolity k (the sprig costt) depeds o the specific ture of the sprig. EX : Compressig Sprig A force of 750 pouds compresses sprig iches from its turl legth of 5 iches. Fid the work doe i compressig the sprig dditiol iches. 750 k W k 50 F( ) k so F( ) d 75 ich pouds

17 Logisticl Growth Epoetil Growth dt ky y L L ; y ; L Y 0 + e kt Y 0 k costt of proportiolity L crryig cpcity 7 dt ky ; y Cekt k growth costt C iitil mout Y 0 iitil mout Logistic Growth dt ky( y L ) where L is the crryig cpcity (upper oud) d k is the costt of proportiolity. If you solve the differetil equtio usig very tricky seprtio of vriles, you get the geerl solutio: EX# : y L + e kt ; L Y 0 Y 0 A highly cotgious pikeye (scietific me: Cojuctivitus itchlikecrzius) is rvgig the locl elemetry school. The popultio of the school is 900 (icludig studets d stff), d the rte of ifectio is proportiol oth to the umer ifected d the umer of studets whose eyes re pus-free. If sevety-five people were ifected o Decemer 5 d 50 hve cotrcted pikeye y Decemer 0, how my people will hve gotte the gift of crusty eyes y Christms Dy? Solutio Becuse of the proportiolity sttemets i the prolem, logistic growth is the pproch we should tke. The upper limit for the disese will e L 900; it is impossile for more th 900 people to e ifected sice the school oly cotis 900 people. This gives us the equtio L y 900 +e kt Five dys lter, 50 people hve cotrcted pikeye, so plug tht iformtio to fid k: Filly, we hve the equtio y Decemer 5, so t e k 5 50(+e 5k ) 900 e 5k e 5k 5 55 l e 5k l 55 5k k We wt to fid the umer of ifectios o t +e 900 y +e ( )(0) y So lmost 558 studets hve cotrcted pikeye i time to ope presets.

18 Euler s Method Uses tget lies to pproimte poits o the curve. New y Old y + d d EX# : Give: f (0) Origil (0, ) d y d : chge i Use step of h 0. to fid f (0.) New y + (0.)(0) f ( 0.) At (0, ) New y + (0.)(0.5).05 f ( 0.).05 At (0., ) New y.05 + (0.)(0.05).0455 f ( 0.).0455 At (0.,.05) d Derivtive (slope) t the poit. d 0 0 d d Slope Fields Drw the slope field for d y Plug ech poit ito d d grph the tget lie t the poit At (, ). At (, ). At ( 0, ) d d d 0 0 EX : Here re the slope fields for the give differetil equtios d y ( 8 y) d + y The slope fields give ALL the solutios to the differetil equtio. 8

19 Lgrge Error Boud Error f ( ) P ( ) R ( ) where R ( ) f + ( z) ( c) + f + ( +)! ( z) the mimum of the ( +)th derivtive of the fuctio EX # : cos! cos ( 0. ) 4! ( ) f 5 ( z) ( c) 5 f 5 ( z) si z We eed si z to e s lrge s possile (which is ecuse si z ) R 4 5! 0. R 4 ( 0.) < 5 5! EX # : f f 5 f 7 f d Degree Tylor Polyomil : P ( ) ( ) Usig d Degree Tylor Polyomil to pproimte.: P. ( c) Lgrge Error Boud : R ( ) f z! + 5. (. ) 0.00 Error!! + 7 (. ).55! Are s limit Are lim i f + i height width Summtio formuls d properties i itervl ) c c ) i + ) i + i i i ( + ) 4) i + 5) ( i ± i ) i ± i ) k i k i, k is costt 4 i i i i i i EX# : Are f ( ) [ 0, ] sudivisios Fid Are uder curve. lim f i 0 i lim i i lim 4 i i + lim EX# : lim Aswer : d (You hve to recogize tht the prolem is skig for Are from 0, 0 [ ] with sudivisios) 9

20 Summry of tests for Series Test Series Coverges Diverges Commet This test cot e th-term lim 0 used to show covergece. Geometric Series r r < r Sum: S r 0 Telescopig + lim L Sum: S L p-series Altertig Series p > p p ( ) 0 < + d lim 0 Remider: R N N + Itegrl ( f is cotiuous, positive, d decresig), f 0 f ( )d coverges f ( )d diverges Remider: 0 < R N < f ( )d N Root lim < lim > Test is icoclusive if lim. Rtio lim + < lim + > Test is icoclusive if lim +. Direct compriso (, > 0) 0 < d coverges 0 < d diverges Limit Compriso (, > 0) lim L > 0 d coverges lim L > 0 d diverges 0

