Equations and Boundary Value Problems

Size: px
Start display at page:

Download "Equations and Boundary Value Problems"

Transcription

1 Elmn Diffnil Equions nd Bound Vlu Poblms Bo. & DiPim, 9 h Ediion Chp : Sond Od Diffnil Equions 6 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /555 ผศ.ดร.อร ญญา ผศ.ดร.สมศ กด วล ยร ชต

2 Topis Homognous Equions-Consn Coffiins i Fundmnl Soluions of Lin Homognous Equions Complx Roos of Chisi Equion Rpd Roos; Rduion of Od Nonhomognous Equions; Mhod of Undmind Coffiins Viion of Pms

3 .: nd Od Lin Homognous Equions- Consn Coffiins Elmn Diffnil Equions nd Bound Vlu Poblms, 9 h diion, b Willim E. Bo nd Rihd C. DiPim, 9 b John Wil & Sons, In. A sond od odin diffnil quion hs h gnl fom f,, wh f is som gin funion. This quion is sid o b lin if f is lin in nd ': g p q Ohwis h quion is sid o b nonlin. A sond od lin quion ofn pps s P Q R G If G= = fo ll, hn h quion is lld homognous. Ohwis h quion is nonhomognous.

4 Homognous Equions, Iniil Vlus In Sions.5 nd.6, w will s h on soluion o homognous quion is found, hn i is possibl o sol h osponding nonhomognous quion, o ls xpss h soluion li in ms of n ingl. i Th fous of his hp is hus on homognous quions; nd in piul, hos wih onsn offiins: b W will xmin h ibl offiin s in Chp 5. Iniil ondiions pill k h fom, Thus soluion psss hough,, nd slop of soluion, is qul o '.

5 Exmpl : Infinil Mn Soluions of Consid h sond od lin diffnil quion Two soluions of his quion, Oh soluions inlud, 5, 5 5 Bsd on hs obsions, w s h h infinil mn soluions of h fom I will b shown in Sion. h ll soluions of h diffnil quion bo n b xpssd in his fom. 5

6 Exmpl : Iniil Condiions of Now onsid h following iniil lu poblm fo ou quion:,, W h found gnl soluion of h fom Using h iniil quions, Thus / / /, / 6

7 Exmpl : Soluion Gphs of Ou iniil lu poblm nd soluion,, / / Gphs of boh nd gin blow. Obs h boh iniil ondiions sisfid. ' / / ' / /

8 Chisi Equion To sol h nd od quion wih onsn offiins, b w bgin b ssuming soluion of h fom =. Subsiuing his ino h diffnil quion, w obin b Simplifing, i nd hn b b This ls quion is lld h hisi quion of h diffnil quion. W hn sol fo b foing o using qudi fomul. 8

9 Gnl Soluion Using h qudi fomul on h hisi quion b, w obin wo soluions, nd. Th h possibl suls: Th oos, l nd. Th oos, l nd =. Th oos, omplx. b b In his sion, w will ssum, l nd. In his s, h gnl soluion hs h fom 9

10 Iniil Condiions,, l, Fo h iniil lu poblm Fo h iniil lu poblm w us h gnl soluion,,, b w us h gnl soluion ogh wih h iniil ondiions o find nd. Th is,, Sin w ssuming, i follows h soluion of h fom = o h bo iniil lu poblm will lws if f i ii l dii xis, fo n s of iniil ondiions.

11 Exmpl Gnl Soluion Consid h lin diffnil i quion 5 6 Assuming n xponnil soluion lds o h hisi quion: 5 6 Foing h hisi quion ilds wo soluions: = - nd = - Thfo, h gnl soluion o his diffnil i quion hs h fom

12 Exmpl Piul Soluion Consid h iniil lu poblm, 5 6, Fom h pding xmpl, w know h gnl soluion hs h fom: Wih dii: ' Using h iniil ondiions: Thus 7 9,

13 Exmpl : Iniil Vlu Poblm Consid h iniil lu poblm 8,, / Thn 8 Foing ilds wo soluions, = / nd = / Th gnl soluion hs h fom / / Ui Using iiil iniil ondiions: dii / / Thus / / / / 5/, / 5/ / / / 5/

14 Exmpl 5: Find Mximum Vlu Fo h iniil i i lu poblm in Exmpl, o find h mximum lu ind b h soluion, w s = nd sol fo : / 6 ln 7 / s

15 .: Fundmnl Soluions of Lin Homognous Equions Elmn Diffnil Equions nd Bound Vlu Poblms, 9 h diion, b Willim E. Bo nd Rihd C. DiPim, 9 b John Wil & Sons, In. L p, q b oninuous funions on n inl I =,, whih ould b infini. Fo n funion h is wi diffnibl on I, dfin h diffnil opo L b L p q No h L[] is funion on I, wih oupu lu L Fo xmpl, p L p q, q, sin os sin sin, I, 5

