(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

Size: px
Start display at page:

Download "(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1"

Transcription

1 SECTION 5. PGE 78.. DMS: CLCULUS CHPTE 5. Sectio 5. pge 78 i INTEGTION Sums d Sigm Nottio j j i i j i i j j j i i terms equls i i 99 i i i i i i i i i i i 99 si j sii j i m k 5 m+6 k + i 6 + i +i, j ,, k k +,,, i i l m l + l + +l l! m i e i/ e+/ e / terms equls. { if + if 5. { if + + if 6. Let f if. The f d + d [k k + ] [k k k ] k 9 [k + ] k k Let s The 9, 99 s

2 INSTUCTO S SOLUTIONS MNUL SECTION 5. PGE 78 Subtrctig these two sums, we get s / / Thus s + + / f i + f i im f i + im + jm+ f j f i im f i im f + f m, becuse ech sum hs ol oe term tht is ot ccelled b term i the other sum. It is clled telescopig becuse the sum folds up to sum ivolvig ol prt of the first d lst terms., m j j m m m im m i i + m m + m + mm + m j j + j j To show tht Fig. 5.. i we write copies of the idetit oe for ech k from to : +, k + k k +, ddig the left d right sides of these formuls we get + i +. Hece, i The umber of smll shded squres is Sice ech hs re, the totl re shded is i. But this re cosists of lrge right-gled trigle of re / below the digol, d smll trigles bove the digol ech of re /. Equtig these res, we get i The formul i + / holds for, sice it ss i this cse. Now ssume tht it holds for some umber k ; tht is, k i kk + /. The for k +, we hve k+ i k i+k+ kk + +k+ k + k +. Thus the formul lso holds for k +. B iductio, it holds for ll positive itegers. 77

3 SECTION 5. PGE 78.. DMS: CLCULUS 7. The formul i + + /6 holds for, sice it ss i this cse. Now ssume tht it holds for some umber k ; tht is, k i kk + k + /6. The for k +, we hve k+ i k i + k + kk + k + + k + 6 k + 6 [k + k + 6k + 6] k + k + k + 6 k + k + + k Thus the formul lso holds for k +. B iductio, it holds for ll positive itegers. 8. The formul r i r /r for r holds for, sice it ss i this cse. Now ssume tht it holds for some umber k ; tht is, k r i r k /r. The for k +, we 9. hve k+ r i k r i + r k r k r + r k r k+ r. Thus the formul lso holds for k +. B iductio, it holds for ll positive itegers.. Fig The L-shped regio with short side i is squre of side ii + / with squre of side i i/ cut out. Sice ii + i i i + i + i i i + i i, tht L-shped regio hs re i. The sum of the res of the L-shped regios is the re of the lrge squre of side + /, so. To show tht + i. j , we write copies of the idetit k + k k + 6k + k +, oe for ech k from to : ddig the left d right sides of these formuls we get + j + 6 j + j + Hece, j j so + j +.. The formul i + / holds for, sice it ss i this cse. Now ssume tht it holds for some umber k ; tht is, k i k k + /. The for k +, we hve k+ i k i + k + k k + + k + k + k +. k + [k + k + ] 78

4 INSTUCTO S SOLUTIONS MNUL SECTION 5. PGE 8 Thus the formul lso holds for k +. B iductio, it holds for ll positive itegers.. To fid j , we write copies of the idetit k + 5 k 5 5k + k + k + 5k +, oe for ech k from to : lim lim lim [ ] sq. uits , ddig the left d right sides of these formuls we get j + j + j + 5 j +. Substitutig the kow formuls for ll the sums ecept j, d solvig for this qutit, gives Fig j Of course we got Mple to do the doke work! i i i i We would guess correctl tht Sectio 5. pge 8 i + +. res s Limits of Sums. The re is the limit of the sum of the res of the rectgles show i the figure. It is. This is similr to #; the rectgles ow hve width / d the ith hs height i/+, the vlue of + t i/. The re is lim i + 8 lim i lim sq. uits.. This is similr to #; the rectgles hve width / / d the ith hs height the vlue of t + i/. The re is lim 8 lim + i i lim + + 6sq. uits. 79

5 SECTION 5. PGE 8.. DMS: CLCULUS. This is similr to #; the rectgles hve width / / d the ith hs height the vlue of + t + i/. The re is lim 7 lim + i + i lim sq. uits re lim S + sq. uits The re is the limit of the sum of the res of the rectgles show i the figure. It is lim lim lim [ + [ ] ] sq. uits. Fig The required re is see the figure lim + lim [ [ + + lim sq. uits. ] + ] Fig Divide [, ] ito equl subitervls of legth b poits i i, i. The S [ i + ] i + Use Theorem d c. + + Fig

6 INSTUCTO S SOLUTIONS MNUL SECTION 5. PGE Fig The regio i questio lies betwee d d is smmetric bout the -is. We c therefore double the re betwee d. If we divide this itervl ito equl subitervls of width / d use the distce betwee d for the heights of rectgles, we fid tht the required re is lim i lim lim i sq. uits. Fig. 5.. The height of the regio t positio is. The bse is itervl of legth, so we pproimte usig rectgles of width /. The shded re is lim lim lim 8 i i 8i 8i sq. uits. Fig The height of the regio t positio is. The bse is itervl of legth, so we pproimte usig rectgles of width /. The shded re is lim + i lim lim + i sq. uits. + Fig