21 Fuctio Power Series for Elemetry Fuctios Itervl of Covergece ( ) + ( ) ( ) + ( ) 4 + ( ) ( ) + 0 < < ( ) + < < l + ( ) ( ) ( ) + 0 < e + +! +! + 4 4! !! + < < si! + 5 5! 7 7! + 9 9! + + ( + )! + < < cos! + 4 4!! + 8 8! +! + < < rct rcsi ! +! ( k ) ( + ) k + k + k k + k k + k k!! *The covergece t ± depeds o the vlue of k. ( k ) ( k ) 4 4! + < < *

22 Procedures for fittig itegrds to Bsic Rules Techique Epd (umertor) Seprte umertor Emple ( + e ) d + e + e d + e + e + C + d d rct + l + + C Complete the squre d d rcsi ( ) + C Divide improper rtiol fuctio d + + d rct + C Add d sutrct terms i the umertor d d d l C Use trigoometric Idetities t sec si cos cot csc Multiply d Divide y Pythgore cojugte d + si si cos d si + si si d d cos si cos d sec sec t t + sec + C si d si Hppy stuig d good luck! compiled y Kris Chisguthum, clss of 97 edited d recompiled y Michel Lee, clss of 98 edited d recompiled y Doug Grhm, clss of Forever

23 VECTOR CALCULUS A vector hs two compoets: mgitude d directio, epressed s ordered pir of rel umers: (, ) where 0 d y y 0 :( 0, y 0 ) d, y vector s directed lie segmet respectively. θ is the gle etwee two vectors. Legth (mgitude) of vector : + Uit vectors : i (, 0) j (0,) + ( +, + ) -, c ( c, c ) i + j c c + cosθ represet the iitil d termil poit of the If i 0, the d re perpediculr Agle etwee two vectors : cosθ Projectio (of vector oto ) i pr Vector - Vlued Fuctios If c, the d re prllel ( ) pr + pr ' where ' is perpediculr to A vector - vlued fuctio hs domi ( set of rel umers) d rule (which ssigs to ech umer i the domi vector) costi + sitj e.g. F t If F( t) f ( t)i + f ( t) j lim F( t)eists oly if lim f ( t) d f ( t) eist lim F( t) lim f ( t) )i + lim f ( t) ) j t c t c t c A vector vlued fuctio is cotiuous t t 0 if its compoet fuctios re cotiuous t t 0 f ( t) + f ( t) dt f ( t) dt + f ( t) dt F t F t Motio (defied s vector vlued fuctio of time) Positio: r( t) ( t)i + y( t) j Velocity: v( t) ( t)i + y ( t) j Speed: Accelertio: Tget vector: ( t)i + y ( t) j r ( t) / r ( t) / r ( t) T ( t) / T ( t) v t t T t Curvture: k T t Norml vector: N t

24 OTHER DIFFERENTIAL EQUATIONS (Clculus III) Lier First Order Differetil Equtios A lier first order differetil equtio hs this form: Solve usig this equtio: y e S e S Secod Order Lier Differetil Equtios Q( )d A secod order differetil equtio hs this geerl form: Homogeeous Equtios A secod order lier equtio is homogeeous if g d y d + d + cy 0 To solve, mke use of these equtios: d + P y Q where S P d d y d + d + cy g( ) 0; thus s + 4c d s 4c There re three cses depedig o the solutio to 4c If 4c > 0 y C e s + C e s where C d C re costts If 4c 0 y C e s + C e s where C d C re costts If 4c < 0 y C e u siv + C e u cosv where C d C re costts u d v 4c Nohomogeeous Equtios A secod order differetil equtio is ohomogeeous if g To solve:. Fid the solutio for d y d + d + cy 0 See Homogeeous Equtios. Fid y p y p u y + u y where: ( y g) u y y y y y u g y y y y d y d y re solutios i Step. Epress the solutio s y y p + the solutio give y Step 4 does ot equl zero

Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible)

Calculus BC Bible. (3rd most important book in the world) (To be used in conjunction with the Calculus AB Bible) PG. Clculus BC Bile (3rd most importt ook i the world) (To e used i cojuctio with the Clculus AB Bile) Topic Rectgulr d Prmetric Equtios (Arclegth, Speed) 3 4 Polr (Polr Are) 4 5 Itegrtio y Prts 5 Trigoometric