16 Diffnil Opo Noion In his sion w will disuss h sond od lin homognous quion L[] =, long wih iniil ondiions s indid blow: L p, q W would lik o know if h soluions o his iniil lu poblm, nd if so, h uniqu. Also, w would lik o know wh n b sid bou h fom nd suu of soluions h migh b hlpful in finding soluions o piul poblms. Ths qusions ddssd in h homs of his sion. 6

17 Thom.. Exisn nd Uniqunss Consid h iniil lu poblm p q g, wh p, q, nd g oninuous on n opn inl I h onins. Thn h xiss uniqu soluion = on I. 7

18 Exmpl p q g, Consid h sond od lin iniil lu poblm ',, Wing h diffnil quion in h fom : ' ' p ' q g p /, q / nd g Th onl poins of disoninui fo hs offiins = nd =. So h longs opn inl onining h iniil poin = in whih ll h offiins oninuous is < < Thfo, h longs inl in whih Thom.. guns h xisn of h soluion is < < 8

19 Thom.. Pinipl of Supposiion If nd soluions o h quion L[ ] p q hn h lin ombinion + is lso soluion, fo ll onsns nd. To po his hom, subsiu + in fo in h quion bo, nd us h f h nd soluions. Thus fo n wo soluions nd, w n onsu n infini fmil of soluions, h of h fom = +. Cn ll soluions n b win his w, o do som soluions h diffn fom logh? To nsw his qusion, w us h Wonskin dminn. 9

20 Th Wonskin Dminn of Suppos nd soluions o h quion L[ ] p q Fom Thom.., w know h = + is soluion o his quion. Nx, find offiins suh h = + sisfis h iniil ondiions , To do so, w nd o sol h following quions:

21 Th Wonskin Dminn of Soling h quions w obin Soling h quions, w obin In ms of dminns:,

22 Th Wonskin Dminn of In od fo hs fomuls o b lid h dminn W in In od fo hs fomuls o b lid, h dminn W in h dnomino nno b zo: W W, W W is lld h Wonskin dminn, o mo simpl, h Wonskin of h soluions nd. W will somims us h noion W somims us h noion, W

23 Thom.. Suppos nd soluions o h quion L [ ] p q wih h iniil ondiions, Thn i is lws possibl o hoos onsns, so h sisfis h diffnil quion nd iniil ondiions if nd on if h Wonskin W is no zo h poin

24 Exmpl In Exmpl of Sion., w found h nd w soluions o h diffnil quion 5 6 Th Wonskin of hs wo funions is W 5 Sin W is nonzo fo ll lus of, h funions nd n b usd o onsu soluions of h diffnil quion wih hiiil iniil ondiions dii n lu of

25 Thom.. Fundmnl Soluions Suppos nd soluions o h quion L[ ] p q. Thn h fmil of soluions = + wih bi offiins, inluds soluion o h diffnil quion if n onl if h is poin suh h W,,. Th xpssion = + is lld h gnl soluion of h diffnil quion bo, nd in his s nd sid o fom fundmnl s of soluions o h diffnil quion. 5

26 Exmpl : fundmnl s of soluions? Consid h gnl sond od lin quion blow, wih h wo soluions indid: p q Suppos h funions blow soluions o his quion:,, Th Wonskin of nd is W fo ll. Thus nd fom fundmnl s of soluions o h quion, nd n b usd o onsu ll of is soluions. Th gnl soluion is 6

27 Exmpl 5: Soluions of Consid h following diffnil quion: Consid h following diffnil quion: Show h h funions blow fundmnl soluions:, To show his, fis subsiu ino h quion: /, / / / / Thus is indd soluion of h diffnil quion. Simill, is lso soluion: 7

28 Exmpl 5: Fundmnl Soluions of Rll h /, To show h nd fom fundmnl s of soluions, w lu h Wonskin of nd : W / / / / / Sin W fo >,, fom fundmnl s of soluions fo h diffnil quion, 8

29 Thom..5: Exisn of Fundmnl S of Soluions Consid h diffnil quion blow, whos offiins p nd q oninuous on som opn inl I: L [ ] p q L b poin in I, nd nd soluions of h quion wih sisfing iniil ondiions, nd sisfing iniil ondiions, Thn, fom fundmnl s of soluions o h gin diffnil quion. 9

