Electromechanics in LS-DYNA R7

Size: px
Start display at page:

Download "Electromechanics in LS-DYNA R7"

Transcription

1 Electromechanics in LS-DYNA R7 Information Day, Gbg,

2 General

3 Electromechanics in LS-DYNA R7 Available in R7.0.0 Eddy Current Solver Inductive Heating Solver Resistive Heating Solver Fully implicit Double precision Automatically coupled to mechanical and thermal solvers All solvers work on solid elements (hexa, tetra, penta) Shells may be used for insulator materials All solvers work in smp and mpp 2D axisymmetric elemens availabe LS-PrePost Fringe plot, vector plot and element histories EM-fields Joule heating Magnetic force

4 Electromechanics in LS-DYNA R7 Scource Application Imposed current vs. time Imposed voltage vs. time R, C, L, V0 circuit Imposed current defined by amplitude and frequency Imposed voltage defined by amplitude and frequency External magnetic or electric field Contacts EM contact with contact resistance Permeability Constant Defined by curve as a function of B and H

5 Electromechanics in LS-DYNA R7 General physics

6 Electromechanics in LS-DYNA R7 General physics Consequence: Solver coupling is needed!!!

7 Electromechanics in LS-DYNA R7 Solver interactions

8 Electromechanics in LS-DYNA R7 Equations Coupling Maxwell equations with Eddy Current approximation B E t H B E j j E B j H j s 0 Faraday E Ampere t } Gauss Ohm Mechanics: Extra Lorentz force D u f j B Dt Thermal: Extra Joule heating D Dt : pl Dq Dt j 2 EOS: Conductivity vs temperature (and possibly density) ( T, )

9 Electromechanics in LS-DYNA R7 Solvers and applications Test

10 Eddy current solver Solver interactions

11 Eddy current solver Magnetic Metal Forming (MMF) One sided die MMF:High velocity forming process: Forming limits increased Springback reduced Wrinkling reduced High reproducibility

12 Eddy current solver Magnetic Metal Forming (MMF) Free forming Experimental result Numeric result In collaboration with: Ibai Ulacia, University of Mondragon, Gipuzkoa, Basque country

13 Eddy current solver Magneto crimpling In collaboration with: SAPA Technology AB, Finnspång, Sweden

14 Eddy current solver Railgun simulations

15 Eddy current solver Levitation: Magnetic metal welding: Ring expansion: Magnetic metal bending:

16 Inductive heating solver Assume high frequency current compared to simulation time Full Eddy Current solution on 2 periods Average of magnetic field is computed on the 2 nd period Joule heating is computed on the 2 nd period No change in material properties for the next periods is assumed Next Eddy Current solution at t=em macro time step marcus.lilja@dynamore.se

17 Inductive heating solver Inductive heating of plate In collaboration with: M. Duhovic, Institut für Verbundwerkstoffe, Kaiserslautern, Germany Thermal images from experiment LS-DYNA temperature fringes

18 Inductive heating solver Continuous Induction Welding Heating by Joule losses Pressure applied for consolidation and maintained during cooling In collaboration with: M. Duhovic, Institut für Verbundwerkstoffe, Kaiserslautern, Germany

19 Resistive heating solver Simplified version of the Eddy Current solver Only resistive effects are computed (no inductive effects) For slow rising currents in a part connected to a generator (no coil) No BEM system is needed Very large timesteps may be used Joule heating is computed No magnetic forces are computed

20 Resistive heating solver Resistive heating of plaque Rotating Wheel EM resistive heating problem, EM contact between wheel and plaque allowing current flow, Temperature Current density flow

21 Fluid solver coupling in R

22 ICFD interaction One code for Multiphysics Solutions

23 ICFD interaction Heating of water EM heats up a coil plunged in a kettle ICFD with congugate heat transfer heats up the water Water stream lines colored by the temperature level

24 Development

25 Development Magnetostatics solver Eddy current with infinitely fast diffusion Magnetostatics solver coupled with non-linear materials for: Electric motors Magnetic brakes Magnetic valves Magneto-inductive sensors

26 Development Magnetic materials Certain type of conductors exhibit a magnetization behavior in response to an applied magnetic field H. These magnetic materials have a permeability μ μ 0 μ d < μ 0 for diamagnetic materials μ p > μ 0 for paramagnetic materials μ f for ferromagnetic materials (non-linear)

27 Development Axi-symmetric capabilities Solver technology New GMRES solver Symmetry conditions Usage of symmetry plane(s) to decrease model size

28 Thank you!

Electromagnetism Module Presentation. Pierre L Eplattenier, Iñaki Çaldichoury

Electromagnetism Module Presentation. Pierre L Eplattenier, Iñaki Çaldichoury Electromagnetism Module Presentation Pierre L Eplattenier, Iñaki Çaldichoury Part 1 Introduction 1.1 Background 1.2 Main characteristics and features 1.3 Examples of applications 5/5/2014 EM Module training