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

BC Calculus Path to a Five Problems

BC Calculus Path to a Five Problems BC Clculus Pth to Five Problems # Topic Completed U -Substitutio Rule Itegrtio by Prts 3 Prtil Frctios 4 Improper Itegrls 5 Arc Legth 6 Euler s Method 7 Logistic Growth 8 Vectors & Prmetrics 9 Polr Grphig

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

denominator, think trig! Memorize the following two formulas; you will use them often!

denominator, think trig! Memorize the following two formulas; you will use them often! 7. Bsic Itegrtio Rules Some itegrls re esier to evlute th others. The three problems give i Emple, for istce, hve very similr itegrds. I fct, they oly differ by the power of i the umertor. Eve smll chges

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple Chpter II CALCULUS II.4 Sequeces d Series II.4 SEQUENCES AND SERIES Objectives: After the completio of this sectio the studet - should recll the defiitios of the covergece of sequece, d some limits; -

More information

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2.

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2. Clculus II d Alytic Geometry Sectio 8.: Sequeces. Limit Rules Give coverget sequeces f g; fb g with lim = A; lim b = B. Sum Rule: lim( + b ) = A + B, Dierece Rule: lim( b ) = A B, roduct Rule: lim b =

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

( ) = A n + B ( ) + Bn

( ) = A n + B ( ) + Bn MATH 080 Test 3-SOLUTIONS Fll 04. Determie if the series is coverget or diverget. If it is coverget, fid its sum.. (7 poits) = + 3 + This is coverget geometric series where r = d

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 8.0 Clculus Jso Strr Due by :00pm shrp Fll 005 Fridy, Dec., 005 Solutios to Problem Set 7 Lte homework policy. Lte work will be ccepted oly with medicl ote or for other Istitute pproved reso. Coopertio

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

10.5 Test Info. Test may change slightly.

10.5 Test Info. Test may change slightly. 0.5 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow sum)

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

The Exponential Function

The Exponential Function The Epoetil Fuctio Defiitio: A epoetil fuctio with bse is defied s P for some costt P where 0 d. The most frequetly used bse for epoetil fuctio is the fmous umber e.788... E.: It hs bee foud tht oyge cosumptio

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

Calculus. dx dx + v du. v du dx - u dv

Calculus. dx dx + v du. v du dx - u dv Clculus I. Derivtives dy f (x + Dx)- f (x) = f '(x) = Dx Æ0 Dx The Product Rule: d dv (uv) = u + v du The Quotiet Rule: d Ê u ˆ v du Á = - u dv Ë v v Positio, Velocity, d Accelertio v = ds = dv dt dt Chi

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

9.1 Sequences & Series: Convergence & Divergence

9.1 Sequences & Series: Convergence & Divergence Notes 9.: Cov & Div of Seq & Ser 9. Sequeces & Series: Covergece & Divergece A sequece is simply list of thigs geerted by rule More formlly, sequece is fuctio whose domi is the set of positive itegers,

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1 SECTION 5. PGE 78.. DMS: CLCULUS.... 5. 6. CHPTE 5. Sectio 5. pge 78 i + + + INTEGTION Sums d Sigm Nottio j j + + + + + i + + + + i j i i + + + j j + 5 + + j + + 9 + + 7. 5 + 6 + 7 + 8 + 9 9 i i5 8. +

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

Harold s Calculus Notes Cheat Sheet 15 December 2015

Harold s Calculus Notes Cheat Sheet 15 December 2015 Hrol s Clculus Notes Chet Sheet 5 Decemer 05 AP Clculus Limits Defiitio of Limit Let f e fuctio efie o ope itervl cotiig c let L e rel umer. The sttemet: lim x f(x) = L mes tht for ech ε > 0 there exists

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

Calculus Summary Sheet

Calculus Summary Sheet Clculus Summry Sheet Limits Trigoometric Limits: siθ lim θ 0 θ = 1, lim 1 cosθ = 0 θ 0 θ Squeeze Theorem: If f(x) g(x) h(x) if lim f(x) = lim h(x) = L, the lim g(x) = L x x x Ietermite Forms: 0 0,,, 0,

More information

9.5. Alternating series. Absolute convergence and conditional convergence

9.5. Alternating series. Absolute convergence and conditional convergence Chpter 9: Ifiite Series I this Chpter we will be studyig ifiite series, which is just other me for ifiite sums. You hve studied some of these i the pst whe you looked t ifiite geometric sums of the form:

More information

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1 Mth 44 Activity 7 (Due with Fil Exm) Determie covergece or divergece of the followig ltertig series: l 4 5 6 4 7 8 4 {Hit: Loo t 4 } {Hit: } 5 {Hit: AST or just chec out the prtil sums} {Hit: AST or just

More information

Mathematical Notation Math Calculus for Business and Social Science

Mathematical Notation Math Calculus for Business and Social Science Mthemticl Nottio Mth 190 - Clculus for Busiess d Socil Sciece Use Word or WordPerfect to recrete the followig documets. Ech rticle is worth 10 poits d should e emiled to the istructor t jmes@richld.edu.