30 Exmpl 6: Appl Thom..5 of Find h fundmnl s spifid b Thom..5 fo h diffnil quion nd iniil poin, In Sion., w found wo soluions of his quion:, Th Wonskin of hs soluions is W, = - so h fom fundmnl s of soluions. Bu hs wo soluions do no sisf h iniil ondiions sd in Thom..5, nd hus h do no fom h fundmnl s of soluions mniond in h hom. L L nd b h fundmnl soluions of fthm..5., ;,

31 Exmpl 6: Gnl Soluion of Sin nd fom fundmnl s of soluions,,, d d, Soling h quion, w obin, osh, sinh Th Wonskin of nd is W osh sinh osh sinh sinh osh Thus, fom h fundmnl s of soluions indid in Thom..5, wih gnl soluion in his s k osh k sinh 5

32 Exmpl 6: Mn Fundmnl Soluion Ss of Thus S, S osh,sinh, boh fom fundmnl soluion ss o h diffnil quion nd iniil poin, In gnl, diffnil quion will h infinil mn diffn fundmnl soluion ss. Tpill, w pik h on h is mos onnin o usful.

33 Summ To find gnl soluion of h diffnil quion p q, w fis find wo soluions nd. Thn mk su h is poin in h inl suh h W,. I follows h nd fom fundmnl s of soluions o h quion, wih gnl soluion = +. If iniil ondiions psibd poin in h inl wh W, hn nd n b hosn o sisf hos ondiions.

34 .: Complx Roos of Chisi Equion Elmn Diffnil Equions nd Bound Vlu Poblms, 9 h diion, b Willim E. Bo nd Rihd C. DiPim, 9 b John Wil & Sons, In. Rll ou disussion of h quion b wh,, b nd onsns. Assuming n xponnil soln lds o hisi quion: b Qudi fomul o foing ilds wo soluions, & : b b If b <, hn omplx oos: = + i, = - i Thus i i,

35 Eul s Fomul; Complx Vlud Soluions Subsiuing i ino Tlo sis fo w obin Eul s Subsiuing i ino Tlo sis fo, w obin Eul s fomul: i i i n n n n n i sin os Gnlizing Eul s fomul, w obin n n n n n n!!! Thn i i sin os i i Thfo i i i i sin os sin os i i i i i i i sin os sin os 5

36 Rl Vlud Soluions b Ou wo soluions hus f omplx-lud funions: os i sin os i sin 5 W would pf o h l-lud soluions, sin ou diffnil quion hs l offiins. To hi his, ll h lin ombinions of soluions hmsls soluions: os 6 i sin Ignoing onsns, w obin h wo soluions os, sin 7 6

37 Rl Vlud Soluions: Th Wonskin Thus w h h following l-lud funions: os, sin 8 Chking h Wonskin, w obin W os sin os sin sin os 9 Thus nd fom fundmnl soluion s fo ou ODE, nd h gnl soluion n b xpssd s b b b,, i os sin 7

38 i Exmpl of Consid h diffnil quion sin os Consid h diffnil quion Fo n xponnil soluion, h hisi quion is.5 9 p, q i i Thfo, sping h l nd imgin omponns, nd hus h gnl soluion is /, / nd hus h gnl soluion is sin os sin os / / / 8 8

39 Exmpl of Ui Using h gnl soluion jus dmind d / os sin W n dmin h piul soluion h sisfis h iniil ondiions nd ' 8 6 So / 8 Thus h soluion of his IVP is / os sin, 7 Th soluion is ding osillion / 5 os sin 6 8 9

40 Exmpl Consid h iniil lu poblm 6 8 5,, ' Thn 6 Thus h gnl soluion is And / Th soluion of h IVP is / os / Th soluion is displs gowing osillion 8 5 i sin / os, / sin / os / sin /

41 Exmpl Consid h quion 9 Thn 9 i Thfo, nd hus h gnl soluion is os sin Bus, h is no xponnil fo in h soluion, so h mpliud of h osillion mins onsn. Th figu shows h gph of wo pil soluions solid : os dshd : os sin / sin 6 8

42 .: Rpd Roos; Rduion of Od Elmn Diffnil Equions nd Bound Vlu Poblms, 9 h diion, b Willim E. Bo nd Rihd C. DiPim, 9 b John Wil & Sons, In. Rll ou nd od lin homognous ODE b wh,, b nd onsns. Assuming n xponnil soln lds o hisi quion: b Qudi fomul o foing ilds wo soluions, & : b b Whn b =, = = -b/, sin mhod onl gis on soluion: b /

43 Sond Soluion: Mulipling Fo W know h W know h Sin nd linl dpndn, w gnliz his soluion soluion p, g ppoh nd mulipl b funion, nd dmin ondiions fo whih is soluion: b b / / li Thn b b / / soluion b / b b b / / b b b b b b b / / / /

