Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA

Size: px
Start display at page:

Download "Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA"

Transcription

1 Innionl Jonl of Phoonis n Oil Thnolo Vol. 3 Iss. : 36-4 Jn 7 Rliisi Dnis n lonis in Unifol l n in Unifol Roin s-th Gnl ssions fo h loni 4-Vo Ponil in Sfi Unisi of Clifoni 387 So Hll UC Bkl Clifoni US Ri 5 h M 7; Ris 4 h Jn 7; 6 h Jn 7; Plish: 3 h Jn 7 s- In h n w sn nliion of h nsfos fo h f o-oin wih n l il fo ih ilin o il oion ino n inil f of fn. Th solion is of ins fo l i liions s h-on loois inil onl in oiion Th oiion is h h l lif liions inl lin n oin fs wih i oinion o ofn hn h ili s of inil fs; o il ins hn in h loois h o h oin h. O is ii ino wo in sions h fis sion ls wih nis i.. fos h son sion ls wih lonis i.. loni onils. K Wos: l oion Gnl ooin nsfoions l ils Unifo oion o-fo o o-loni o.. INTRODUCTION Rl lif liions inl lin n oin fs o ofn hn h ili s of inil fs. O il ins hn in h loois h o h oin h. Mn ooks n s h n i o nsfoions wn il ss of ilin lion no oion [] n o h liions of sh fols [-3 5]. Th is ins in oin nl solion h ls wih i oinion of lion in h s of ilin oion n fo i iion of nifo nl loi. Th in i of his is o n sn lin fo nl solion. Th lin lis on nsfoin h ol oill in h nonil fn f of [] follow h liion of h hsil nsfos i fo sh nonil oinions [-7] n nin wih h liion of h ins oil nsfoion: GoTnsfo > PhsisTnsfo >InsGoTnsfo W onl o wih il liion of iin h fol of h Lon fo in nifol oin f. Coih IJPOT ll Rihs Rs. DYNMICS IN CCLRTD RCTILINR MOTION L S sn n inil ss of ooins n S n l on. Moll [] onsis il s wh il os wih lion lin wih h -is. oin o fn [] h nsfoion fo h il s fo S ino S is: Ph ilin wh osh h Ph ilin 3 h osh Ph ilin Ph ilin Ph ilin Ph ilin 4 P 36

2 Innionl Jonl of Phoonis n Oil Thnolo Vol. 3 Iss. : 36-4 Jn 7 Coih IJPOT ll Rihs Rs P 37 Thfo ilin Ph ilin Ph h osh osh h 5 wh ilin Ph os os 6 Th s s in h inil f ns oh on h s n h osiion s in h l f. If w onsi h s of h l f ooin wih h oj il n s hn: 7 n ilin Ph ilin Ph h osh osh h 8 In h followin sion w nli his iion fo h i s fo oinin h nl fos ooin nsfoions h k s fo S ino S. ss in ol ooins h lion hs h fo: n os os os θ θ θ 9 Th fis s os h ni o of lion 9 on h is h o oss-o sh s lin wih h -is i.. o his os w will ino h il. Th followin ssions hol [4]: Ro os os os9 9 9 os9 9 Ro Ro Ro 9 lins wih. Th son s is ois noh oion on h -is 9 h lins wih : 9 Ro Pin i ll oh: Ro Ro Ro R Th nl ooin nsfoion wn S n S is: 4

3 Innionl Jonl of Phoonis n Oil Thnolo Vol. 3 Iss. : 36-4 Jn 7 Coih IJPOT ll Rihs Rs P 38 wh R ilin Ph R 5 Th nl loi nsfoion is hfo: wh R ilin Ph R 7 Th ins nsfo is: wh R ilin Ph R If w onsi h s of h l f ooin wih h oj il n s hn: n 8 silifis o: i. : i iion ilin l oion i. : Unifo oion wih i iion of nl loi 4 4 Th ooin lion n i iil s:

4 Innionl Jonl of Phoonis n Oil Thnolo Vol. 3 Iss. : 36-4 Jn 7 Coih IJPOT ll Rihs Rs P 39 Th n-on nsfos h s w s h 4- ooins 4 i of in 4-o: 3 Thfo: Th ins nsfo fo h inil f S ino h l f S is: If w onsi h s of h l f ooin wih h oj il n s hn: 6 n 7 In his s: 8 3. DYNMICS IN UNIORM NGULR VLOCITY ROTTION In his sion w isss h s of h il oin in n i ln wih h nol in h onsn nl loi i.. oin o Moll [] h sil s whn is lin wih h -is os h nsfoion wn h oin f S h o h il n n inil non-oin f S h o h n of oion: oion Ph 9 wh os os os os os os os os os os oion Ph 3 3

5 Innionl Jonl of Phoonis n Oil Thnolo Vol. 3 Iss. : 36-4 Jn 7 Coih IJPOT ll Rihs Rs P 4 Th nl s is nsfoin h ol ino h il s in [] hoh nsfoion ino h nonil s follow n liion of h nsfoion fo h l f ino h inil f nin wih h ins of h fis nsfoion s shown low R oion R 3 Ro Ro Ro R Ro Ro 9 lins wih. Th son s is ois noh oion on h -is 9 h lins wih : 9 Ro 34 ssion 3 is h solion fo h nl s of i nl loi iion. Th nl loi nsfoion is: Th nl fo nsfoion is: wh: R oion Ph R 37 Th s nsfoion is: wh: R oion Ph R W will s 38 in h n sion n liion h ins h ssion of h Lon fo in oin f. 4. PPLICTION-TH XPRSSION O TH LORNTZ ORC IN UNIORMLY ROTTING RM ss h w h il of h q n ss oin in h - ln n h infln of ni fil B lin wih h is. W know h in h f of h l h ssion of h Lon fo in on h il is B k j i q B q os 4 W wol lik o fin o h ssion of h fo in h f o-oin wih h h il. o his os w will so o W know h [56]: os 4

6 Innionl Jonl of Phoonis n Oil Thnolo Vol. 3 Iss. : 36-4 Jn 7 Coih IJPOT ll Rihs Rs P 4 os os os B qb 45 Ssiin 4-45 ino 4 w oin: qb qb os os os os 46 To h o w n o [6] h f h: qb qb 47 In 47 is h iniil s of h il. wih h 46 s h sil fo: qb qb qb qb qb qb qb qb qb qb qb qb os os os os LCTRODYNMICS IN UNIORMLY CCLRTD RMS ND IN UNIORMLY ROTTING RMS TH GNRL XPRSSIONS OR TH LCTROMGNTIC 4-VCTOR POTNTIL Piosl [78] w h l wih h s of h nsfoion of Mwll qions fo h s of nifol l fs n nifol oin fs in i iions. Th folis i in his sion llows s o nl nsfoion wn h inil f S n S n h ins. Th loni onil nsfos h s w s h 4-ooins 4 i of in 4-o: 49 wh is in 5 fo nifol l fs n 37 fo nifol oin fs. In o o nsfo Mwll qions wn h fs w n h il iis wih s o. W will show how o ll wo of h s lin.

