0 dx C. k dx kx C. e dx e C. u C. sec u. sec. u u 1. Ch 05 Summary Sheet Basic Integration Rules = Antiderivatives Pattern Recognition Related Rules:

Size: px
Start display at page:

Download "0 dx C. k dx kx C. e dx e C. u C. sec u. sec. u u 1. Ch 05 Summary Sheet Basic Integration Rules = Antiderivatives Pattern Recognition Related Rules:"

Transcription

1 Ch 05 Smmry Sheet Bic Itegrtio Rle = Atierivtive Ptter Recogitio Relte Rle: ( ) kf ( ) kf ( ) k f ( ) Cott oly! ( ) g ( ) f ( ) g ( ) f ( ) g( ) f ( ) g( ) Bic Atierivtive: C 0 0 C k k k k C Mlt. S. 1 C, 1 A 1 Divie 1 Atierivtive Trig. Fctio (memory pt hit) Wtch the ig! i co co i C co i i co C ee the egtive! t ec ec t C ec ec t ec t ec C cot cc cc cot C cc cc cot cc cot cc C Atierivtive Epoetil & Logrithmic Fctio e e e e C l 1 C l 1 1 l, 0 l C olte vle mke > 0 Atierivtive Ivere Trig. Fctio > 0, i ifferetile fctio of. 1 1 Sice the erivtive of co i jt the oppoite of i, etc yo ee oly to e oe memer from ech pir. 1 1 i i C t 1 t C 1 1 ec ec 1 C 1 Pge 1 of 6 S. Stirlig

2 Ch 05 Smmry Sheet Itegrtio Techiqe U-tittio AKA Atiifferetitio of Compoite Let g e fctio whoe rge i itervl I, let f e fctio tht i cotio o I. If g i ifferetile o it omi F i tierivtive of f o I, the f ( g ( )) g ( ) F ( g ( )) C OR If g( ), the g( ) f ( ) F( ) C Write itegr i term of Thm 5.14 Chge of Vrile for Defiite Itegrl If the fctio g( ) h cotio erivtive o the cloe itervl [, ] f i cotio o the rge of g, the Itegrtio Propertie Propertie for Defiite Itegrl f g re itegrle fctio o [, ]. Zero: f ( ) 0 Defiitio (o re) Thik re! Orer of Itegrtio: f ( ) f ( ) Symmetric limit: If f i o, f ( ) 0 Defiitio (ice egtive, revere to ) If f i eve, Zero: re ove = re elow. f ( ) f ( ) y-i ymmetry: ole the re from 0. Cott Mltiple: kf ( ) k f ( ) Sm & Differece: 0 Ay mer k, eve k = 1. f ( ) g( ) f ( ) g( ) (Like erivtive.) c c Aitivity: f ( ) f ( ) f ( ) Domitio: f ( ) g( ) o [, ] f ( ) g( ) or Preervtio of Ieqlity g( ) f ( g( )) g( ) f ( ) g ( ) If -tittio i e, chge the limit of itegrtio to lo. f( ) 0 o [, ] f ( ) 0 Some Gielie 1. Ptter recogitio. If etr tff i the itegr. Try -tittio. (Let = iermot fctio, rewrite i term of. Itegrte. 3. Try lterig the itegr: Ue trig. ietity Mlt. & iv. y the me # Seprte ito itegrl Ue property of itegrl Simplify the itegr Log iviio 4. Give p wit for Clc BC! Are ove -i po. Are elow -i eg. If weepig ot re left to right, poitive If weepig ot re right to left, egtive Pge of 6 S. Stirlig