44 b Finding Mulipling Fo Subsiuing diis ino ODE w sk fomul fo : Subsiuing diis ino ODE, w sk fomul fo : / b b b b b b b b b b b b b b b b b b k k

45 Gnl Soluion To find ou gnl soluion, w h: k k b / k b / b / b / b / k k b / Thus h gnl soluion fo pd oos is b b b, = =-b/ b / b / 5

46 Wonskin Th gnl soluion is b / b / Thus soluion is lin ombinion of b / b /, Th Wonskin of h wo soluions is W b b, b / b / b / b / b / b / b fo ll b / b Thus nd fom fundmnl soluion s fo quion. 6

47 Exmpl of Consid h iniil lu poblm Consid h iniil lu poblm Assuming xponnil soln lds o hisi quion: g p q So on soluion is nd sond soluion is found: Subsiuing hs ino h diffnil quion nd simplifing ilds ' " k k k simplifing ilds wh bi onsns.,, k k k nd k k 7 7

48 Exmpl of Ling k k nd, nd So h gnl soluion is No h boh nd nd o s gdlss of h lus of nd Using iniil ii ondiions. nd ' 5.5, 5. 6 Thfo h soluion o h IVP is

49 Exmpl of Consid h iniil lu poblm.5,, / Assuming gxponnil soln lds o hisi quion: q.5 Thus h gnl soluion is / / Using h iniil ondiions: / / / Thus, / / / 9

50 Exmpl of Suppos h h iniil ii slop in h pious poblm ws insd, Th soluion of his modifid d poblm is / / Noi h h offiin i of h sond 6 m is now posii. This mks big diffn in h gph, sin h xponnil funion is isd o posii pow: / d : / blu : / / 7 5

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Chapter 4 Circular and Curvilinear Motions

Chapter 4 Circular and Curvilinear Motions Chp 4 Cicul n Cuilin Moions H w consi picls moing no long sigh lin h cuilin moion. W fis su h cicul moion, spcil cs of cuilin moion. Anoh mpl w h l sui li is h pojcil..1 Cicul Moion Unifom Cicul Moion

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementary Linear Algebra Anton & Rorres, 10 th Edition Lecture Set 05 Chapter 4: General Vector Spaces 1006003 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2554 1006003 คณตศาสตรวศวกรรม

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elemenar Differenial Equaions and Boundar Value Problems Boce. & DiPrima 9 h Ediion Chaper 1: Inroducion 1006003 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Derivation of the differential equation of motion

Derivation of the differential equation of motion Divion of h iffnil quion of oion Fis h noions fin h will us fo h ivion of h iffnil quion of oion. Rollo is hough o -insionl isk. xnl ius of h ll isnc cn of ll (O) - IDU s cn of gviy (M) θ ngl of inclinion

More information

Computer Aided Geometric Design

Computer Aided Geometric Design Copue Aided Geoei Design Geshon Ele, Tehnion sed on ook Cohen, Riesenfeld, & Ele Geshon Ele, Tehnion Definiion 3. The Cile Given poin C in plne nd nue R 0, he ile ih ene C nd dius R is defined s he se

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementry Liner Algebr Anton & Rorres, 1 th Edition Lecture Set 5 Chpter 4: Prt II Generl Vector Spces 163 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 163 คณตศาสตรวศวกรรม 3 สาขาวชาวศวกรรมคอมพวเตอร

More information

Supporting Online Materials for

Supporting Online Materials for Suppoing Onlin Mils o Flxibl Schbl nspn Mgn- Cbon Nnoub hin Film Loudspks Lin Xio*, Zhuo Chn*, Chn Fng, Ling Liu, Zi-Qio Bi, Yng Wng, Li Qin, Yuying Zhng, Qunqing Li, Kili Jing**, nd Shoushn Fn** Dpmn

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues BocDPm 9 h d Ch 7.6: Compl Egvlus Elm Dffl Equos d Boud Vlu Poblms 9 h do b Wllm E. Boc d Rchd C. DPm 9 b Joh Wl & Sos Ic. W cosd g homogous ssm of fs od l quos wh cos l coffcs d hus h ssm c b w s ' A

More information

Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA

Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA Innionl Jonl of Phoonis n Oil Thnolo Vol. 3 Iss. : 36-4 Jn 7 Rliisi Dnis n lonis in Unifol l n in Unifol Roin s-th Gnl ssions fo h loni 4-Vo Ponil in Sfi Unisi of Clifoni 387 So Hll UC Bkl Clifoni US s@ll.n

More information

Partial Fraction Expansion

Partial Fraction Expansion Paial Facion Expanion Whn ying o find h inv Laplac anfom o inv z anfom i i hlpfl o b abl o bak a complicad aio of wo polynomial ino fom ha a on h Laplac Tanfom o z anfom abl. W will illa h ing Laplac anfom.