More information

Electromagnetics in LS-DYNA

Electromagnetics in LS-DYNA Electromagnetics in LS-DYNA Fully implicit. Double precision. 2D axisymmetric solver /3D solver. SMP and MPP versions available. Automatically coupled with LS-DYNA solid and thermal solvers. FEM for conducting

More information

9th European LS-DYNA Conference 2013

9th European LS-DYNA Conference 2013 LS-DYNA R7: Coupled Multiphysics analysis involving Electromagnetism (EM), Incompressible CFD (ICFD) and solid mechanics thermal solver for conjugate heat transfer problem solving Iñaki Çaldichoury (1)

More information

Update On The Electromagnetism Module In LS-DYNA

Update On The Electromagnetism Module In LS-DYNA 12 th International LS-DYNA Users Conference Electromagnetic(1) Update On The Electromagnetism Module In LS-DYNA Pierre L'Eplattenier Iñaki Çaldichoury Livermore Software Technology Corporation 7374 Las

More information

Coupling Possibilities in LS-DYNA: Development Status and Sample Applications

Coupling Possibilities in LS-DYNA: Development Status and Sample Applications Coupling Possibilities in LS-DYNA: Development Status and Sample Applications I. Çaldichoury 1, F. Del Pin 1, P. L Eplattenier 1, D. Lorenz 2, N. Karajan 2 1 LSTC, Livermore, USA 2 DYNAmore GmbH, Stuttgart,

More information

Coupling of the EM Solver with Mechanical and Thermal Shell Elements

Coupling of the EM Solver with Mechanical and Thermal Shell Elements 13 th International LS-DYNA Users Conference Session: Electromagnetic Coupling of the EM Solver with Mechanical and Thermal Shell Elements Pierre L Eplattenier Julie Anton Iñaki Çaldichoury Livermore Software

More information

Electromagnetism. Topics Covered in Chapter 14:

Electromagnetism. Topics Covered in Chapter 14: Chapter 14 Electromagnetism Topics Covered in Chapter 14: 14-1: Ampere-turns of Magnetomotive Force (mmf) 14-2: Field Intensity (H) 14-3: B-H Magnetization Curve 14-4: Magnetic Hysteresis 14-5: Magnetic

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

Motional Electromotive Force

Motional Electromotive Force Motional Electromotive Force The charges inside the moving conductive rod feel the Lorentz force The charges drift toward the point a of the rod The accumulating excess charges at point a create an electric

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

Chapter 2: Fundamentals of Magnetism. 8/28/2003 Electromechanical Dynamics 1

Chapter 2: Fundamentals of Magnetism. 8/28/2003 Electromechanical Dynamics 1 Chapter 2: Fundamentals of Magnetism 8/28/2003 Electromechanical Dynamics 1 Magnetic Field Intensity Whenever a magnetic flux, φ, exist in a conductor or component, it is due to the presence of a magnetic

More information

5/20/2014 Further Advances in Simulating the Processing of Composite Materials by Electromagnetic Induction. Abstract.

5/20/2014 Further Advances in Simulating the Processing of Composite Materials by Electromagnetic Induction. Abstract. 5/20/2014 Further Advances in Simulating the Processing of Composite Materials by Electromagnetic Induction M. Duhovic, M. Hümbert, P. Mitschang, M. Maier Institut für Verbundwerkstoffe GmbH, Erwin-Schrödinger-Str.,

More information

NUMERICAL SIMULATION OF ELECTROMAGNETIC FORMING PROCESS USING A COMBINATION OF BEM AND FEM

NUMERICAL SIMULATION OF ELECTROMAGNETIC FORMING PROCESS USING A COMBINATION OF BEM AND FEM NUMERICAL SIMULATION OF ELECTROMAGNETIC FORMING PROCESS USING A COMBINATION OF BEM AND FEM Ibai Ulacia 1, José Imbert 2, Pierre L Eplattenier 3, Iñaki Hurtado 1, Michael J. Worswick 2 1 Dept. of Manufacturing,

More information

ELECTRICITY AND MAGNETISM

ELECTRICITY AND MAGNETISM ELECTRICITY AND MAGNETISM Chapter 1. Electric Fields 1.1 Introduction 1.2 Triboelectric Effect 1.3 Experiments with Pith Balls 1.4 Experiments with a Gold-leaf Electroscope 1.5 Coulomb s Law 1.6 Electric

More information

Chapter 2 Basics of Electricity and Magnetism

Chapter 2 Basics of Electricity and Magnetism Chapter 2 Basics of Electricity and Magnetism My direct path to the special theory of relativity was mainly determined by the conviction that the electromotive force induced in a conductor moving in a