More information

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6) WQ017 MAT16B Lecture : Mrch 8, 017 Aoucemets W -4p Wellm 115-4p Wellm 115 Q4 ue F T 3/1 10:30-1:30 FINAL Expoetil Logrithmic Fuctios (4.1, 4., 4.4, 4.6) Properties of Expoets Let b be positive rel umbers.

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

Name of the Student:

Name of the Student: Egieerig Mthemtics 5 NAME OF THE SUBJECT : Mthemtics I SUBJECT CODE : MA65 MATERIAL NAME : Additiol Prolems MATERIAL CODE : HGAUM REGULATION : R UPDATED ON : M-Jue 5 (Sc the ove QR code for the direct

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Synopsis Grade 12 Math Part II

Synopsis Grade 12 Math Part II Syopsis Grde 1 Mth Prt II Chpter 7: Itegrls d Itegrtio is the iverse process of differetitio. If f ( ) g ( ), the we c write g( ) = f () + C. This is clled the geerl or the idefiite itegrl d C is clled

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

Differentiation Formulas

Differentiation Formulas AP CALCULUS BC Fil Notes Trigoometric Formuls si θ + cos θ = + t θ = sec θ 3 + cot θ = csc θ 4 si( θ ) = siθ 5 cos( θ ) = cosθ 6 t( θ ) = tθ 7 si( A + B) = si Acos B + si B cos A 8 si( A B) = si Acos B

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles. AP Clculus Notes: Uit 6 Defiite Itegrls Sllus Ojective:.4 The studet will pproimte defiite itegrl usig rectgles. Recll: If cr is trvelig t costt rte (cruise cotrol), the its distce trveled is equl to rte

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

Sect Simplifying Radical Expressions. We can use our properties of exponents to establish two properties of radicals: and

Sect Simplifying Radical Expressions. We can use our properties of exponents to establish two properties of radicals: and 128 Sect 10.3 - Simplifyig Rdicl Expressios Cocept #1 Multiplictio d Divisio Properties of Rdicls We c use our properties of expoets to estlish two properties of rdicls: () 1/ 1/ 1/ & ( Multiplictio d

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

For students entering Honors Precalculus Summer Packet

For students entering Honors Precalculus Summer Packet Hoors PreClculus Summer Review For studets eterig Hoors Preclculus Summer Pcket The prolems i this pcket re desiged to help ou review topics from previous mthemtics courses tht re importt to our success

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. (2014 Admn. onwards) III Semester. B.Sc. Mathematics CORE COURSE CALCULUS AND ANALYTICAL GEOMETRY

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. (2014 Admn. onwards) III Semester. B.Sc. Mathematics CORE COURSE CALCULUS AND ANALYTICAL GEOMETRY UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION (0 Adm. owrds) III Semester B.Sc. Mthemtics CORE COURSE CALCULUS AND ANALYTICAL GEOMETRY Questio Bk & Aswer Key. l l () =... 0.00 b) 0 c). l d =... c

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

8.3 Sequences & Series: Convergence & Divergence

8.3 Sequences & Series: Convergence & Divergence 8.3 Sequeces & Series: Covergece & Divergece A sequece is simply list of thigs geerted by rule More formlly, sequece is fuctio whose domi is the set of positive itegers, or turl umbers,,,3,. The rge of

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range.

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range. -. ALGEBRA () Fuctios A reltioship etwee two vriles tht ssigs to ech elemet i the domi ectly oe elemet i the rge. () Fctorig Aother ottio for fuctio of is f e.g. Domi: The domi of fuctio Rge: The rge of

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS Appedi A Emples for Ls,,. FACTORING POLYNOMIALS Tere re m stdrd metods of fctorig tt ou ve lered i previous courses. You will uild o tese fctorig metods i our preclculus course to ele ou to fctor epressios

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information