3 Ch 05 Smmry Sheet Slope Fiel Give geerl hpe of geerl oltio. C e whe tierivtive c t e fo. Solve ifferetil eqtio y f( ) y f ( ) y ( ) f Geerl oltio F( ) Applictio: (ee p5.) Ie. Give ccelertio fi poitio. Nee iitil coitio. Uig itegrtio to work ckwr. C fmily of fctio Prticlr oltio with iitil coitio F( ) # pecific fctio Atierivtive oig ifferetitio Wht wol yo erive to get? F tierivtive of f if F( ) f ( ). Alo (i other ottio), f ( ) f ( ) C or vi ver f ( ) f ( ) Fmetl Theorem of Clcl: Atierivtive Prt (ometime clle the FTC) Give re fctio A f tht weep ot re er f(t), A ( ) f ( t) t. f The rte t which the re i eig wept ot i eql to the height of the origil fctio. Bece the rte i the erivtive, the erivtive of the re fctio eql the origil fctio: Af ( ) f ( t) t f ( ) Upper limit fctio? FTC Atierivtive prt with chi rle: g( ) f () t t = f ( g( )) g( ) c Fmetl Theorem of Clcl: Evltio Prt (ometime clle the 1 t FTC) Let F e y tierivtive of the cotio fctio f; the f ( ) F( ) F( ). OR Upper lower limit fctio? Rewrite y itivity & FTC Atierivtive prt with chi rle: g( ) f () t t h( ) h( ) g ( ) = f ( t) t f ( t) t # # = f ( h( )) h( ) + f ( g( )) g( ) Upper lower limit fctio? Ue FTC Evltio Prt F() i tierivtive of f. g( ) f () t t = F ( g ( )) F ( h ( )) h( ) Pge 3 of 6 S. Stirlig

4 Ch 05 Smmry Sheet Are 1) Ue Geometric Forml (Propertie) if poile Rectgle, trigle, trpezoi, emicircle, ) Approimtio Metho Mi cocept: Fill i the figre with rectgle. Icree ccrcy: LRAM v RRAM (epe o fctio icreig or ecreig) MRAM Trpezoi Icree ccrcy: icree, 0 ll metho ecome the efiite itegrl. Rectgle: f() height, with Prtitio the itervl [, ] ito itervl: Are lim f(epoit) i 1 ( ) ( 1) LRAM S f i i1 RRAM S( ) f i i1 eiet to e! Smmtio: k 1 1 i1 MRAM e mipoit of the egmet for the height: S( ) f i1 Trpezoil Rle f ( 0) f ( 1) f ( )... f ( 1) f ( ) ote: mt e the me. k 1... ki k i ice k i cott i1 i1 i every term. i i i i i1 i1 i1 Sm of eqece [STAT] MATH 5:m( [STAT] OPS 5:eq( the forml, vrile, trt, e. 3) Itegrtio Pge 4 of 6 Defiitio of the Are of Regio i the Ple Let f e cotio oegtive o the itervl [, ]. The re of the regio oe y the grph of f, the -i, the verticl lie = = i Are lim f ( ci ), i 1 c i i where. i 1 Defiitio of Defiite Itegrl y if mke ifiite mer of prtitio the prtitio 0, the the pproimtio m = the efiite itegrl. Thm 5.5 The Defiite Itegrl the Are of Regio If f i cotio oegtive o the cloe itervl [, ], the the re of the regio oe y the grph of f, the -i, the verticl lie = = i give y. Are = f ( ) Riem Sm I geerl, the prtitio, o ot ee to e the me. It i eier to clclte whe they re the me. Defiite Itegrl: Are ove the -i poitive itegrl Are elow the -i egtive itegrl Ue FTC Evltio Prt f ( ) = F( ) F( ) OR y of the previo re fiig metho, geometry. S. Stirlig