7 Innionl Jonl of Phoonis n Oil Thnolo Vol. 3 Iss. : 36-4 Jn 7 Coih IJPOT ll Rihs Rs P 4 5 Th ins nsfos : 5 6. CONCLUSIONS W ons h nl nsfos fo h f S o-oin wih n l il fo ilin o il oion ino n inil f of fn S. Th solion is of ins fo l lif liions s o h-on loois inil onl in oiion; in l lif h loois o n h l. W o lin fo nliin h solions fo h i s n w onl wih il liion of iin h fol of h Lon fo in nifol oin f. RRNCS [] C. Moll Th Tho of Rlii Ofo Pss 96. [] L. H. Thos Th oion of h nin lon N ol [3]. Bn-Mnh Wins oion isi. J. Phs. ol. 53 no [4] S. Bn-Mnh Th Thos ssion n lois J. Mh. Phs. ol. 7 no [5] H. Ko Th Thos ssion fo in oi inion J. Phsis. ol. 7 no [6] J.. Rhos n M. D. Son Rliisi loi s Win oion n Thos ssion. J. Phs. ol. 7 no [7] G. B. Mlkin Thos ssion: o n ino solions Phs. Us. ol. 49 no [8] M. I. Kiohnko Roion of h swin ln of ols nl n Thos ssion: Two fs of on oin Phs. Us. ol. 5 no [9]. Sfi Holi Moion Tn fo Bll s Sshi in iik ol. 8 no []. Sfi Cooin Ti Holi Moion fo Bll s Sshi in iik ol 9 no []. Sfi Rlii solion fo Twin o : ohnsi solion Inin J. Phsis ol. 86 no [] K. Rils Con on ln nlsis of h sil liisi oinion of loiis Win oion n Thos ssion. J. Phs. ol. 34 no. 3. L55 L6 3. [3] R.. Nlson Gnli Lon nsfoion fo n l oin f of fn J. Mh. Phs. ol. 8 no [4] h:lok.noo [5]. Sfi Th Gnl Tjois of l Pils in Sil Rlii J. li Phsil Sin Innionl ol. 5 no [6]. Sfi Th jois of h ils oin liisi ss insi il sos fll soli solion In. J. N. n Si. n Th. ol. 4 no [7]. Sfi lonis in Unifol lin s s Viw fo n Inil In. J. Pho. n O. Th. ol. 3 no [8]. Sfi lonis in Unifol Roin s s Viw fo n Inil In. J. Pho. n O. Th. ol. 3 no

Applications of these ideas. CS514: Intermediate Course in Operating Systems. Problem: Pictorial version. 2PC is a good match! Issues?

Applications of these ideas. CS514: Intermediate Course in Operating Systems. Problem: Pictorial version. 2PC is a good match! Issues? CS514: Inmi Co in Oing Sm Poo Kn imn K Ooki: T liion o h i O h h k h o Goi oool Dii monioing, h, n noiiion gmn oool, h 2PC n 3PC Unling hm: om hing n ong om o onin, om n mng ih k oi To, l look n liion

More information

Chapter 4 Circular and Curvilinear Motions

Chapter 4 Circular and Curvilinear Motions Chp 4 Cicul n Cuilin Moions H w consi picls moing no long sigh lin h cuilin moion. W fis su h cicul moion, spcil cs of cuilin moion. Anoh mpl w h l sui li is h pojcil..1 Cicul Moion Unifom Cicul Moion

More information

CHARACTERIZATION OF NON TRIM TRAJECTORIES OF AN AUTONOMOUS UNDERACTUATED AIRSHIP IN A LOW VELOCITY FLIGHT

CHARACTERIZATION OF NON TRIM TRAJECTORIES OF AN AUTONOMOUS UNDERACTUATED AIRSHIP IN A LOW VELOCITY FLIGHT HARAERAON OF NON R RAEORE OF AN AUONOOU UNERAUAE ARH N A LOW VELOY FLGH Ysmin Bsoi, Looi s sèms omls L, 9 Unisié E, Fn soi@ini-f As : h oji of his is o gn si fligh h o follo n onomos ishi h s is sos iho

More information

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics) Mh Lr # In-l Workh Vor n Mri (Bi) h n o hi lr, o hol l o: r mri n or in Mh i mri prorm i mri mh oprion ol m o linr qion ing mri mh. Cring Mri Thr r rl o r mri. Th "Inr Mri" Wino (M) B K Poin Rr o

More information

(4) WALL MOUNTED DUPLEX NEMA 5-20R OUTLET AT 18" A.F.F. WIRED TO CIRCUIT NUMBER 4 WITHIN THE PANEL THAT SERVES THE RESIDENTIAL UNIT (4)

(4) WALL MOUNTED DUPLEX NEMA 5-20R OUTLET AT 18 A.F.F. WIRED TO CIRCUIT NUMBER 4 WITHIN THE PANEL THAT SERVES THE RESIDENTIAL UNIT (4) LIL ING LIS NI LN II K LIL SOLS IX. IL ONNION O H SVI SIH ILI ON SVI O ON NSO SIION 0.00 ovr St: ltril.00 rr loor ln uilin : ltril.0 irst loor ln uilin : ltril.0 Son loor ln uilin : ltril.0 ir & ourt loor