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

How to Order. Description. Metric thread (M5) Rc NPT G

How to Order. Description. Metric thread (M5) Rc NPT G Ai Fil AF0 o I ymol Ai Fil Ai Fil ih Auo AF0 Ho o Od AF Md o Od (f o pg 334 hough o 336 fo dils.) Opion/mi-sndd: l on h fo o f. Opion/mi-sndd symol: Whn mo hn on spifiion is uid, indi in lphnumi od. Exmpl)

More information

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2 Mah 0 Homwork S 6 Soluions 0 oins. ( ps) I ll lav i o you o vrify ha y os sin = +. Th guss for h pariular soluion and is drivaivs is blow. Noi ha w ndd o add s ono h las wo rms sin hos ar xaly h omplimnary

More information

( ) ( ) ( ) 0. dt dt dt ME203 PROBLEM SET #6. 1. Text Section 4.5

( ) ( ) ( ) 0. dt dt dt ME203 PROBLEM SET #6. 1. Text Section 4.5 ME PROBLEM SET #6 T Sion 45 d w 6 dw 4 5 w d d Solion: Fis mlil his qaion b (whih w an do sin > o ansfom i ino h Cah- El qaion givn b w ( 6w ( 4 Thn b making h sbsiion (and sing qaion (7 on ag 88 of h,

More information

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1. Answers o Een Numbered Problems Chper. () 7 m s, 6 m s (b) 8 5 yr 4.. m ih 6. () 5. m s (b).5 m s (c).5 m s (d) 3.33 m s (e) 8. ().3 min (b) 64 mi..3 h. ().3 s (b) 3 m 4..8 mi wes of he flgpole 6. (b)

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Bo/DiPima/Mad h d Ch.: High Od Lia ODEs: Gal Tho Elma Diffial Eqaios ad Boda Val Poblms h diio b William E. Bo Rihad C. DiPima ad Dog Mad 7 b Joh Wil & Sos I. A h od ODE has h gal fom d d P P P d d W assm

More information

Physics 201, Lecture 5

Physics 201, Lecture 5 Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

ELECTRIC VELOCITY SERVO REGULATION

ELECTRIC VELOCITY SERVO REGULATION ELECIC VELOCIY SEVO EGULAION Gorg W. Younkin, P.E. Lif FELLOW IEEE Indusril Conrols Consuling, Di. Bulls Ey Mrking, Inc. Fond du Lc, Wisconsin h prformnc of n lcricl lociy sro is msur of how wll h sro

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

( ) ( ) + = ( ) + ( )

( ) ( ) + = ( ) + ( ) Mah 0 Homwork S 6 Soluions 0 oins. ( ps I ll lav i o you vrify ha h omplimnary soluion is : y ( os( sin ( Th guss for h pariular soluion and is drivaivs ar, +. ( os( sin ( ( os( ( sin ( Y ( D 6B os( +

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis   2/3/2007 Physics 253 Science Adeisemen Inegoenmenl Pnel on Clime Chnge: The Phsicl Science Bsis hp://www.ipcc.ch/spmfeb7.pdf /3/7 Phsics 53 hp://www.fonews.com/pojecs/pdf/spmfeb7.pdf /3/7 Phsics 53 3 Sus: Uni, Chpe 3 Vecos

More information

Chapter 3. The Fourier Series

Chapter 3. The Fourier Series Chpr 3 h Fourir Sris Signls in h im nd Frquny Domin INC Signls nd Sysms Chpr 3 h Fourir Sris Eponnil Funion r j ros jsin ) INC Signls nd Sysms Chpr 3 h Fourir Sris Odd nd Evn Evn funion : Odd funion :

More information

Handout on. Crystal Symmetries and Energy Bands

Handout on. Crystal Symmetries and Energy Bands dou o Csl s d g Bds I hs lu ou wll l: Th loshp bw ss d g bds h bs of sp-ob ouplg Th loshp bw ss d g bds h ps of sp-ob ouplg C 7 pg 9 Fh Coll Uvs d g Bds gll hs oh Th sl pol ss ddo o h l slo s: Fo pl h

More information

A Simple Method for Determining the Manoeuvring Indices K and T from Zigzag Trial Data