5 Ch 05 Smmry Sheet Are Accmltio Fctio Are Net Chge The emple e velocity poitio; however, the followig wol hol for ANY give rte of chge. The re ccmltio fctio: A( ) f ( t) t where i the trtig -vle move log the -i to ccmlte re er f(t). Differetite ( ) ( ) v( ) ( ) v( ) ( ) Give the et chge i the tierivtive. (Ie. The fctio give the et chge i poitio whe the itegr i velocity.) y Itegrte By FTC Evltio: How fr hve yo trvele o itervl? f ( t) t F( ) F( ) et chge i poitio Wht i yor crret poitio? F( ) F( ) f ( t) t mile per hor Are = mile hor mile hor Net chge i mile. hor Totl mile trvele = crret poitio Strtig poitio (mile) Net chge i mile = itce trvele o itervl (, ). By FTC Atierivtive: How ft re yo trvelig? Tke the erivtive. A( ) f ( t) t f ( ) The rte t which yo ccmlte the re (the et chge i poitio) epe o the height of the velocity fctio. So F( ) f ( ), where f() i velocity fctio F() i poitio. Comprig Procee How re the iefiite itegrl the efiite itegrl relte? A re ccmltio fctio, y trtig t time of 3: 3 3 (3) 6 y FTC Evltio A iefiite itegrl, with iitil coitio of 0 (ice o re h ee ccmlte t the trtig poit) whe = 3. C the 0 (3) C the tierivtive i 6., 6 C Pge 5 of 6 S. Stirlig

6 Ch 05 Smmry Sheet Mic. Thm Differetiility implie Cotiity which implie Itegrility. (Yo c itegrte ythig tht yo c fi the re er the grph.) Thm 5.10 Me Vle Theorem for Itegrl If f i cotio o the cloe itervl [, ], the there eit mer c i the cloe itervl [, ] ch tht f ( ) f ( c)( ) MVT for Itegrl Fi rectgle tht h the me re the efiite itegrl. Solve for f(c) Averge f() vle Defiitio of the Averge Vle of Fctio o Itervl If f i itegrle o the cloe itervl [, ], the the verge vle of f o the itervl i 1 f ( ) f ( c) Averge Vle Fi the et poile pproimtio for the verge of the cotio fctio vle.. Thi i ot meric verge! Clcltor: From the home cree: [MATH] 9:fIt(fctio, vrile, lower, pper, tolerce) evlte the efiite itegrl tolerce i optiol t c pee p the proce. To get grph of itegrl efie fctio From grph of fctio: [CALC] 7: f ( ) the type i the lower limit? the pper limit? the clcltor retr the efiite itegrl, fill i the re. Y1 f ( t) t Y1 = [MATH] 9:fIt(fctio i term of T, T, trt, X) Pge 6 of 6 S. Stirlig

AP Calculus Formulas Matawan Regional High School Calculus BC only material has a box around it.

AP Calculus Formulas Matawan Regional High School Calculus BC only material has a box around it. AP Clcls Formls Mtw Regiol High School Clcls BC oly mteril hs bo ro it.. floor fctio (ef) Gretest iteger tht is less th or eql to.. (grph) 3. ceilig fctio (ef) Lest iteger tht is greter th or eql to. 4.

More information

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6) WQ017 MAT16B Lecture : Mrch 8, 017 Aoucemets W -4p Wellm 115-4p Wellm 115 Q4 ue F T 3/1 10:30-1:30 FINAL Expoetil Logrithmic Fuctios (4.1, 4., 4.4, 4.6) Properties of Expoets Let b be positive rel umbers.

More information

Calculus Summary Sheet

Calculus Summary Sheet Clculus Summry Sheet Limits Trigoometric Limits: siθ lim θ 0 θ = 1, lim 1 cosθ = 0 θ 0 θ Squeeze Theorem: If f(x) g(x) h(x) if lim f(x) = lim h(x) = L, the lim g(x) = L x x x Ietermite Forms: 0 0,,, 0,

More information

A.P. Calculus Formulas. 1. floor function (def) Greatest integer that is less than or equal to x.