More information

Derivation of the differential equation of motion

Derivation of the differential equation of motion Divion of h iffnil quion of oion Fis h noions fin h will us fo h ivion of h iffnil quion of oion. Rollo is hough o -insionl isk. xnl ius of h ll isnc cn of ll (O) - IDU s cn of gviy (M) θ ngl of inclinion

More information

A study Of Salt-Finger Convection In a Nonlinear Magneto-Fluid Overlying a Porous Layer Affected By Rotation

A study Of Salt-Finger Convection In a Nonlinear Magneto-Fluid Overlying a Porous Layer Affected By Rotation Innion on o Mchnic & Mchonic Engining IMME-IEN Vo: No: A O -ing Concion In Nonin Mgno-i Oing oo Ac Roion M..A-hi Ac hi o in -ing concion in o o nonin gno-i oing oo c oion. o in h i i gon Ni-o qion n in

More information

( ) ( ) ( ) 0. dt dt dt ME203 PROBLEM SET #6. 1. Text Section 4.5

( ) ( ) ( ) 0. dt dt dt ME203 PROBLEM SET #6. 1. Text Section 4.5 ME PROBLEM SET #6 T Sion 45 d w 6 dw 4 5 w d d Solion: Fis mlil his qaion b (whih w an do sin > o ansfom i ino h Cah- El qaion givn b w ( 6w ( 4 Thn b making h sbsiion (and sing qaion (7 on ag 88 of h,

More information

333 Ravenswood Avenue

333 Ravenswood Avenue O AL i D wy Bl o S kw y y ph Rwoo S ho P ol D b y D Pk n i l Co Sn lo Aipo u i R D Wil low R h R M R O g n Ex py i A G z S S Mi lf O H n n iv Po D R A P g M ill y xpw CA Licn No 01856608 Ex p wy R 203

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

Global Solutions of the SKT Model in Population Dynamics

Global Solutions of the SKT Model in Population Dynamics Volm 7 No 7 499-5 ISSN: 3-88 rin rion; ISSN: 34-3395 on-lin rion rl: h://ijm ijm Glol Solion of h SK Mol in Polion Dnmi Rizg Hor n Mo Soilh USH El li Ezzor lgir lgri rizg@gmilom USH El li Ezzor lgir lgri

More information

Thermo-Diffusion and Chemical Reaction Effects on MHD Three Dimensional Free Convective Couette Flow

Thermo-Diffusion and Chemical Reaction Effects on MHD Three Dimensional Free Convective Couette Flow h://js...h Engining n Phsil Sins hmo-iffsion n hmil Rion Effs on H h imnsionl F oni o Flo Jgish PRAKASH * K Smnm BALAURUGAN n Sil VIJAYAKUAR VARA mn of hmis Unisi of Bosn Goon Bosn mn of hmis RVR & J ollg

More information

KITAGAWA NC TILTING ROTARY TABLES

KITAGAWA NC TILTING ROTARY TABLES MOS 101 (S)120 140 (S)181 182 (S)251 (S)321 OIMM IIN XIS SIN ROI N OMON N N IMININ IION S SIONR IIN N ROR MOOR SS OM SIN MINIMIS INR- RN ROM IR R MOOR OR IS IR-R O RN MOISR N ORIN MRIS ROM NRIN OR O IS

More information

» 2016 MEDIA KIT KIT» 2016 MEDIA KIT. 125 Park St., Suite 155 Traverse City, MI mynorth.

» 2016 MEDIA KIT KIT» 2016 MEDIA KIT. 125 Park St., Suite 155 Traverse City, MI mynorth. » 2016 I KI KI» 2016 I KI 125 P S Si 155 v i I 49684 19418174 l@vzi » 2016 I KI Vi! l pblii pi N ii i 375000 ppl f i i bb ll Sl 81415 » 2016 I KI F v N ii zi Vi! v i F v N ii zi Vi! Fif L Il Kil illib

More information

Self-Adjusting Top Trees

Self-Adjusting Top Trees Th Polm Sl-jsting Top Ts ynmi ts: ol: mintin n n-tx ost tht hngs o tim. link(,w): ts n g twn tis n w. t(,w): lts g (,w). pplition-spii t ssoit with gs n/o tis. ont xmpls: in minimm-wight g in th pth twn

More information

Classification of Equations Characteristics

Classification of Equations Characteristics Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

More information

June Further Pure Mathematics FP2 Mark Scheme

June Further Pure Mathematics FP2 Mark Scheme Jne 75 Frher Pre Mheis FP Mrk Shee. e e e e 5 e e 7 M: Siplify o for qri in e ( e )(e 7) e, e 7 M: Solve er qri. ln or ln ln 7 B M A M A A () Mrks. () Using ( e ) or eqiv. o fin e or e: ( = n = ) M A e

More information

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C nx. Dvon o h n wh In h sn o ul sk h n o h x shl u o nnng y h m s s h ol ouon s h num o ssus s h oo nom x s h sonl nom x n s h v x on quy whh s wgh vg o vn n l gns x s. In hs s h o sonl nom xs on h x shl

More information

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW) 8 Conson o n & Ponn To Fo wll s quons w D B σ σ Fo bo n b sown (W) o s W w bo on o s l us n su su ul ow ns [W/ ] [W] su P su B W W 4 444 s W A A s V A A : W W R o n o so n n: [/s W] W W 4 44 9 W : W F

More information

Time varying fields & Maxwell s equations (TOPIC 5)

Time varying fields & Maxwell s equations (TOPIC 5) iayingils&maxwll sqaions OPC5 byonhsaysa iayingniilgnasanliil inion,anaiaying liilgnasaniil isplann l i l i l hisonpwasonsabyonohgasxpinsoalli,h sononwasisinobyonohgasahaialphysiissohisoy Whyowsyinailipnnils?