7 SECTION 5. PGE 8.. DMS: CLCULUS The height of the regio t positio is +. The bse is itervl of legth, so we pproimte usig rectgles of width /. The shded re is lim lim lim i 6i 6i 6i sq. uits. Now we c use l Hôpitl s rule to evlute / lim / lim Thus the re is [ ] / l lim lim /+ l l. squre uits. l. Divide [, b] ito equl subitervls of legth b b poits i ib, i. The S b e ib/ b b eb/ e b/ i b eb/ eb/ e b/ b eb/ e b e b/. Let r b. re lim S e b lim e b/ i Use Thm. 6..d. lim r + er r + r e r e b lim r + e r eb sq. uits. [ ] b. re lim [ b + Fig. 5.. b + + b lim lim b + b sq. uits. + ] b. The required re is lim lim / [ +/ + +/ + + +/] / lim lim / lim [ + / + / + + / ] / / /. / 5. Let t b b b / d let b Fig. 5.. b b b, t, t,..., t b. 8

8 INSTUCTO S SOLUTIONS MNUL SECTION 5. PGE 8 The i th subitervl [ i, i ] hs legth i t i t. Sice f i, we form the sum ti S t i t t i [ b / t ]. 7. Let r d c b. The re uder the curve is lim S c r [ ] lim r + r l c l squre uits. lim r + c r l c b This is ot surprisig becuse it follows from the defiitio of l. Fig s i represets sum of res of rectgles ech of width / d hvig heights equl to the height to the grph t the poits i/. Hlf of these rectgles hve egtive height, d lim S is the differece of the res of the two trigles i the figure bove. It hs the vlue sice the two trigles hve the sme re Fig b 6. s + i Fig i represets sum of res of rectgles ech of width / d hvig heights equl to the height to the grph + t the poits i/. Thus lim S is the re of the trpezoid i the figure bove, d hs the vlue + 5/ 7/. Fig s i represets sum of res of rectgles ech of width / d hvig heights equl to the height to the grph t the poits i/. Thus lim S is the re of the trigle i the figure bove, d therefore hs the vlue. 9. S j sum of res of rectgles i the figure. Thus the limit of S is the re of qurter circle of uit rdius: lim S. 8

9 SECTION 5. PGE 8.. DMS: CLCULUS 5. f si o [,], 6. P 6 {, 6,,,, 56 }, L f, P 6 [ ] + Sectio 5. pge 9 Fig The Defiite Itegrl U f, P , [ ] 6. f cos o [, ],. [ L f, P cos + cos + cos + cos ]. U f, P [cos + cos + cos ] + cos. cos. f o [, ], 8. P 8 {,,,,, 5,, 7 }, L f, P 8 [ ] 7 U f, P 8 [ ] + 9. f o [, ],. L f, P [ ]. U f, P [ ].. f e o [, ],. L f, P e + e + e + e e e e. U f, P e + e + e + e e ee.8.. f l o [, ], 5. [ L f, P 5 l + l l l l 9 ] U f, P 5 [l l 75 + l 85 + l 95 ] + l.596. / Fig / 7. f o [, ]. P {,,,...,, }. We hve L f, P U f, P, Thus lim L f, P lim U f, P /. If P is prtitio of [, ], the L f, P U f, P + for ever, sol f, P lim U f, P /. Similrl, U f, P /. If there eists umber I such tht L f, P I U f, P for ll P, the I cot be less th / or there would eist P such tht L f, P >I, d, similrl, I cot be greter th / or there would eist P such tht U f, P <I. Thus I / d d /. 8

10 INSTUCTO S SOLUTIONS MNUL SECTION 5. PGE 9 8. f o [, ]. P {,, We hve L f, P,...,, } i + s, U f, P Thus i i d. s. 9. f o [, ]. P {,,,...,, }. We hve usig the result of Eercise 5 or 5 of Sectio 6. L f, P i i s, U f, P i + + s. Thus d.. f e o [, ]. P {,, 6,...,, }. We hve usig the result of Eercise 5 or 5 of Sectio 6. B l Hôpitl s ule, e / lim e/ lim / e / / e / lim / lim Thus. lim. lim. lim. lim lim L f, P lim U f, P e i i d d i si si d l + i l + d i 5. lim t t d Note tht i [ i is the midpoit of, i ]. 6. lim + i lim + i/ e d.. d + 7. Let b d i + i where i. Sice f is cotiuous d odecresig, Thus, L f, P f + f + f + + f b [ ] f + f i, U f, P f + f + + f + f b b [ ] f i + f b. L f, P e / + e / + e 6/ + +e / e / e / e e /, U f, P e / + e 6/ + e 9/ + +e / e / L f, P. U f, P L f, P [ b f i + f b f b f b f. ] f i 85

11 SECTION 5. PGE 9.. DMS: CLCULUS Sice lim [U f, P L f, P ], therefore f must be itegrble o [, b]. 8. P { < < < }, P { < < < j < < j < < }. Let m i d M i be, respectivel, the miimum d mimum vlues of f o the itervl [ i, i ], for i. The L f, P U f, P m i i i, M i i i. If m j d M j re the miimum d mimum vlues of f o [ j, ], d if m j d M j re the correspodig vlues for [, j ], the m j m j, m j m j, M j M j, M j M j... + d 8, + Fig d shded re Therefore we hve m j j j m j j + m j j, M j j j M j j + M j j. Fig. 5.. Hece L f, P L f, P d U f, P U f, P. If P is refiemet of P we c dd the ew poits i P to those i P oe t time, d thus obti 5. b b d L f, P L f, P, U f, P U f, P... Sectio 5. Properties of the Defiite Itegrl pge 96 b c f d + f d + + b c f d + f d c c f d f d f d + f d f d f d f d f d + f d Fig d Fig t dt b 86