A Simple Method for Determining the Manoeuvring Indices K and T from Zigzag Trial Data Rind 8-- Wbsi: wwwshimoionsnl Ro 67, Jun 97, Dlf Univsiy of chnoloy, Shi Hydomchnics Lbooy, Mklw, 68 CD Dlf, h Nhlnds A Siml Mhod fo Dminin h Mnouvin Indics K nd fom Ziz il D JMJ Jouné Dlf Univsiy of chnoloy

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration Secion 1.4 Moion in Spce: Velociy nd Acceleion We e going o dive lile deepe ino somehing we ve ledy inoduced, nmely () nd (). Discuss wih you neighbo he elionships beween posiion, velociy nd cceleion you

More information

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics) Mh Lr # In-l Workh Vor n Mri (Bi) h n o hi lr, o hol l o: r mri n or in Mh i mri prorm i mri mh oprion ol m o linr qion ing mri mh. Cring Mri Thr r rl o r mri. Th "Inr Mri" Wino (M) B K Poin Rr o

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Air Filter 90-AF30 to 90-AF60

Air Filter 90-AF30 to 90-AF60 Ai il -A o -A6 Ho o Od A /Smi-sndd: Sl on h fo o. /Smi-sndd symol: Whn mo hn on spifiion is uid, indi in lphnumi od. Exmpl) -A-- Sis ompil ih sondy is Mil siion Smi-sndd Thd yp Po siz Mouning lo diion

More information

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m PHYS : Soluions o Chper 3 Home Work. SSM REASONING The displcemen is ecor drwn from he iniil posiion o he finl posiion. The mgniude of he displcemen is he shores disnce beween he posiions. Noe h i is onl

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

PHYSICS 1210 Exam 1 University of Wyoming 14 February points PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher

More information

RAKE Receiver with Adaptive Interference Cancellers for a DS-CDMA System in Multipath Fading Channels

RAKE Receiver with Adaptive Interference Cancellers for a DS-CDMA System in Multipath Fading Channels AKE v wh Apv f Cs fo DS-CDMA Ss Muph Fg Chs JooHu Y Su M EEE JHog M EEE Shoo of E Egg Sou o Uvs Sh-og Gw-gu Sou 5-74 Ko E-: ohu@su As hs pp pv AKE v wh vs og s popos fo DS-CDMA ss uph fg hs h popos pv

More information

LECTURE 5. is defined by the position vectors r, 1. and. The displacement vector (from P 1 to P 2 ) is defined through r and 1.

LECTURE 5. is defined by the position vectors r, 1. and. The displacement vector (from P 1 to P 2 ) is defined through r and 1. LECTURE 5 ] DESCRIPTION OF PARTICLE MOTION IN SPACE -The displcemen, veloci nd cceleion in -D moion evel hei veco nue (diecion) houh he cuion h one mus p o hei sin. Thei full veco menin ppes when he picle

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

GUIDE FOR SUPERVISORS 1. This event runs most efficiently with two to four extra volunteers to help proctor students and grade the student

GUIDE FOR SUPERVISORS 1. This event runs most efficiently with two to four extra volunteers to help proctor students and grade the student GUIDE FOR SUPERVISORS 1. This vn uns mos fficinly wih wo o fou xa voluns o hlp poco sudns and gad h sudn scoshs. 2. EVENT PARAMETERS: Th vn supviso will povid scoshs. You will nd o bing a im, pns and pncils

More information

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C nx. Dvon o h n wh In h sn o ul sk h n o h x shl u o nnng y h m s s h ol ouon s h num o ssus s h oo nom x s h sonl nom x n s h v x on quy whh s wgh vg o vn n l gns x s. In hs s h o sonl nom xs on h x shl

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

Lecture 21 : Graphene Bandstructure

Lecture 21 : Graphene Bandstructure Fundmnls of Nnolcronics Prof. Suprio D C 45 Purdu Univrsi Lcur : Grpn Bndsrucur Rf. Cpr 6. Nwor for Compuionl Nnocnolog Rviw of Rciprocl Lic :5 In ls clss w lrnd ow o consruc rciprocl lic. For D w v: Rl-Spc:

More information

Average & instantaneous velocity and acceleration Motion with constant acceleration

Average & instantaneous velocity and acceleration Motion with constant acceleration Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission

More information

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW) 8 Conson o n & Ponn To Fo wll s quons w D B σ σ Fo bo n b sown (W) o s W w bo on o s l us n su su ul ow ns [W/ ] [W] su P su B W W 4 444 s W A A s V A A : W W R o n o so n n: [/s W] W W 4 44 9 W : W F

More information

Midterm. Answer Key. 1. Give a short explanation of the following terms.