More information

A1 1 LED - LED 2x2 120 V WHITE BAKED RECESSED 2-3/8" H.E. WILLIAMS PT-22-L38/835-RA-F358L-DIM-BD-UNV 37

A1 1 LED - LED 2x2 120 V WHITE BAKED RECESSED 2-3/8 H.E. WILLIAMS PT-22-L38/835-RA-F358L-DIM-BD-UNV 37 O NU +'-" ac I U I K K OUNIN I NIN UN O OUN U IUI INU O INI OO O INI I NIN UNI INUIN IY I UO. N WI Y K ONUI IUI ONO N UN NO () () O O W U I I IIUION N IIN I ONO U N N O IN IO NY. I UIN NY OW O I W OO OION-OO

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

T HE 1017TH MEETING OF THE BRODIE CLUB The 1017th Meeting of the Brodie Club was held at 7:30 pm on January 15, 2008 in the R amsay Wright Laboratorie

T HE 1017TH MEETING OF THE BRODIE CLUB The 1017th Meeting of the Brodie Club was held at 7:30 pm on January 15, 2008 in the R amsay Wright Laboratorie 1017 MN OF BRO LUB 1017h M Bi lu hl 7:30 u 15, 2008 R Wih Li Uivi. hi: : A h 28 u. u: hl M, u A i u, u vi ull R : K Ah, Oliv B, Bill Rl N W BUN: M u vl: l v, Bu Fll, v ull l B u Fll i Fu k ul M, l u u

More information

THIS PAGE DECLASSIFIED IAW EO 12958

THIS PAGE DECLASSIFIED IAW EO 12958 L " ^ \ : / 4 a " G E G + : C 4 w i V T / J ` { } ( : f c : < J ; G L ( Y e < + a : v! { : [ y v : ; a G : : : S 4 ; l J / \ l " ` : 5 L " 7 F } ` " x l } l i > G < Y / : 7 7 \ a? / c = l L i L l / c f

More information

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10 Chper 0 Siple Hronic Moion nd Elsiciy Gols or Chper 0 o ollow periodic oion o sudy o siple hronic oion. o sole equions o siple hronic oion. o use he pendulu s prooypicl syse undergoing siple hronic oion.

More information

First Response Australia

First Response Australia Fi R Ali PR A qik fn f y wll Pli i iz - hv hv Fi R P $ 15 (GST l) ily Rii & Dfiilli Tx Th l n hniv x f PR & Dfiilli Avill h y n li vi f h l (hylk f qik fn) H y$ 9(GST l) Eli Vi 55 (GST l) Fi Ai Tx Th l

More information

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. ll. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S ll. \ (? >. 1! = * l >'r : ^, : - fr). ;1,!/!i ;(?= f: r*. fl J :!= J; J- >. Vf i - ) CJ ) ṯ,- ( r k : ( l i ( l 9 ) ( ;l fr i) rf,? l i =r, [l CB i.l.!.) -i l.l l.!. * (.1 (..i -.1.! r ).!,l l.r l ( i b i i '9,

More information

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf Objecie F s w Tnsfome Moionl To be ble o fin nsfome. moionl nsfome n moionl. 331 1 331 Mwell s quion: ic Fiel D: Guss lw :KV : Guss lw H: Ampee s w Poin Fom Inegl Fom D D Q sufce loop H sufce H I enclose

More information

1K21 LED GR N +33V 604R VR? 1K0 -33V -33V 0R0 MUTE SWTH? JA? T1 T2 RL? +33V 100R A17 CB? 1N N RB? 2K0 QBI? OU T JE182 4K75 RB? 1N914 D?

1K21 LED GR N +33V 604R VR? 1K0 -33V -33V 0R0 MUTE SWTH? JA? T1 T2 RL? +33V 100R A17 CB? 1N N RB? 2K0 QBI? OU T JE182 4K75 RB? 1N914 D? L P.O. O X 0, N L R. PROROUH, ONRIO N KJ Y PHO N (0) FX (0) 0 WWW.RYSON. ate : Size : 000 File : OVRLL SHMI.Schoc Sheet : 0 of 0 Rev : rawn : 0.0 0K K 0K K 0K0 0K0 0K0 0K0 0K0 00K R K0 R K 0R??? 00N M?

More information

LED lighting + 2.3% + 2.2% Controlling energy costs, a major competitiveness driver. Our main projects

LED lighting + 2.3% + 2.2% Controlling energy costs, a major competitiveness driver. Our main projects Clli y ss, j piivss div Sdily isi y qis Dspi pss i y ffiiy, h wldwid liiy spi is wi by ii f 2.3% p y ss ll ss. d is ps hlp y lii h ip f y ss y bsiss Hih d isi pis Th pi f liiy is sdily isi i OECD (Oisi

More information

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f Essential Skills Chapter f ( x + h) f ( x ). Simplifying the difference quotient Section. h f ( x + h) f ( x ) Example: For f ( x) = 4x 4 x, find and simplify completely. h Answer: 4 8x 4 h. Finding the

More information

Physics 201, Lecture 5

Physics 201, Lecture 5 Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1. Answers o Een Numbered Problems Chper. () 7 m s, 6 m s (b) 8 5 yr 4.. m ih 6. () 5. m s (b).5 m s (c).5 m s (d) 3.33 m s (e) 8. ().3 min (b) 64 mi..3 h. ().3 s (b) 3 m 4..8 mi wes of he flgpole 6. (b)

More information

RTPR Sampler Program

RTPR Sampler Program P Sl P i H B v N Ahi kd f hl qi N hk F N F N S F N Bkffi F N lid Si F $99.95 Sl Pk Giv 365 bhi Ad w will hw hw h $99.95 il b dd Z P Sl P i H B v Hih wd A Sihfwd i Pl wih f di v : B ii 1 i 6.25% 2d i 2.5%

More information

European and American options with a single payment of dividends. (About formula Roll, Geske & Whaley) Mark Ioffe. Abstract

European and American options with a single payment of dividends. (About formula Roll, Geske & Whaley) Mark Ioffe. Abstract 866 Uni Naions Plaza i 566 Nw Yo NY 7 Phon: + 3 355 Fa: + 4 668 info@gach.com www.gach.com Eoan an Amican oions wih a singl amn of ivins Abo fomla Roll Gs & Whal Ma Ioff Absac Th aicl ovis a ivaion of

More information

Acogemos, Señor, Tu Mensaje De Amor/ Embrace And Echo Your Word

Acogemos, Señor, Tu Mensaje De Amor/ Embrace And Echo Your Word 2 Pi Acogmos, Sñor, Tu Mnsj Amor/ Embrc And Echo r Word 1997 Los Angs Rigio Educon ongss dicd with dmiron r. E Rndr ESTROFAS/VERSES: Sopr/Bjo ontrl/ Tr.. Tn Tn Tn Tn Mn Mn Mn Mn INTRO: Upt Lt ( = c. 114)

More information

OF hearts. John Kilpatrick. words by Gelett Burgess. for unaccompanied singers SATB

OF hearts. John Kilpatrick. words by Gelett Burgess. for unaccompanied singers SATB HE knve OF herts John Kilprik wors by Gele Burgess for unompnie singers STB 1997, 2003 John Kilprik Copies h eiion my be me freely, n performnes given. Prin: 17/09/2011. o M T Knve Hers Wors by Gele Burgess

More information

Your generosity brings smiles and hope!