12 INSTUCTO S SOLUTIONS MNUL SECTION 5. PGE 96 t 5. d re i figure below Fig d qurter disk si d. The itegrd is odd fuctio d the itervl of itegrtio is smmetric bout. s ds shded re t re of circle re see # below + P s Fig. 5.. s Q O. u5 u + du du 6. Fig d re i figure bove re sector POQ re trigle PO 6 Fig Let +. d shded re. u d 6 d d 6 6 d 7 d Fig t dt t dt.. e e d odd fuctio, smmetric itervl + t 9 t dt 9 t dt t 9 t dt.. v v dv + d

13 SECTION 5. PGE 96.. DMS: CLCULUS si d d + 6 si d d / d l t dt t dt t dt l l l/ l / dt t t dt l l Fig verge vlue / / s ds l l l 6. / s ds / s ds s ds. sg d l l l + l l sg 7. verge + d [ ] + 8. verge b b b + d [ ] b + b + + b b verge + si t dt [ ] dt + si tdt [ + ]. verge d. Let The f Fig. 5.. { + if < if. f d re + re re +. +,. verge vlue / d shded re 5. g d d + Fig. 5.. d

14 INSTUCTO S SOLUTIONS MNUL SECTION 5. PGE I d d + d sg d re re. re 6. re re +. Therefore I / d re re / Fig Fig [] d shded re d re re Fig verge + sg d + d + d +., Fig , Fig

15 SECTION 5. PGE 96.. DMS: CLCULUS b b b b f f d f d fd f k d b b b f f b f d k b d b f b f b f d + k d f d kb f + k b b k f + b This is miimum if k f. f d b f Sectio 5.5 The Fudmetl Theorem of Clculus pge / d d d / 6 / 6 d d d 9/8 8 + d d d / 9 [ 9/ ] [ 9 / ] /6 / / / / cos d si /6 / + / sec θ dθ t θ t si θ dθ cos θ / / + si u du u cos u e d e e e. e e d odd fuctio, smmetric itervl 5. e d e l e l 6. d l l l l 7. d + t 8. / / d si 6 d 9. si si si 6 6. d + t t 8. re d 5 5 sq. uits. 5 Fig. 5.5., 9

16 INSTUCTO S SOLUTIONS MNUL SECTION 5.5 PGE e e. re d l e e l e l e sq. uits. 5. For itersectio of + d, we hve + +. Thus or. The idicted regio hs re Fig re e e. re d 6 sq. uits. re + d + [ ] + + sq. uits. 6 Fig Sice 5 5 +, therefore t 5 d, d > if 5 < <. Thus, the re is 5 d 5 d sq. uits. Fig Sice d itersect where, tht is, t d, thus, re / d 6 6 d sq. uits., / 5 Fig re Fig re shded re d sq. uits. 9

17 SECTION 5.5 PGE.. DMS: CLCULUS, e Fig The two grphs itersect t ±,, thus re d d sq. uits. Fig re cos d si sq. uits. cos re Fig ,. re 7 Fig / d / 7 7/ sq. uits. 9. re / d / d / / sq. uits. / re 7 / / Fig re e d e, e sq. uits... / / Fig cos d cos d / si si + + sg d d + / / / / d cos d 9

18 INSTUCTO S SOLUTIONS MNUL SECTION 5.5 PGE 5. verge vlue d verge vlue e d e e6 e vg. / l d l / l l 8. Sice gt {, if t,, if < t, the verge vlue of gt over [,] is [ dt + / l ] dt [ ] + t. d si t dt si d t d si d d [ t ] si d si t dt t dt t d si t dt d si t dt d t d t si si d d si u u si u u si u u si u u du du + d si u du d u [ si du + ] du + si d t cos cos t d dt + + t e. d cos θ dθ si θ d dθ d [ cos θ d si θ si θ cos θ cos θ si θ si θ csc θ sec θ cos θ t 5. Ft cos d F cosu du d d F cos cos 6. H H e t dt e t dt + e H e t dt + e + e 7. f + f t dt f f f Ce f Ce C e f e. e ] d 8. f f t dt f f f Ce f C f e. 9. The fuctio / is ot defied d therefore ot cotiuous t, so the Fudmetl Theorem of Clculus cot be pplied to it o the itervl [, ]. Sice / > wherever it is defied, we would epect d to be positive if it eists t ll which it does t. si t 5. If F 7 + t dt, the F si + d F7. 5. F cos + t dt. Note tht < for ll t, d hece + t < cos cos + t. 9

19 SECTION 5.5 PGE.. DMS: CLCULUS The itegrd is cotiuous for ll t, so F is defied d differetible for ll. Sice lim ±, therefore lim ± F. Now F cos + + ol t. Therefore F must hve mimum vlue t, d o miimum vlue. [ 5. lim ] re below 5, bove, betwee d 5 d lim si + si + +si lim sum of res of rectgles show i figure si d cos 5. lim + + lim lim... si re below Fig , bove, + betwee d + d t Fig Sectio 5.6 The Method of Substitutio pge 8 e 5 d Let u 5 du d e u du eu + C e5 + C. cos + b d Let u + b du d cos udu si u + C si + b + C. + d Let u + du d u / du 9 u/ + C 9 + / + C. e sie d Let u e du e d si udu cos u + C cose + C. d + 5 Let u + du 8 d u 5 du 8 u + C + + C. si d Let u du d si udu cos u + C cos + C. 9