A.P. Calculus Formulas. 1. floor function (def) Greatest integer that is less than or equal to x. A.P. Clls Formls. floor ftio (ef) Gretest iteger tht is less th or eql to.. (grph). eilig ftio (ef) Lest iteger tht is greter th or eql to. 4. (grph) 5. 6. g h g h Pge 7. f ( ) (grph) - - - - - - 8. Chge

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Advanced Higher Grade

Advanced Higher Grade Prelim Emitio / (Assessig Uits & ) MATHEMATICS Avce Higher Gre Time llowe - hors Re Crefll. Fll creit will be give ol where the soltio cotis pproprite workig.. Clcltors m be se i this pper.. Aswers obtie

More information

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know P Clls BC Formls, Deiitios, Coepts & Theorems to Kow Deiitio o e : solte Vle: i 0 i 0 e lim Deiitio o Derivtive: h lim h0 h ltertive orm o De o Derivtive: lim Deiitio o Cotiity: is otios t i oly i lim

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Calculus Definitions, Theorems

Calculus Definitions, Theorems Sectio 1.1 A Itrouctio To Limits Clculus Defiitios, Theorems f(c + ) f(c) m sec = = c + - c f(c + ) f(c) Sectio 1. Properties of Limits Theorem Some Bsic Limits Let b c be rel umbers let be positive iteger.

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

A.P. Calculus Formulas Hanford High School, Richland, Washington revised 8/25/08

A.P. Calculus Formulas Hanford High School, Richland, Washington revised 8/25/08 A.P. Clls Formls 008-009 Hfor High Shool, Rihl, Wshigto revise 8/5/08. floor ftio (ef) Gretest iteger tht is less th or eql to.. (grph) 3. eilig ftio (ef) Lest iteger tht is greter th or eql to. 4. (grph)

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles. AP Clculus Notes: Uit 6 Defiite Itegrls Sllus Ojective:.4 The studet will pproimte defiite itegrl usig rectgles. Recll: If cr is trvelig t costt rte (cruise cotrol), the its distce trveled is equl to rte

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Differentiation Formulas

Differentiation Formulas AP CALCULUS BC Fil Notes Trigoometric Formuls si θ + cos θ = + t θ = sec θ 3 + cot θ = csc θ 4 si( θ ) = siθ 5 cos( θ ) = cosθ 6 t( θ ) = tθ 7 si( A + B) = si Acos B + si B cos A 8 si( A B) = si Acos B

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Harold s Calculus Notes Cheat Sheet 15 December 2015

Harold s Calculus Notes Cheat Sheet 15 December 2015 Hrol s Clculus Notes Chet Sheet 5 Decemer 05 AP Clculus Limits Defiitio of Limit Let f e fuctio efie o ope itervl cotiig c let L e rel umer. The sttemet: lim x f(x) = L mes tht for ech ε > 0 there exists

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS REVIEW OF CHAPTER 5 MATH 4 (SECTION C): EEMENTARY CACUUS.. Are.. Are d Estimtig with Fiite Sums Emple. Approimte the re of the shded regio R tht is lies ove the -is, elow the grph of =, d etwee the verticl

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

For students entering Honors Precalculus Summer Packet

For students entering Honors Precalculus Summer Packet Hoors PreClculus Summer Review For studets eterig Hoors Preclculus Summer Pcket The prolems i this pcket re desiged to help ou review topics from previous mthemtics courses tht re importt to our success

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

Calculus 2 Quiz 1 Review / Fall 2011

Calculus 2 Quiz 1 Review / Fall 2011 Calcls Qiz Review / Fall 0 () The fctio is f a the iterval is [, ]. Here are two formlas yo may ee. ( ) ( ) ( ) 6 (a.) Use a left-e, right-e, a mipoit sm of "" rectagles to approimate. The withs of all

More information

Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then there

Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then there Itegrtio, Prt 5: The Me Vlue Theorem for Itegrls d the Fudmetl Theorem of Clculus, Prt The me vlue theorem for derivtives tells us tht if fuctio f() is sufficietly ice over the itervl [,] the t some poit

More information

Integration. Table of contents

Integration. Table of contents Itegrtio Tle of cotets. Defiitio of Riem Itegrtio.................................. Prtitio of itervls........................................... Upper/lower Riem sum......................................3.