Your generosity brings smiles and hope! Mil Wi l J - M 2014 i El L A Mi R & M C S Li J Li Di Li & Ki C Ai & Mil L C G J L Li Di Ci Li S W J L B Aiil Bill & R MDll Cli MDll Hl MGi J MGi B MGi Cl M Ai Mil AFL-CIO Pli El Fi Mll N Ciii Ci M Ril

More information

A Simple Method for Determining the Manoeuvring Indices K and T from Zigzag Trial Data

A Simple Method for Determining the Manoeuvring Indices K and T from Zigzag Trial Data Rind 8-- Wbsi: wwwshimoionsnl Ro 67, Jun 97, Dlf Univsiy of chnoloy, Shi Hydomchnics Lbooy, Mklw, 68 CD Dlf, h Nhlnds A Siml Mhod fo Dminin h Mnouvin Indics K nd fom Ziz il D JMJ Jouné Dlf Univsiy of chnoloy

More information

PIPE ELBOW DOWN PIPE ELBOW DOWN PIPE ELBOW UP PIPE ELBOW UP PIPE TEE BELOW WITH BRANCH ELBOW AT DOWN PIPE TEE BELOW WITH BRANCH ELBOW AT DOWN

PIPE ELBOW DOWN PIPE ELBOW DOWN PIPE ELBOW UP PIPE ELBOW UP PIPE TEE BELOW WITH BRANCH ELBOW AT DOWN PIPE TEE BELOW WITH BRANCH ELBOW AT DOWN 6 V I I N # NI VIION X 4 4/4 W OUN OINION FI/OK F O O IFIION FO ONUION N INION I. W OUN OK F O O IFIION FO ONUION N INION I. FI F INI FI ; IION INION Y O U, U NU O INI IN FI, FO O 3 OU, N/O INIIN YO Y

More information

Beechwood Music Department Staff

Beechwood Music Department Staff Beechwood Music Department Staff MRS SARAH KERSHAW - HEAD OF MUSIC S a ra h K e rs h a w t r a i n e d a t t h e R oy a l We ls h C o l le g e of M u s i c a n d D ra m a w h e re s h e ob t a i n e d

More information

Erlkönig. t t.! t t. t t t tj "tt. tj t tj ttt!t t. e t Jt e t t t e t Jt

Erlkönig. t t.! t t. t t t tj tt. tj t tj ttt!t t. e t Jt e t t t e t Jt Gsng Po 1 Agio " " lkö (Compl by Rhol Bckr, s Moifi by Mrk S. Zimmr)!! J "! J # " c c " Luwig vn Bhovn WoO 131 (177) I Wr Who!! " J J! 5 ri ris hro' h spä h, I urch J J Nch rk un W Es n wil A J J is f

More information

HOMEPAGE. The. Inside. Beating the MARCH New Faces & Anniversaries. Spring Recipes. Beating the Winter Blues. ADP Rollout

HOMEPAGE. The. Inside. Beating the MARCH New Faces & Anniversaries. Spring Recipes. Beating the Winter Blues. ADP Rollout T ARCH 2015 HOEPAGE A i f l f Oi H i ffili izi i 2 3 4 6 7 8 8 N F & Aivi Si Ri Bi Wi Bl AP Rll G Hl S N! HR C Tivi Bi T xil 89 f i l i v vi ll i fl lik 189! T illi ki; i f fi v i i l l f f i k i fvi lk

More information

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o: R TE EVTE (dhd H Hdg) L / Mld Kbrd gú s v l m sl c m qu gs v nns V n P P rs l mul m d lud 7 súb Fí cón ví f f dó, cru gs,, j l f c r s m l qum t pr qud ct, us: ns,,,, cs, cut r l sns m / m fí hó sn sí

More information

Handout on. Crystal Symmetries and Energy Bands

Handout on. Crystal Symmetries and Energy Bands dou o Csl s d g Bds I hs lu ou wll l: Th loshp bw ss d g bds h bs of sp-ob ouplg Th loshp bw ss d g bds h ps of sp-ob ouplg C 7 pg 9 Fh Coll Uvs d g Bds gll hs oh Th sl pol ss ddo o h l slo s: Fo pl h

More information

THE EXTENDED TANH METHOD FOR SOLVING THE -DIMENSION NONLINEAR DISPERSIVE LONG WAVE EQUATION

THE EXTENDED TANH METHOD FOR SOLVING THE -DIMENSION NONLINEAR DISPERSIVE LONG WAVE EQUATION Jornl of Mhemil Sienes: Adnes nd Appliions Volme Nmer 8 Pes 99- THE EXTENDED TANH METHOD FOR SOLVING THE ( ) -DIMENSION NONLINEAR DISPERSIVE LONG WAVE EQUATION SHENGQIANG TANG KELEI ZHANG nd JIHONG RONG

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

Root behavior in fall and spring planted roses...