20 INSTUCTO S SOLUTIONS MNUL SECTION 5.6 PGE e d Let u du d e u du eu + C e + C. + d Let u + du d u du u l + C + l + C. cos + si d Let u si du cos d du + u t u + C t si + C. sec t d du u si u + C Let u t du sec d si t + C. e + e d e / + e / e / e / d Let u e/ e / du e / + e / d du u l u +C le / e / e + C l + e + C. l t t dt Let u l t du dt t udu u + C l t + C. ds 5s du 5 u Let u 5s du 5 ds 5 u/ + C 5 5s + C d Let u + + u du u + C du + d C t t dt du u Let u t du t dt si u + C si t d Let u + 6 du d du + u t t + C. u + C. + C d e e + d + e Let u + e du e d du u l u +C l + e + C. d e + e e d e Let u e + du e d du u + t u + C t e + C. t l cos d Let u l cos du t d udu u + C l cos + C. + d d + d Let u du d i the first itegrl ol du + si u + si + C u + si + C. d d + Let u + + du d du u + u t + C + t + C. d + d 5 du 5 u si u5 + C Let u du d si + C si + C

21 SECTION 5.6 PGE 8.. DMS: CLCULUS.. 5. si cos 5 d si cos 5 cos 7 d u 7 u 5 du Let u cos du si d u8 8 u6 6 + C cos8 cos6 + C. 8 6 si t cos 5 tdt si t si t cos tdt Let u si t du cos tdt u u 6 + u 8 du u5 5 u7 7 + u9 9 + C 5 si5 t 7 si7 t + 9 si9 t + C. si cos d u du Let u cos du si d [ + cos] cos d d [ + cos + cos ] d + si + si 8 + si cos d si + si + C. + C sec 5 t d Let u sec du sec t d u du u5 5 + C sec5 + C. 5 sec 6 t d sec t + t d Let u t du sec d u + u + u 6 du u + 5 u5 + 7 u7 + C t + 5 t5 + 7 t7 + C. t sec d u + C cos + C. t + t sec d u / + u 5/ du Let u t du sec d si si cos d d cos d si + C. 8 cos si 6 d d cos + cos cos d 8 si + + cos d cos si d Let u si 8 du cos d 5 si si + u du si si si + + si + C si si + + si + C u/ + u7/ 7 + C t / + 7 t 7/ + C. si / cos d Let u si du cos d u du u / 7 u7/ + C u / si / 7 si7/ + C. cos si si d Let u si du cos d cos u si udu du + cos u cos u + du u si u si u + + C 8 8 si si si + si si + C. 96

22 INSTUCTO S SOLUTIONS MNUL SECTION 5.6 PGE si l cos l d Let u sil cosl du d u u du u 6 u6 + C si l 6 si6 l + C. si cos d t sec d Let u t du sec d u du u + C t + C / d Let u +, u du d 7 u u / du 7 u/ u / 7 7 e si l / 7 7 d. Let u l du d si udu cos u / si cos d t sec d sec sec t d Let u sec du sec t d u du u u + C sec sec + C. csc 5 cot 5 d csc cot csc csc d Let u csc du csc cot d u 8 u 6 + u du.. / / cos si d / + cos cos + d / / / si 8 si + 6. / si 5 d / / cos si d Let u cos du si d u + u du u u + 5 u5 / u9 9 + u7 7 u5 5 + C 9 csc9 + 7 csc7 5 csc5 + C.. e e dt t l t Let u l t du dt t du u l u l l l. 8. cos si 8 d cot csc d cot + cot csc d u + u du u5 5 u7 7 + C 5 cot5 7 cot7 + C. Let u cot du csc d. /9 si cos d Let u si /6 du cos d / / u du u / l / l / /. 97

23 SECTION 5.6 PGE 8.. DMS: CLCULUS 5. / / / + cos d cos d / / si d / / 6. re cos d si /. cos d Let u cos udu si u du re du d cos u / + 6 d Let u + 6 du d du 6 u l u 6 l l 6 5 l sq. uits. d + 6 Let u du d du u + 6 u 8 t +6 sq. uits. Fig The re bouded b the ellipse / + /b is b d b u du. Let u d du The itegrl is the re of qurter circle of rdius. Hece re b b sq. uits. 9. We strt with the dditio formuls cos + cos cos si si cos cos cos + si si d tke hlf their sum d hlf their differece to obti cos cos cos + + cos si si cos cos +. Similrl, tkig hlf the sum of the formuls we obti si + si cos + cos si si si cos cos si, si cos si + + si. 5. We hve cos cos b d [cos b + cos + b] d cos[ b] d + cos[ + b] d Let u b, du b d i the first itegrl; let v + b, dv + b d i the secod itegrl. cos udu+ cos v dv b + b [ ] si[ b] si[ + b] + + C. b + b si si b d [cos b cos + b] d [ ] si[ b] si[ + b] + C. b + b si cos b d [si + b + si b] d [ si[ + b] d + si[ b] d] [ ] cos[ + b] cos[ b] + + C. + b b 98