More information

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled mth 3 more o the fudmetl theorem of clculus The FTC d Riem Sums A Applictio of Defiite Itegrls: Net Distce Trvelled I the ext few sectios (d the ext few chpters) we will see severl importt pplictios of

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

5.3. The Definite Integral. Limits of Riemann Sums

5.3. The Definite Integral. Limits of Riemann Sums . The Defiite Itegrl 4. The Defiite Itegrl I Sectio. we ivestigted the limit of fiite sum for fuctio defied over closed itervl [, ] usig suitervls of equl width (or legth), s - d>. I this sectio we cosider

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Feedback & Assessment of Your Success. 1 Calculus AP U5 Integration (AP) Name: Antiderivatives & Indefinite Integration (AP) Journal #1 3days

Feedback & Assessment of Your Success. 1 Calculus AP U5 Integration (AP) Name: Antiderivatives & Indefinite Integration (AP) Journal #1 3days Clculus AP U5 Itegrtio (AP) Nme: Big ide Clculus is etire rch of mthemtics. Clculus is uilt o two mjor complemetry ides. The first is differetil clculus, which is cocered with the istteous rte of chge.

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin Topic Fourier Series si Fourier Series Music is more th just pitch mplitue it s lso out timre. The richess o sou or ote prouce y musicl istrumet is escrie i terms o sum o umer o istict requecies clle hrmoics.

More information

Definition 2.1 (The Derivative) (page 54) is a function. The derivative of a function f with respect to x, represented by. f ', is defined by

Definition 2.1 (The Derivative) (page 54) is a function. The derivative of a function f with respect to x, represented by. f ', is defined by Chapter DACS Lok 004/05 CHAPTER DIFFERENTIATION. THE GEOMETRICAL MEANING OF DIFFERENTIATION (page 54) Defiitio. (The Derivative) (page 54) Let f () is a fctio. The erivative of a fctio f with respect to,

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Itegrl Whe we compute the derivtive of complicted fuctio, like x + six, we usully use differetitio rules, like d [f(x)+g(x)] d f(x)+ d g(x), to reduce the computtio dx dx dx

More information

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions!

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions! Nme: ARCC Midterm Review Uit 1: Fuctios d Reltios Kow your pret fuctios! 1. The ccompyig grph shows the mout of rdio-ctivity over time. Defiitio of fuctio. Defiitio of 1-1. Which digrm represets oe-to-oe

More information

Some Fixed Point Theorems of Integral Type Contraction in Cone b-metric Spaces

Some Fixed Point Theorems of Integral Type Contraction in Cone b-metric Spaces Trkih Jorl of Alyi Nber Theory, 5, Vol, No 6, 65-69 Avilble olie t htt://bciebco/tjt//6/5 Sciece Ectio Pblihig DOI:69/tjt--6-5 Soe Fixe Poit Theore of Itegrl Tye Cotrctio i Coe b-etric Sce Rhi Shh, Akbr

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

All the Laplace Transform you will encounter has the following form: Rational function X(s)

All the Laplace Transform you will encounter has the following form: Rational function X(s) EE G Note: Chpter Itructor: Cheug Pge - - Iverio of Rtiol Fuctio All the Lplce Trform you will ecouter h the followig form: m m m m e τ 0...... Rtiol fuctio Dely Why? Rtiol fuctio come out turlly from

More information

MTH213 Calculus. Trigonometry: Unit Circle ( ) ( ) ( )

MTH213 Calculus. Trigonometry: Unit Circle ( ) ( ) ( ) MTH3 Clculus Formuls from Geometry: Trigle A = h Pythgore: + = c Prllelogrm A = h Trpezoi A = h ( + ) Circle A = π r C = π r = π Trigoometry: Uit Circle 0, π 3,, 3 35, 3π 4,, 50, 5π 6, 3, 90 π 0, Coe V

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Mathematical Notation Math Calculus for Business and Social Science

Mathematical Notation Math Calculus for Business and Social Science Mthemticl Nottio Mth 190 - Clculus for Busiess d Socil Sciece Use Word or WordPerfect to recrete the followig documets. Ech rticle is worth 10 poits d should e emiled to the istructor t jmes@richld.edu.