Root behavior in fall and spring planted roses... Rerospecive Theses and Disseraions Iowa Sae Universiy Capsones, Theses and Disseraions 1-1-1949 Roo behavior in fall and spring planed roses... Griffih J. Buck Iowa Sae College Follow his and addiional

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

~,. :'lr. H ~ j. l' , ...,~l. 0 ' ~ bl '!; 1'1. :<! f'~.., I,, r: t,... r':l G. t r,. 1'1 [<, . f' 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'.. ,, 'l t (.) :;,/.I I n ri' ' r l ' rt ( n :' (I : d! n t, :?rj I),.. fl.),. f!..,,., til, ID f-i... j I. 't' r' t II!:t () (l r El,, (fl lj J4 ([) f., () :. -,,.,.I :i l:'!, :I J.A.. t,.. p, - ' I I I

More information

Acoustic characterization of an ultrasound surgical transmitter in the linear and nonlinear regime of working

Acoustic characterization of an ultrasound surgical transmitter in the linear and nonlinear regime of working Aousis 8 Pis Aousi hiion of n ulsoun sugil nsmi in h lin n nonlin gim of woing A. Posi B. Ivnčvić n D. Svil b Fuly of Elil Engining n Comuing ns 3 1 gb Coi b Bosi Insiu Avni Vćslv Holv bb 1 gb Coi nonio.osi@f.h

More information

Computer Aided Geometric Design

Computer Aided Geometric Design Copue Aided Geoei Design Geshon Ele, Tehnion sed on ook Cohen, Riesenfeld, & Ele Geshon Ele, Tehnion Definiion 3. The Cile Given poin C in plne nd nue R 0, he ile ih ene C nd dius R is defined s he se

More information

3 Motion with constant acceleration: Linear and projectile motion

3 Motion with constant acceleration: Linear and projectile motion 3 Moion wih consn ccelerion: Liner nd projecile moion cons, In he precedin Lecure we he considered moion wih consn ccelerion lon he is: Noe h,, cn be posiie nd neie h leds o rie of behiors. Clerl similr

More information

SYMMETRICAL COMPONENTS

SYMMETRICAL COMPONENTS SYMMETRCA COMPONENTS Syl oponn llow ph un of volg n un o pl y h p ln yl oponn Con h ph ln oponn wh Engy Convon o 4 o o wh o, 4 o, 6 o Engy Convon SYMMETRCA COMPONENTS Dfn h opo wh o Th o of pho : pov ph

More information

5 H o w t o u s e t h e h o b 1 8

5 H o w t o u s e t h e h o b 1 8 P l a s r a d h i s m a n u a l f i r s. D a r C u s m r, W w u l d l i k y u bb a si n p r hf r m a n cf r m y u r p r d u c h a h a s b n m a n u f a c u r d m d r n f a c i l iu n id s r s r i c q u

More information

when t = 2 s. Sketch the path for the first 2 seconds of motion and show the velocity and acceleration vectors for t = 2 s.(2/63)

when t = 2 s. Sketch the path for the first 2 seconds of motion and show the velocity and acceleration vectors for t = 2 s.(2/63) . The -coordine of pricle in curiliner oion i gien b where i in eer nd i in econd. The -coponen of ccelerion in eer per econd ured i gien b =. If he pricle h -coponen = nd when = find he gniude of he eloci

More information

Equations and Boundary Value Problems

Equations and Boundary Value Problems Elmn Diffnil Equions nd Bound Vlu Poblms Bo. & DiPim, 9 h Ediion Chp : Sond Od Diffnil Equions 6 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /555 ผศ.ดร.อร ญญา ผศ.ดร.สมศ กด วล ยร ชต Topis Homognous

More information

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco > p >>>> ft^. 2 Tble f Generl rdnes. t^-t - +«0 -P k*ph? -- i t t i S i-h l -H i-h -d. *- e Stf H2 t s - ^ d - 'Ct? "fi p= + V t r & ^ C d Si d n. M. s - W ^ m» H ft ^.2. S'Sll-pl e Cl h /~v S s, -P s'l

More information

CHAPTER 9 Compressible Flow

CHAPTER 9 Compressible Flow CHPTER 9 Corssibl Flow Inrouion 9. v R. kv. R or R k k Rk k Char 9 / Corssibl Flow S of Soun 9.4 Subsiu Eq. 4.5.8 ino Eq. 4.5.7 an ngl onial nrgy hang: Q WS u~ u~. Enhaly is fin in Throynais as h u~ v

More information

the king's singers And So It Goes the colour of song Words and Vusic by By Joel LEONARD Arranged by Bob Chilcott

the king's singers And So It Goes the colour of song Words and Vusic by By Joel LEONARD Arranged by Bob Chilcott 085850 SATB div cppell US $25 So Goes Wods nd Vusic by By Joel Anged by Bob Chilco he king's singes L he colou of song A H EXCLUSVELY DSTRBUTED BY LEONARD (Fom The King's Singes 25h Annivesy Jubilee) So

More information

THIS PAGE DECLASSIFIED IAW EO 12958

THIS PAGE DECLASSIFIED IAW EO 12958 THIS PAGE DECLASSIFIED IAW EO 2958 THIS PAGE DECLASSIFIED IAW EO 2958 THIS PAGE DECLASSIFIED IAW E0 2958 S T T T I R F R S T Exhb e 3 9 ( 66 h Bm dn ) c f o 6 8 b o d o L) B C = 6 h oup C L) TO d 8 f f

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

Midterm. Answer Key. 1. Give a short explanation of the following terms.

Midterm. Answer Key. 1. Give a short explanation of the following terms. ECO 33-00: on nd Bnking Souhrn hodis Univrsi Spring 008 Tol Poins 00 0 poins for h pr idrm Answr K. Giv shor xplnion of h following rms. Fi mon Fi mon is nrl oslssl produd ommodi h n oslssl sord, oslssl

More information

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information. Nme D Moion WS The equions of moion h rele o projeciles were discussed in he Projecile Moion Anlsis Acii. ou found h projecile moes wih consn eloci in he horizonl direcion nd consn ccelerion in he ericl

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

sin sin 1 d r d Ae r 2

sin sin 1 d r d Ae r 2 Diffction k f c f Th Huygn-Fnl Pincil tt: Evy unobtuct oint of vfont, t givn intnt, v ouc of hicl cony vlt (ith th m funcy tht of th imy v. Th mlitu of th oticl fil t ny oint byon i th uoition of ll th

More information

01 = Transformations II. We ve got Affine Transformations. Elementary Transformations. Compound Transformations. Reflection about y-axis

01 = Transformations II. We ve got Affine Transformations. Elementary Transformations. Compound Transformations. Reflection about y-axis Leure Se 5 Trnsformions II CS56Comuer Grhis Rih Riesenfel 7 Ferur We ve go Affine Trnsformions Liner Trnslion CS56 Comoun Trnsformions Buil u omoun rnsformions onening elemenr ones Use for omlie moion