24 INSTUCTO S SOLUTIONS MNUL SECTION 5.7 PGE 5. If m d re itegers, d m, the { cos m cos si m si } d cosm ± cosm + sim ± m ±. si m cos d sim + m + d sim + + sim d cosm + cosm + m + m b periodicit. If m the si m cos m d si m d cos m m b periodicit. 5. If m k, wehve f cos m d + + cos m d k cos cos m d k b si cos m d. B the previous eercise, ll the itegrls o the right side re zero ecept the oe i the first sum hvig m. Thus the whole right side reduces to Thus m cos m d m m + cosm m + m. similr rgumet shows tht b m f cos m d. f si m d. d For m wehve f cos m d + f d d k cos + b si d + +, so the formul for m holds for m lso. Sectio 5.7 pge res of Ple egios. re of d sq. uits. 6 Fig. 5.7.,. re of d / sq. uits. Fig. 5.7.,. re of 8 d 6 6 sq. uits. 99

25 SECTION 5.7 PGE.. DMS: CLCULUS 6 +6 Fig Fig For itersectios: 6 8 i.e., or. [ ] re of 6 d 8 d 6 6 sq. uits.,8 6. For itersectios: i.e., or. re of + d + [7 + + ] d 9, + 9 sq. uits. 7 6, Fig Fig For itersectios: } re of d sq. uits. Thus itersectios of the curves occur t d 6. We hve 6 re of + d sq. uits. 6, Fig ,

26 INSTUCTO S SOLUTIONS MNUL SECTION 5.7 PGE 8. Shded re d sq. uits.,,, Fig re of d / 5 sq. uits. Fig For itersectios: 5. Thus 5 +, i.e.,. The grphs itersect t / d. Thus 5 re of d / 5 l / 5 l sq. uits. 8,, / +5, Fig For itersectios: + i.e., or. re of [ ] d [ + ] d + 9 sq. uits.. re of shded regio Fig [ ] d d 5 5 sq. uits. 5 Fig. 5.7.

27 SECTION 5.7 PGE.. DMS: CLCULUS. The curves d itersect t ±. + Thus re of + d t 6 sq. uits. 5 + Fig re si d cos + sq. uits. Fig si. For itersectios: + + i.e., or. [ ] Shded re + d [ l + ] l sq. uits. +,, 7. re of 5/ / Fig si cos d cos + si 5/ / + sq. uits. / si 5/ Fig cos 5. The curves d 5 itersect where 5 +, i.e., where. Thus the itersectios re t ± d ±. We hve re of 5 d 5 + sq. uits. 8. re / / / Fig si d + cos d / sq. uits. + si

28 INSTUCTO S SOLUTIONS MNUL SECTION 5.7 PGE t, si Fig Fig re / si si d cos + si cos / sq. uits.. For itersectios: / t /. Thus ±. re / t d / sec l 8 l l sq. uits. si si Fig / t /. re / / cos si d cos d si si cos / sq. uits. Fig For itersectios: sec. Thus ±/. re / sec d l sec + t / l + sq. uits. Fig For itersectios: t or. / re t d / l sec 8 l sq. uits. sec Fig. 5.7.

29 SECTION 5.7 PGE.. DMS: CLCULUS. For itersectios: cos /. Thus ±. re cos d 8 si 8 sq. uits. cos 7. re of d d Let u du d u / du u/ sq. uits. Fig Fig For itersectios: si /. Thus ±. re si d cos sq. uits. si Fig For itersectios: e +. There re two roots, both of which must be foud umericll. We used TI-85 solve routie to get.86 d.69. Thus re + e d + e.999 sq. uits. 8. Loop re + d Let u + udu d u uu du u 6 u + u du 7 u7 5 u5 + u 56 sq. uits. 5 + Fig The tget lie to e t is e e, or e. Thus + e Fig re of e e d e e e sq. uits.

30 INSTUCTO S SOLUTIONS MNUL EVIEW EXECISES 5 PGE e. i + i/, i,,,...,, i /. e Fig ,e. The tget lie to t, is, or. The itersectios of d this tget lie occur where +. Of course is double root of this cubic equtio, which therefore fctors to +. The other itersectio is t. Thus re of + d , sq. uits. f d lim lim lim lim i i + [ + i + i [ + ] i / + i/ is iem sum for f + o the itervl [, ]. Thus lim + d + /. + i ] + si d si d 5 d / of the re of circle of rdius 5, 8 Fig d re re. eview Eercises 5 pge j j + j + j + j j j + j + j j + j + j j + j j The umber of blls is ii ,5. 8. Fig cos d re re 9. f. h cos Fig si d [ ] d vi #9 5

31 EVIEW EXECISES 5 PGE.. DMS: CLCULUS. f t. f. gs. gθ t si s si d, f t sit + t dt, f + si cos e si u du, e cos θ e si θ l d g s e sis g θ le cos θ e cos θ si θ le si θ e si θ cos θ si θ cos θe cos θ + e si θ 5. f + f t dt f f f Ce / 6. I f + f Ce / C e/ f e/. fsi d Let u d du u f si u du but si u si u f si u du f si d I. Now, solvig for I, we get fsi d I ufsi u du f si d. 9. d itersect where, tht is, t d. Sice o[, ], the required re is d 5 5 sq. uits.. d meet where +, tht is, t d. Sice o[, ], the required re is d sq. uits.. si d cos itersect t /6, but owhere else i the itervl [,/6]. The re betwee the curves i tht itervl is /6 cos si d si + cos /6 + sq. uits... 5 d / meet where 5 /, tht is, where 5 +. There re four itersectios: ±d ±. B smmetr see the figure the totl re bouded b the curves is 5 d 5 + sq. uits d itersect where +, tht is, where +, mel t d. Sice + o[, ], the required re is 5 + d + 9 sq. uits.. 8. The re bouded b,, d is d sq. uits... Fig. -5. cos + d Let u + du 6 d cos udu si u + C si + + C