More information

5.1 - Areas and Distances

5.1 - Areas and Distances Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 63u Office Hours: R 9:5 - :5m The midterm will cover the sectios for which you hve received homework d feedbck Sectios.9-6.5 i your book.

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

Math1242 Project I (TI 84) Name:

Math1242 Project I (TI 84) Name: Mth4 Project I (TI 84) Nme: Riem Sums d Defiite Itegrls The re uder the grph of positive fuctio is give y the defiite itegrl of the fuctio. The defiite itegrl c e pproimted y the followig sums: Left Riem

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

OBSERVATIONS ON THE NON- HOMOGENEOUS QUINTIC EQUATION WITH FIVE UNKNOWNS

OBSERVATIONS ON THE NON- HOMOGENEOUS QUINTIC EQUATION WITH FIVE UNKNOWNS OBSERVATIONS ON THE NON- HOMOGENEOUS QUINTIC EQUATION WITH FIVE UNKNOWNS y z w P S.Vidhylhmi S.Mlli M.A.Gopl Aitt Profeor of Mthemtic SIGC Trichy-TmildIdi Lectrer of Mthemtic SIGC Trichy-TmildIdi Aitt

More information

the midpoint of the ith subinterval, and n is even for

the midpoint of the ith subinterval, and n is even for Mth4 Project I (TI 89) Nme: Riem Sums d Defiite Itegrls The re uder the grph of positive fuctio is give y the defiite itegrl of the fuctio. The defiite itegrl c e pproimted y the followig sums: Left Riem

More information

f ( x) ( ) dx =

f ( x) ( ) dx = Defiite Itegrls & Numeric Itegrtio Show ll work. Clcultor permitted o, 6,, d Multiple Choice. (Clcultor Permitted) If the midpoits of equl-width rectgles is used to pproximte the re eclosed etwee the x-xis

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

moment = m! x, where x is the length of the moment arm.

moment = m! x, where x is the length of the moment arm. th 1206 Clculus Sec. 6.7: omets d Ceters of ss I. Fiite sses A. Oe Dimesiol Cses 1. Itroductio Recll the differece etwee ss d Weight.. ss is the mout of "stuff" (mtter) tht mkes up oject.. Weight is mesure

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b,

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b, 3 6 6 CHAPTER 5 INTEGRALS CAS 5. Fid the ect re uder the cosie curve cos from to, where. (Use computer lger sstem oth to evlute the sum d compute the it.) I prticulr, wht is the re if? 6. () Let A e the

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays.

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays. Sphericl refrctig urfce Here, the outgoig ry re o the oppoite ide of the urfce from the Icomig ry. The oject i t P. Icomig ry PB d PV form imge t P. All prxil ry from P which trike the phericl urfce will

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: APPENDEX I. THE RAW ALGEBRA IN STATISTICS A I-1. THE INEQUALITY Exmple A I-1.1. Solve ech iequlity. Write the solutio i the itervl ottio..) 2 p - 6 p -8.) 2x- 3 < 5 Solutio:.). - 4 p -8 p³ 2 or pî[2, +

More information

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II Awer Key Nme: Dte: UNIT # SEQUENCES AND SERIES COMMON CORE ALGEBRA II Prt I Quetio. For equece defied by f? () () 08 6 6 f d f f, which of the followig i the vlue of f f f f f f 0 6 6 08 (). I the viul

More information

Chapter 5 The Definite Integral

Chapter 5 The Definite Integral Sectio. Chpter The Defiite Itegrl Sectio. Estimtig with Fiite Sums (pp. -) Eplortio Which RAM is the Biggest?.. LRAM > MRAM > RRAM, ecuse the heights of the rectgles decrese s ou move towrd the right uder

More information