More information

NASSP Honours Electrodynamics Part 1. Tutorial Problem Set 2: Magnetic Materials, Time Varying Fields

NASSP Honours Electrodynamics Part 1. Tutorial Problem Set 2: Magnetic Materials, Time Varying Fields NASSP Honours Electrodynamics Part 1 Tutorial Problem Set 2: Magnetic Materials, Time Varying Fields Q.1. At the interface between one linear magnetic material and another (relative permeabilities and

More information

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts

More information

Chapter 15 Magnetic Circuits and Transformers

Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers 1. Understand magnetic fields and their interactio with moving charges. 2. Use the right-hand rule to determine

More information

Magnetic Fields from Power Cables 1

Magnetic Fields from Power Cables 1 Power Electronics Notes 30H Magnetic Fields from Power Cables (Case Studies) Marc T. Thompson, Ph.D. Thompson Consulting, Inc. 9 Jacob Gates Road Harvard, MA 01451 Phone: (978) 456-7722 Fax: (240) 414-2655

More information

Part IB Electromagnetism

Part IB Electromagnetism Part IB Electromagnetism Theorems Based on lectures by D. Tong Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Sliding Conducting Bar

Sliding Conducting Bar Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field

More information

Lecture 24. April 5 th, Magnetic Circuits & Inductance

Lecture 24. April 5 th, Magnetic Circuits & Inductance Lecture 24 April 5 th, 2005 Magnetic Circuits & Inductance Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 11.1-11.5, Pages 331-338 Chapter 12.1-12.4, Pages 341-349 Chapter 12.7-12.9,

More information

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially MAGNETIC CIRCUITS The study of magnetic circuits is important in the study of energy systems since the operation of key components such as transformers and rotating machines (DC machines, induction machines,

More information

CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

More information

Chapter 1 Magnetic Circuits

Chapter 1 Magnetic Circuits Principles of Electric Machines and Power Electronics Third Edition P. C. Sen Chapter 1 Magnetic Circuits Chapter 1: Main contents i-h relation, B-H relation Magnetic circuit and analysis Property of magnetic

More information

Electromagnetic Induction

Electromagnetic Induction Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 29 Looking forward

More information

Transformers. slide 1

Transformers. slide 1 Transformers an alternating emf V1 through the primary coil causes an oscillating magnetic flux through the secondary coil and, hence, an induced emf V2. The induced emf of the secondary coil is delivered

More information

Lecture 33. PHYC 161 Fall 2016

Lecture 33. PHYC 161 Fall 2016 Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall

More information

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Induced emf: Faraday s Law and Lenz s Law We observe that, when a magnet is moved near a conducting loop,

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR-621113 ELECTRICAL AND ELECTRONICS DEPARTMENT 2 MARK QUESTIONS AND ANSWERS SUBJECT CODE: EE 6302 SUBJECT NAME: ELECTROMAGNETIC THEORY

More information

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number:

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number: Signature: Name: I.D. number: You must do ALL the problems Each problem is worth 0 points for a total of 60 points. TO GET CREDIT IN PROBLEMS AND 3 YOU MUST SHOW GOOD WORK. CHECK DISCUSSION SECTION ATTENDED:

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Ultra High Power applications designed using the LS-DYNA EMAG solver

Ultra High Power applications designed using the LS-DYNA EMAG solver Ultra High Power applications designed using the LS-DYNA EMAG solver Gilles MAZARS, Gilles AVRILLAUD, Anne-Claire JEANSON, Jean-Paul CUQ-LELANDAIS Bmax Toulouse, France - www.bmax.com Abstract Bmax offers

More information

FEA Information Engineering Journal

FEA Information Engineering Journal ISSN 2167-1273 Volume 3, Issue 6, June 2014 FEA Information Engineering Journal Electromagnetics FEA Information Engineering Journal Aim and Scope FEA Information Engineering Journal (FEAIEJ ) is a monthly

More information

Lecture Set 1 Introduction to Magnetic Circuits

Lecture Set 1 Introduction to Magnetic Circuits Lecture Set 1 Introduction to Magnetic Circuits S.D. Sudhoff Spring 2017 1 Goals Review physical laws pertaining to analysis of magnetic systems Introduce concept of magnetic circuit as means to obtain

More information

N H I. 3.2 l When a conducting coil is placed in a magnetic field, the magnetic flux is

N H I. 3.2 l When a conducting coil is placed in a magnetic field, the magnetic flux is Experiment No : EM 8 Experiment Name: Inductance of a Solenoid Objective: Investigation of the inductance of different solenoids and their dependence on certain parameters of solenoids Theoretical Information