32 INSTUCTO S SOLUTIONS MNUL EVIEW EXECISES 5 PGE e l d Let u l du d/ udu u 9t + t dt t 9 + t dt Let u 9 + t du t dt 5 5 udu 9 u/ 98 9 si d u du u u l si cos d Let u cos du si d + C cos cos + C e u du Let v eu + eu dv e u du dv + v v t 8 t e t l / d t udu / t u u Let u l du / d / sec u du si s + ds Let u s + s + du ds/ s + si udu cos u + C cos s + + C. F cos t t 5 si 5 dt si t 5 dt cos t dt 8 5 t 5 t si + C t dt. Sice / + t > for ll t, F will be miimum whe is miimum, tht is, whe. The miimum vlue is F dt + t t t. F hs o mimum vlue; F </ for ll, but F / if, which hppes s ±.. f if, d f < otherwise. If < b, the b f d will be mimum if [, b] [, ]; etedig the itervl to the left of or to the right of will itroduce egtive cotributios to the itegrl. The mimum vlue is d.. The verge vlue of vt d/dt over [t, t ]is t d t t dt dt t t t t t t v v. t t t t. If t is the distce the object flls i t secods from its relese time, the t g,, d. tidifferetitig twice d usig the iitil coditios leds to t gt. The verge height durig the time itervl [, T ]is T T gt dt g T T gt T Let f + b + c + d so tht f d + b + c + d. We wt this itegrl to be f + f / for ll choices of, b, c, d d. Thus we require tht + + b + + c + + d f d + b + c + d. 7

33 EVIEW EXECISES 5 PGE.. DMS: CLCULUS It follows tht d must stisf t first glce this sstem m seem overdetermied; there re three equtios i ol two ukows. However, the do dmit solutio s we ow show. Squrig equtio d subtrctig equtio we get /. Subtrctig this ltter equtio from equtio the gives /, so tht / the positive squre root sice we wt <. ddig d subtrctig this equtio d equtio the produces the vlues + / d /. These vlues lso stisf equtio sice Chllegig Problems 5 pge 5. i i/, i, f / o [, ]. Sice f is decresig, f is lrgest t the left edpoit d smllest t the right edpoit of itervl [ i /, i/ ]ofthe prtitio. Thus U f, P L f, P i / i/ i / / / i/ i/ i / / / U f, P /. Now, b l Hôpitl s rule, / lim / lim / [ ] / l / lim / l. Thus lim U f, P lim L f, P l s.. cos j + t cos j t cos jt cos t si jt si t cos jt cos t si jt si t si jt si t. Therefore, we obti telescopig sum: si jt [ ] si t cos j + t cos j t [ ] si t cos + t cos t [ ] si t cos t cos + t. b Let P {,,,,... } be the prtitio of [,/] ito subitervls of equl legth /. Usig t / i the formul obtied i prt, we get / si d lim si j lim cos si/ / lim si/ lim cos cos.. si j + t si j t + cos cos + cos si jt cos t + cos jt si t si jt cos t + cos jt si t cos jt si t. Therefore, we obti telescopig sum: cos jt [ ] si t si j + t si j t [ ] si t si + t si t. 8

34 INSTUCTO S SOLUTIONS MNUL CHLLENGING POBLEMS 5 PGE 5 b Let P {,,,,... } be the prtitio of [,/] ito subitervls of equl legth /. Usig t / i the formul obtied i prt, we get / lim cos d cos j + lim si si si/6 6 6 /6 lim si/6 lim + si si 6 6 si si.. f /, < < < <. If c i i i, the so i < c i < i. We hve Thus f c i i i < i c i < i, d lim i i i i telescopig i i. f c i i. 5. We wt to prove tht for ech positive iteger k, j k k+ k + + k + P k, where P k is polomil of degree t most k. First check the cse k : j P, where P certil hs degree. Now ssume tht the formul bove holds for k,,,...,m. We will show tht it lso holds for k m +. To this ed, sum the the formul j+ m+ j m+ m+ j m+ m + m + + j m + + obtied b the Biomil Theorem for j,,...,. The left side telescopes, d we get + m+ m+ m + + m + m + j m+ j m + +. Epdig the biomil power o the left d usig the iductio hpothesis o the other terms we get m+ + m + m+ + m + + j m+ m + m + m+ m + +, where the represet terms of degree m or lower i the vrible. Solvig for the remiig sum, we get j m+ m + m+ + m + m+ + m + m+ m+ m + + m+ + so tht the formul is lso correct for k m +. Hece it is true for ll positive itegers k b iductio. b Usig the techique of Emple i Sectio 6. d the result bove, k d lim j k+ lim k+ j k k+ lim k P k k+ k+ k Let f + b + c + d. We used Mple to clculte the followig: The tget to f t P p, f p hs equtio g p + bp + cp+ d + p + bp+ c p. 9