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

A New Model for the Pricing of Defaultable Bonds

A New Model for the Pricing of Defaultable Bonds A Nw Mol fo h Picing of Dflbl Bon Pof. D. Ri Zg Mnich Univiy of chnology Mi 6. Dzmb 004 HVB-Ini fo Mhmicl Finnc A Nw Mol fo h Picing of Dflbl Bon Ovviw Mk Infomion - Yil Cv Bhvio US y Sip - Ci Sp Bhvio

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

GLOBAL TRACKING CONTROL OF UNDERACTUATED SURFACE SHIPS IN BODY FRAME

GLOBAL TRACKING CONTROL OF UNDERACTUATED SURFACE SHIPS IN BODY FRAME Copigh IFAC h Tinnial Wol Congss Balona Spain GLOBAL TRACKING CONTROL OF UNDERACTUATED SURFACE SHIPS IN BODY FRAME KD Do J Pan an ZP Jiang Dpan o Mhanial an Maials Engining Th Unisi o Wsn Asalia Nlans

More information

, (1). -, [9], [1]. 1.. T =[ a] R: _(t)=f((t)) _ L(t) () = x f, L(t) T., L(t), L() = L(a ; ) = L(a). (2) - : L n (t) =(L n )(t) = 1=n R supp [ 1], 1R

, (1). -, [9], [1]. 1.. T =[ a] R: _(t)=f((t)) _ L(t) () = x f, L(t) T., L(t), L() = L(a ; ) = L(a). (2) - : L n (t) =(L n )(t) = 1=n R supp [ 1], 1R 25 3(514) 517.988..,..,.. -.,.., -, -. : _x(t) =f(t x(t)) _ L(t) (1) L(t) _.. - -, f(t x(t)) L(t). _ ([1],. 1, x 8,. 41),. [2]{[4],., [2]{[4],, [1]. - x(t) =x f( x())dl() t {, {.. [5]{[7]. L(t),. [8] (1),

More information

Equipping students to think biblically, live wisely and serve faithfully for over 30 years. MAY 2015 IMPORTANT DAYS IN MAY:

Equipping students to think biblically, live wisely and serve faithfully for over 30 years. MAY 2015 IMPORTANT DAYS IN MAY: MAY 2015 IMPORTANT DAYS IN MAY: PCS Piw D M, 5/4 Bl W, 5/20 Gi S, 5/24 L D f Sl W, 5/27 Eqii ik ill, wil fifll f 30. PARK CHRISTIAN SCHOOL w; i i w i m l M iw w m l f i W, f w i, Y Cil i w i q, w, i i

More information

Higher Order Binaries with Time Dependent Coefficients and Two Factors - Model for Defaultable Bond with Discrete Default Information

Higher Order Binaries with Time Dependent Coefficients and Two Factors - Model for Defaultable Bond with Discrete Default Information po o. IU-MH-03-E--0: on Hgh O n wh Dpnn offcn n wo Fco - Mol fo Dfll on wh Dc Dfl Infoon Hong-hol O Yong-Gon n Dong-Ho Fcl of Mhc Il ng Unv Pongng D. P.. o c: In h cl w con fco-ol fo pcng fll on wh c fl

More information

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity Fs s . Ioo ssfo of ss Ms 분체역학 G Ms 역학 Ms 열역학 o Ms 유체역학 F Ms o Ms 고체역학 o Ms 구조해석 ss Dfo of Ms o B o w oo of os o of fos s s w o s s. Of fs o o of oo fos os o o o. s s o s of s os s o s o o of fos o. G fos

More information

Introduction to Inertial Dynamics

Introduction to Inertial Dynamics nouon o nl Dn Rz S Jon Hokn Unv Lu no on uon of oon of ul-jon oo o onl W n? A on of o fo ng on ul n oon of. ou n El: A ll of l off goun. fo ng on ll fo of gv: f-g g9.8 /. f o ll, n : f g / f g 9.8.9 El:

More information

8-3/8" G HANDHOLE C A 1 SUCTION STEEL BASE TABLE OF DIMENSIONS

8-3/8 G HANDHOLE C A 1 SUCTION STEEL BASE TABLE OF DIMENSIONS VORTX SOLIS-NLIN WSTWTR S K OUR " N ONNTIONS OUR " I. OLS OR NOR OLTS -/" STION 0 OUTLIN RWIN TYP VTX- JO: SS-7 T VTX- VORTX (S) OR _PM T _T. T J PPX. N OVRLL L M PLN VIW PPX. P OVRLL 8-/8" P ISR OUPLIN

More information

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce > ƒ? @ Z [ \ _ ' µ `. l 1 2 3 z Æ Ñ 6 = Ð l sl (~131 1606) rn % & +, l r s s, r 7 nr ss r r s s s, r s, r! " # $ s s ( ) r * s, / 0 s, r 4 r r 9;: < 10 r mnz, rz, r ns, 1 s ; j;k ns, q r s { } ~ l r mnz,

More information

Ranking accounting, banking and finance journals: A note

Ranking accounting, banking and finance journals: A note MPRA Munich Personal RePEc Archive Ranking accounting, banking and finance ournals: A note George Halkos and Nickolaos Tzeremes University of Thessaly, Department of Economics January 2012 Online at https://mpra.ub.uni-muenchen.de/36166/

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

ISSUES RELATED WITH ARMA (P,Q) PROCESS. Salah H. Abid AL-Mustansirya University - College Of Education Department of Mathematics (IRAQ / BAGHDAD)

ISSUES RELATED WITH ARMA (P,Q) PROCESS. Salah H. Abid AL-Mustansirya University - College Of Education Department of Mathematics (IRAQ / BAGHDAD) Eoen Jonl of Sisics n Poiliy Vol. No..9- Mc Plise y Eoen Cene fo Resec Tinin n Develoen UK www.e-onls.o ISSUES RELATED WITH ARMA PQ PROCESS Sl H. Ai AL-Msnsiy Univesiy - Collee Of Ecion Deen of Meics IRAQ

More information

From thriving city cycle paths to calm and tranquil car-free routes, the UK offers some of the most stunning and varied bike rides around.