Midterm. Answer Key. 1. Give a short explanation of the following terms. ECO 33-00: on nd Bnking Souhrn hodis Univrsi Spring 008 Tol Poins 00 0 poins for h pr idrm Answr K. Giv shor xplnion of h following rms. Fi mon Fi mon is nrl oslssl produd ommodi h n oslssl sord, oslssl

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

Acoustic characterization of an ultrasound surgical transmitter in the linear and nonlinear regime of working

Acoustic characterization of an ultrasound surgical transmitter in the linear and nonlinear regime of working Aousis 8 Pis Aousi hiion of n ulsoun sugil nsmi in h lin n nonlin gim of woing A. Posi B. Ivnčvić n D. Svil b Fuly of Elil Engining n Comuing ns 3 1 gb Coi b Bosi Insiu Avni Vćslv Holv bb 1 gb Coi nonio.osi@f.h

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction Appendi E: Mnipuling Fions Te ules fo mnipuling fions involve lgei epessions e el e sme s e ules fo mnipuling fions involve numes Te fundmenl ules fo omining nd mnipuling fions e lised elow Te uses of

More information

5/17/2016. Study of patterns in the distribution of organisms across space and time

5/17/2016. Study of patterns in the distribution of organisms across space and time Old Fossils 5/17/2016 Ch.16-4 Evidnc of Evoluion Biogogphy Ag of Eh / Fossil cod Anomy / Embyology Biochmicls Obsving / Tsing NS fis-hnd Sudy of pns in h disibuion of ognisms coss spc nd im Includs obsvion

More information

GRADE 2 SUPPLEMENT. Set D6 Measurement: Temperature. Includes. Skills & Concepts

GRADE 2 SUPPLEMENT. Set D6 Measurement: Temperature. Includes. Skills & Concepts GRADE 2 SUPPLEMENT S D6 Msn: Tp Inlds Aiviy 1: Wh s h Tp? D6.1 Aiviy 2: Hw Ds h Tp Chng Ding h Dy? D6.5 Aiviy 3: Fs & Al Tps n Th D6.9 Skills & Cnps H d h gh d P201304 Bidgs in Mhis Gd 2 Sppln S D6 Msn:

More information

Equations from The Four Principal Kinetic States of Material Bodies. Copyright 2005 Joseph A. Rybczyk

Equations from The Four Principal Kinetic States of Material Bodies. Copyright 2005 Joseph A. Rybczyk Equions fom he Fou Pinipl Kinei Ses of Meil Bodies Copyigh 005 Joseph A. Rybzyk Following is omplee lis of ll of he equions used in o deied in he Fou Pinipl Kinei Ses of Meil Bodies. Eh equion is idenified

More information

Einstein s Field Equations in Cosmology Using Harrison s Formula

Einstein s Field Equations in Cosmology Using Harrison s Formula Ein s ild Equaions in Cosmoloy U Haison s omula Ioannis Ialis Haanas, Dpamn of Physis and sonomy Yo Univsiy, Tno, Onaio, Canada E-mail: ioannis@you.a bsa Th mos impoan l fo h sudy of h aviaional fild in

More information

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane. CBSE CBSE SET- SECTION. Gv tht d W d to fd 7 7 Hc, 7 7 7. Lt,. W ow tht.. Thus,. Cosd th vcto quto of th pl.. z. - + z = - + z = Thus th Cts quto of th pl s - + z = Lt d th dstc tw th pot,, - to th pl.

More information

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee RESEARCH ARTICLE HUMAN CAPITAL DEVELOPMENT FOR PROGRAMMERS USING OPEN SOURCE SOFTWARE Ami Mehra Indian Shool of Business, Hyderabad, INDIA {Ami_Mehra@isb.edu} Vijay Mookerjee Shool of Managemen, Uniersiy

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Ch.4 Motion in 2D. Ch.4 Motion in 2D

Ch.4 Motion in 2D. Ch.4 Motion in 2D Moion in plne, such s in he sceen, is clled 2-dimensionl (2D) moion. 1. Posiion, displcemen nd eloci ecos If he picle s posiion is ( 1, 1 ) 1, nd ( 2, 2 ) 2, he posiions ecos e 1 = 1 1 2 = 2 2 Aege eloci

More information

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = = Mi i fd l Phsic 3 Lecure 4 Min poins of od s lecure: Emple: ddiion of elociies Trjecories of objecs in dimensions: dimensions: g 9.8m/s downwrds ( ) g o g g Emple: A foobll pler runs he pern gien in he

More information

Lecture 2: Bayesian inference - Discrete probability models

Lecture 2: Bayesian inference - Discrete probability models cu : Baysian infnc - Disc obabiliy modls Many hings abou Baysian infnc fo disc obabiliy modls a simila o fqunis infnc Disc obabiliy modls: Binomial samling Samling a fix numb of ials fom a Bnoulli ocss

More information

Chapter Direct Method of Interpolation

Chapter Direct Method of Interpolation Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o

More information

A LOG IS AN EXPONENT.