35 CHLLENGING POBLEMS 5 PGE 5.. DMS: CLCULUS This lie itersects f t p double root d t q, where q p + b. Similrl, the tget to f t q hs equtio h q + bq + cq + d + q + bq + c q, d itersects f t q double root d r, where r q + b p + b. The re betwee f d the tget lie t P is the bsolute vlue of q p f g d 8 p + 8 bp + 5 b p + b p + b The re betwee f d the tget lie t Q q, f q is the bsolute vlue of r q f h d 8 p + 8 bp + 5 b p + b p + b which is 6 times the re betwee f d the tget t P. 7. We cotiue with the clcultios begu i the previous problem. P d Q re s the were i tht problem, but r, f r is ow the iflectio poit of f, give b f r. Mple gives r b.., which is 6/7 of the re betwee the curve d its tget t P. This leves /7 of tht re to lie betwee the curve, Q, d the tget, so Q divides the re betwee f d its tget t P i the rtio 6/. 8. Let f + b + c + d + e. The tget to f t P p, f p hs equtio g p +bp +cp +dp+e+p +bp +cp+d p, d itersects f t p double root d t the two poits p b ± b c bp 8 p. If these ltter two poits coicide, the the tget is double tget. This hppes if 8 p + bp + c b, which hs two solutios, which we tke to be p d q: p b + b 8c q b b 8c p b. Both roots eist d re distict provided b > 8c. The poit T correspods to t p + q/ b/. The tget to f t t hs equtio h b 56 + b c 6 bd +e+ b 8 bc + d d it itersects f t the poits U d V with -coordites u b b 8c, v b + b 8c. + b Sice p r b + p d r q b + p hve the sme sig, must lie betwee Q d P o the curve f. The lie Q hs rther complicted equtio k, which we wo t reproduce here, but the re betwee this lie d the curve f is the bsolute vlue of q r f k d, which Mple evlutes to be 8 8 p + 8 bp + 5 b p + b p + b, U P T Fig. C-5.8 B Q S V

36 INSTUCTO S SOLUTIONS MNUL CHLLENGING POBLEMS 5 PGE 5 The res betwee the curve f d the lies PQ d UV re, respectivel, the bsolute vlues of q p f g d d v u h f d. Mple clcultes these two itegrls d simplifies the rtio / to be /. b The two iflectio poits d B of f hve - coordites show b Mple to be α b b 8c d β b + b 8c. It the determies the four poits of itersectio of the lie k through these iflectio poits d the curve. The other two poits hve -coordites r b 5b 8c s b + 5b 8c. d The regio bouded b S d the curve f is divided ito three prts b d B. The res of these three regios re the bsolute vlues of α r β α s β k f d f k d k f d. The epressios clculted b Mple for k d for these three res re ver complicted, but Mple simplifies the rtios / d / to d respectivel, s ws to be show.

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

Fall 2004 Math Integrals 6.1 Sigma Notation Mon, 15/Nov c 2004, Art Belmonte

Fall 2004 Math Integrals 6.1 Sigma Notation Mon, 15/Nov c 2004, Art Belmonte Fll Mth 6 Itegrls 6. Sigm Nottio Mo, /Nov c, Art Belmote Summr Sigm ottio For itegers m d rel umbers m, m+,...,, we write k = m + m+ + +. k=m The left-hd side is shorthd for the fiite sum o right. The

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

5.1 - Areas and Distances

5.1 - Areas and Distances Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 63u Office Hours: R 9:5 - :5m The midterm will cover the sectios for which you hve received homework d feedbck Sectios.9-6.5 i your book.

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 18.01 Clculus Jso Strr Lecture 14. October 14, 005 Homework. Problem Set 4 Prt II: Problem. Prctice Problems. Course Reder: 3B 1, 3B 3, 3B 4, 3B 5. 1. The problem of res. The ciet Greeks computed the res

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 8.0 Clculus Jso Strr Due by :00pm shrp Fll 005 Fridy, Dec., 005 Solutios to Problem Set 7 Lte homework policy. Lte work will be ccepted oly with medicl ote or for other Istitute pproved reso. Coopertio

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION TEST SAMPLE TEST III - P APER Questio Distributio INSTRUCTIONS:. Attempt ALL questios.. Uless otherwise specified, ll worig must be

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles. AP Clculus Notes: Uit 6 Defiite Itegrls Sllus Ojective:.4 The studet will pproimte defiite itegrl usig rectgles. Recll: If cr is trvelig t costt rte (cruise cotrol), the its distce trveled is equl to rte

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

denominator, think trig! Memorize the following two formulas; you will use them often!

denominator, think trig! Memorize the following two formulas; you will use them often! 7. Bsic Itegrtio Rules Some itegrls re esier to evlute th others. The three problems give i Emple, for istce, hve very similr itegrds. I fct, they oly differ by the power of i the umertor. Eve smll chges

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

b a 2 ((g(x))2 (f(x)) 2 dx

b a 2 ((g(x))2 (f(x)) 2 dx Clc II Fll 005 MATH Nme: T3 Istructios: Write swers to problems o seprte pper. You my NOT use clcultors or y electroic devices or otes of y kid. Ech st rred problem is extr credit d ech is worth 5 poits.