From thriving city cycle paths to calm and tranquil car-free routes, the UK offers some of the most stunning and varied bike rides around. Vii i ii 195 0 i Wi T f l W Wi l W ilw li l p l i i v i, F f i qil f. UK ff i bik k i l p v p f li lp j i S, p Bii x l w w lv, w k ff i i v f f i w i l v l pbli l p. l k fi b il v l l w i f i f T f f i.

More information

Physics 232 Exam I Feb. 13, 2006

Physics 232 Exam I Feb. 13, 2006 Phsics I Fe. 6 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio. The oio hs peiod o.59 secods. iiil ie i is oud o e 8.66 c o he igh o he equiliiu posiio d oig o he le wih eloci o sec.

More information

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity Fs s ν . Ioo ssfo of ss Ms 분체역학 G Ms 역학 Ms 열역학 o Ms 유체역학 F Ms o Ms 고체역학 o Ms 구조해석 ss Dfo of Ms o o w oo of os o of fos s s w o s s. Of fs o o of oo fos os o o o. s s o s of s os s o s o o of fos o. G fos

More information

Electrodynamics in Accelerated Frames as Viewed from an Inertial Frame

Electrodynamics in Accelerated Frames as Viewed from an Inertial Frame Copriht IJPOT, All Rihts Rsrvd Intrnational Journal of Photonis and Optial Thnolo Vol. 3, Iss. 1, pp: 57-61, Marh 17 ltrodnamis in Alratd Frams as Viwd from an Inrtial Fram Adrian Sfarti Univrsit of California,

More information

IMPACT OF CLIMATE CHANGE ON AGRICULTURAL PRODUCTIVITY AND FOOD SECURITY Khalid Abdul Rahim. A World Leader in New Tropical Agriculture

IMPACT OF CLIMATE CHANGE ON AGRICULTURAL PRODUCTIVITY AND FOOD SECURITY Khalid Abdul Rahim. A World Leader in New Tropical Agriculture IMPACT OF CLIMATE CHANGE ON AGRICULTURAL PRODUCTIVITY AND FOOD SECURITY Khalid Abdul Rahim A World Leader in New Tropical Agriculture IMPACT OF CLIMATE CHANGE ON AGRICULTURAL PRODUCTIVITY AND FOOD SECURITY

More information

0# E % D 0 D - C AB

0# E % D 0 D - C AB 5-70,- 393 %& 44 03& / / %0& / / 405 4 90//7-90/8/3 ) /7 0% 0 - @AB 5? 07 5 >0< 98 % =< < ; 98 07 &? % B % - G %0A 0@ % F0 % 08 403 08 M3 @ K0 J? F0 4< - G @ I 0 QR 4 @ 8 >5 5 % 08 OF0 80P 0O 0N 0@ 80SP

More information

Bayesian Credibility for Excess of Loss Reinsurance Rating. By Mark Cockroft 1 Lane Clark & Peacock LLP

Bayesian Credibility for Excess of Loss Reinsurance Rating. By Mark Cockroft 1 Lane Clark & Peacock LLP By Cly o c o Lo Rc Rg By M Coco L Cl & Pcoc LLP GIRO coc 4 Ac Th pp c how o v cly wgh w po- pc-v o c o lo c. Th po co o Poo-Po ol ch wh po G o. Kywo c o lo c g By cly Poo Po G po Acowlg cl I wol l o h

More information

i sw + v sw + v o 100V Ideal switch characteristics

i sw + v sw + v o 100V Ideal switch characteristics deal swich characerisics. onsider he swiching circui shown in Fig. P. wih a resisive load. Assume he swich is ideal and operaing a a duy raio of 4%. (a) Skech he waveforms for i sw and v sw. (b) Deermine

More information

OPTIMAL RESOURCE ALLOCATION AMONG AREAS OF EQUAL VALUE

OPTIMAL RESOURCE ALLOCATION AMONG AREAS OF EQUAL VALUE 80 NZOR volume 4 number 2 July 1976 OPTIMAL RESOURCE ALLOCATION AMONG AREAS OF EQUAL VALUE John S. Cr o u c h e r* Macquarie Un i v e r s i t y, Sydney S u m m a r y This p a p e r c o n s i d e r s a

More information

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner m m i s t r * j i ega>x I Bi 5 n ì r s w «s m I L nk r n A F o n n l 5 o 5 i n l D eh 1 ; 5 i A cl m i n i sh» si N «q a : 1? { D v i H R o s c q \ l o o m ( t 9 8 6) im a n alaa p ( M n h k Em l A ma

More information

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

An object moving with speed v around a point at distance r, has an angular velocity. m/s m Roion The mosphere roes wih he erh n moions wihin he mosphere clerly follow cure phs (cyclones, nicyclones, hurricnes, ornoes ec.) We nee o epress roion quniiely. For soli objec or ny mss h oes no isor

More information

RIM= City-County Building, Suite 104 NE INV= Floor= CP #CP004 TOP SE BOLT LP BASE N= E= ELEV=858.

RIM= City-County Building, Suite 104 NE INV= Floor= CP #CP004 TOP SE BOLT LP BASE N= E= ELEV=858. f g c ch c y f M D b c Dm f ubc Wk x c M f g 23 IM=3. y-uy ug, u 0 N INV=0.0 F=0.99 20 M uh Kg, J. v. M, WI 303 h ch b b y v #00 O O O O N=93.200 =2920.00 ckby vyb FG2 f g Ghc c c c 03000 W FI ND O 9 0

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Theory of Spatial Problems

Theory of Spatial Problems Chpt 7 ho of Sptil Polms 7. Diffntil tions of iliim (-D) Z Y X Inol si nknon stss componnts:. 7- 7. Stt of Stss t Point t n sfc ith otd noml N th sfc componnts ltd to (dtmind ) th 6 stss componnts X N

More information

(2) bn = JZ( )(**-*.)at,

(2) bn = JZ( )(**-*.)at, THE RELATION BETWEEN THE SEQUENCE-TO-SEQUENCE AND THE SERIES-TO-SERIES VERSIONS OF QUASI- HAUSDORFF SUMMABILITY METHODS B. KWEE 1. Introduction. Let ih, p, ) be a regular Hausdorff method of summability,

More information