A LOG IS AN EXPONENT. Ojeives: n nlze nd inerpre he ehvior of rihmi funions, inluding end ehvior nd smpoes. n solve rihmi equions nlill nd grphill. n grph rihmi funions. n deermine he domin nd rnge of rihmi funions. n deermine

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information. Nme D Moion WS The equions of moion h rele o projeciles were discussed in he Projecile Moion Anlsis Acii. ou found h projecile moes wih consn eloci in he horizonl direcion nd consn ccelerion in he ericl

More information

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity Fs s . Ioo ssfo of ss Ms 분체역학 G Ms 역학 Ms 열역학 o Ms 유체역학 F Ms o Ms 고체역학 o Ms 구조해석 ss Dfo of Ms o B o w oo of os o of fos s s w o s s. Of fs o o of oo fos os o o o. s s o s of s os s o s o o of fos o. G fos

More information

D zone schemes

D zone schemes Ch. 5. Enegy Bnds in Cysls 5.. -D zone schemes Fee elecons E k m h Fee elecons in cysl sinα P + cosα cosk α cos α cos k cos( k + π n α k + πn mv ob P 0 h cos α cos k n α k + π m h k E Enegy is peiodic

More information

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

4/3/2017. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103

4/3/2017. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103 PHY 7 Eleodnais 9-9:50 AM MWF Olin 0 Plan fo Leue 0: Coninue eading Chap Snhoon adiaion adiaion fo eleon snhoon deies adiaion fo asonoial objes in iula obis 0/05/07 PHY 7 Sping 07 -- Leue 0 0/05/07 PHY

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Library Support. Netlist Conditioning. Observe Point Assessment. Vector Generation/Simulation. Vector Compression. Vector Writing

Library Support. Netlist Conditioning. Observe Point Assessment. Vector Generation/Simulation. Vector Compression. Vector Writing hpr 2 uomi T Prn Gnrion Fundmnl hpr 2 uomi T Prn Gnrion Fundmnl Lirry uppor Nli ondiioning Orv Poin mn Vor Gnrion/imulion Vor omprion Vor Wriing Figur 2- Th Ovrll Prn Gnrion Pro Dign-or-T or Digil I nd

More information

THIS PAGE DECLASSIFIED IAW EO 12958

THIS PAGE DECLASSIFIED IAW EO 12958 L " ^ \ : / 4 a " G E G + : C 4 w i V T / J ` { } ( : f c : < J ; G L ( Y e < + a : v! { : [ y v : ; a G : : : S 4 ; l J / \ l " ` : 5 L " 7 F } ` " x l } l i > G < Y / : 7 7 \ a? / c = l L i L l / c f

More information

DYNAMIC RESPONSE CONTROL FOR A MASS-SPRING- VISCOUS DAMPER SYSTEM BY USE OF AN ADDITIONAL ELECTRO-MECHANICAL IMPEDANCE

DYNAMIC RESPONSE CONTROL FOR A MASS-SPRING- VISCOUS DAMPER SYSTEM BY USE OF AN ADDITIONAL ELECTRO-MECHANICAL IMPEDANCE U.P.B. Si. Bull., Sis D, Vol. 75, Iss. 4, 3 ISSN 454-358 DYNAMI ESPONSE ONTO O A MASS-SPING- VISOUS DAMPE SYSTEM BY USE O AN ADDITIONA EETO-MEHANIA IMPEDANE Mihl And MÎŢIU, Dnil OMEAGA Th pp psns n invsigion

More information

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity Fs s ν . Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - - Ds - Ross o ows s s q s-s os s-sss os .. Do o ..

More information

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006 Homewok 5 fo BST 63: Sisicl Theoy I Soluions, 9//6 Due Time: 5:PM Thusy, on 9/8/6. Polem ( oins). Book olem.8. Soluion: E = x f ( x) = ( x) f ( x) + ( x ) f ( x) = xf ( x) + xf ( x) + f ( x) f ( x) Accoing

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

ELEC 351 Notes Set #18

ELEC 351 Notes Set #18 Assignmnt #8 Poblm 9. Poblm 9.7 Poblm 9. Poblm 9.3 Poblm 9.4 LC 35 Nots St #8 Antnns gin nd fficincy Antnns dipol ntnn Hlf wv dipol Fiis tnsmission qution Fiis tnsmission qution Do this ssignmnt by Novmb

More information