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule). IIT-JEE 6-MA- FIITJEE Solutios to IITJEE 6 Mthemtics Time: hours Note: Questio umber to crries (, -) mrks ech, to crries (5, -) mrks ech, to crries (5, -) mrks ech d to crries (6, ) mrks ech.. For >, lim

More information

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS REVIEW OF CHAPTER 5 MATH 4 (SECTION C): EEMENTARY CACUUS.. Are.. Are d Estimtig with Fiite Sums Emple. Approimte the re of the shded regio R tht is lies ove the -is, elow the grph of =, d etwee the verticl

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

MAHESH TUTORIALS SUBJECT : Maths(012) First Preliminary Exam Model Answer Paper

MAHESH TUTORIALS SUBJECT : Maths(012) First Preliminary Exam Model Answer Paper SET - GSE tch : 0th Std. Eg. Medium MHESH TUTILS SUJET : Mths(0) First Prelimiry Exm Model swer Pper PRT -.. () like does ot exist s biomil surd. () 4.. 6. 7. 8. 9. 0... 4 (c) touches () - d () -4 7 (c)

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

INTEGRATION IN THEORY

INTEGRATION IN THEORY CHATER 5 INTEGRATION IN THEORY 5.1 AREA AROXIMATION 5.1.1 SUMMATION NOTATION Fibocci Sequece First, exmple of fmous sequece of umbers. This is commoly ttributed to the mthemtici Fibocci of is, lthough

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 998 MATHEMATICS 4 UNIT (ADDITIONAL) Time llowed Three hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios ALL questios re of equl vlue All

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

Sharjah Institute of Technology

Sharjah Institute of Technology For commets, correctios, etc Plese cotct Ahf Abbs: hf@mthrds.com Shrh Istitute of Techolog echicl Egieerig Yer Thermofluids sheet ALGERA Lws of Idices:. m m + m m. ( ).. 4. m m 5. Defiitio of logrithm:

More information

Lincoln Land Community College Placement and Testing Office

Lincoln Land Community College Placement and Testing Office Licol Ld Commuity College Plcemet d Testig Office Elemetry Algebr Study Guide for the ACCUPLACER (CPT) A totl of questios re dmiistered i this test. The first type ivolves opertios with itegers d rtiol

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1 Mth 44 Activity 7 (Due with Fil Exm) Determie covergece or divergece of the followig ltertig series: l 4 5 6 4 7 8 4 {Hit: Loo t 4 } {Hit: } 5 {Hit: AST or just chec out the prtil sums} {Hit: AST or just

More information

2a a a 2a 4a. 3a/2 f(x) dx a/2 = 6i) Equation of plane OAB is r = λa + µb. Since C lies on the plane OAB, c can be expressed as c = λa +

2a a a 2a 4a. 3a/2 f(x) dx a/2 = 6i) Equation of plane OAB is r = λa + µb. Since C lies on the plane OAB, c can be expressed as c = λa + -6-5 - - - - 5 6 - - - - - - / GCE A Level H Mths Nov Pper i) z + z 6 5 + z 9 From GC, poit of itersectio ( 8, 9 6, 5 ). z + z 6 5 9 From GC, there is o solutio. So p, q, r hve o commo poits of itersectio.

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b,

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b, 3 6 6 CHAPTER 5 INTEGRALS CAS 5. Fid the ect re uder the cosie curve cos from to, where. (Use computer lger sstem oth to evlute the sum d compute the it.) I prticulr, wht is the re if? 6. () Let A e the

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Chapter 5 The Definite Integral

Chapter 5 The Definite Integral Sectio. Chpter The Defiite Itegrl Sectio. Estimtig with Fiite Sums (pp. -) Eplortio Which RAM is the Biggest?.. LRAM > MRAM > RRAM, ecuse the heights of the rectgles decrese s ou move towrd the right uder

More information

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions!

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions! Nme: ARCC Midterm Review Uit 1: Fuctios d Reltios Kow your pret fuctios! 1. The ccompyig grph shows the mout of rdio-ctivity over time. Defiitio of fuctio. Defiitio of 1-1. Which digrm represets oe-to-oe

More information

BC Calculus Path to a Five Problems

BC Calculus Path to a Five Problems BC Clculus Pth to Five Problems # Topic Completed U -Substitutio Rule Itegrtio by Prts 3 Prtil Frctios 4 Improper Itegrls 5 Arc Legth 6 Euler s Method 7 Logistic Growth 8 Vectors & Prmetrics 9 Polr Grphig

More information

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6) WQ017 MAT16B Lecture : Mrch 8, 017 Aoucemets W -4p Wellm 115-4p Wellm 115 Q4 ue F T 3/1 10:30-1:30 FINAL Expoetil Logrithmic Fuctios (4.1, 4., 4.4, 4.6) Properties of Expoets Let b be positive rel umbers.

More information

5.3. The Definite Integral. Limits of Riemann Sums

5.3. The Definite Integral. Limits of Riemann Sums . The Defiite Itegrl 4. The Defiite Itegrl I Sectio. we ivestigted the limit of fiite sum for fuctio defied over closed itervl [, ] usig suitervls of equl width (or legth), s - d>. I this sectio we cosider

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

( ) = A n + B ( ) + Bn

( ) = A n + B ( ) + Bn MATH 080 Test 3-SOLUTIONS Fll 04. Determie if the series is coverget or diverget. If it is coverget, fid its sum.. (7 poits) = + 3 + This is coverget geometric series where r = d

More information

Numbers (Part I) -- Solutions

Numbers (Part I) -- Solutions Ley College -- For AMATYC SML Mth Competitio Cochig Sessios v.., [/7/00] sme s /6/009 versio, with presettio improvemets Numbers Prt I) -- Solutios. The equtio b c 008 hs solutio i which, b, c re distict

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information