More information

ELECTRICALMACHINES-I QUESTUION BANK

ELECTRICALMACHINES-I QUESTUION BANK ELECTRICALMACHINES-I QUESTUION BANK UNIT-I INTRODUCTION OF MAGNETIC MATERIAL PART A 1. What are the three basic rotating Electric machines? 2. Name the three materials used in machine manufacture. 3. What

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

Physics 1402: Lecture 18 Today s Agenda

Physics 1402: Lecture 18 Today s Agenda Physics 1402: Lecture 18 Today s Agenda Announcements: Midterm 1 distributed available Homework 05 due Friday Magnetism Calculation of Magnetic Field Two ways to calculate the Magnetic Field: iot-savart

More information

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules AC/DC Module Electromagnetics in COMSOL Multiphysics is extended by add-on Modules 1) Start Here 2) Add Modules based upon your needs 3) Additional Modules extend the physics you can address 4) Interface

More information

FEA Information Engineering Journal

FEA Information Engineering Journal ISSN 2167-1273 Volume 2, Issue 8, August 2013 FEA Information Engineering Journal R7 LS-DYNA 9 th European LS-DYNA Users Conference FEA Information Engineering Journal Aim and Scope FEA Information Engineering

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

Electromagnetism. 1 ENGN6521 / ENGN4521: Embedded Wireless

Electromagnetism. 1 ENGN6521 / ENGN4521: Embedded Wireless Electromagnetism 1 ENGN6521 / ENGN4521: Embedded Wireless Radio Spectrum use for Communications 2 ENGN6521 / ENGN4521: Embedded Wireless 3 ENGN6521 / ENGN4521: Embedded Wireless Electromagnetism I Gauss

More information

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types

More information

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

More information

Lecture 35. PHYC 161 Fall 2016

Lecture 35. PHYC 161 Fall 2016 Lecture 35 PHYC 161 Fall 2016 Induced electric fields A long, thin solenoid is encircled by a circular conducting loop. Electric field in the loop is what must drive the current. When the solenoid current

More information

Modelling, Simulation and Temperature Effect Analysis of Mutual Induction based High Temperature Level Sensor using COMSOL Multiphysics

Modelling, Simulation and Temperature Effect Analysis of Mutual Induction based High Temperature Level Sensor using COMSOL Multiphysics Modelling, Simulation and Temperature Effect Analysis of Mutual Induction based High Temperature Level Sensor using COMSOL Multiphysics Rajalakshmi R. Subhasis Dutta Bhabha Atomic Research Center, Mumbai

More information

Dedicating Finite Volume Method to Electromagnetic Plasma Modeling: Circuit Breaker Application

Dedicating Finite Volume Method to Electromagnetic Plasma Modeling: Circuit Breaker Application Dedicating Finite Volume Method to Electromagnetic Plasma Modeling: Circuit Breaker Application Loïc Rondot, Vincent Mazauric, Yves Delannoy, Gérard Meunier To cite this version: Loïc Rondot, Vincent Mazauric,

More information

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. 2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. Chapter 21 Electric Charge 21-1 What Is Physics? 21-2

More information

University Of Pennsylvania Department of Physics PHYS 141/151 Engineering Physics II (Course Outline)

University Of Pennsylvania Department of Physics PHYS 141/151 Engineering Physics II (Course Outline) University Of Pennsylvania Department of Physics PHYS 141/151 Engineering Physics II (Course Outline) Instructor: Dr. Michael A. Carchidi Textbooks: Sears & Zemansky s University Physics by Young and Freedman

More information

Induction Heating: fundamentals

Induction Heating: fundamentals LEP ELECTROMAGNETIC PROCESSING OF MATERIALS TECNOLGIE DEI PROCESSI ELETTROTERMICI Induction Heating: fundamentals Fabrizio Dughiero 2017-2018 Induction heating fundamentals May 28-30, 2014 1 Summary 1.

More information

Electric vs Magnetic Comparison

Electric vs Magnetic Comparison 5. MAGNETOSTATICS Electric vs Magnetic Comparison J=σE Most dielectrics µ = µo excluding ferromagnetic materials Gauss s Law E field is conservative Gauss s law (integral) Conservative E field Electric

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

Electromagnetic Testing (ET)

Electromagnetic Testing (ET) Electromagnetic Testing Electromagnetic testing is a general test category that includes Eddy Current testing (ECT), Alternating Current Field Measurement (ACFM) and Remote Field testing. All of these

More information

DESIGN FEATURES AND GOVERNING PARAMETERS OF LINEAR INDUCTION MOTOR

DESIGN FEATURES AND GOVERNING PARAMETERS OF LINEAR INDUCTION MOTOR CHAPTER 5 DESIGN FEATURES AND GOVERNING PARAMETERS OF LINEAR INDUCTION MOTOR 5.1 Introduction To evaluate the performance of electrical machines, it is essential to study their electromagnetic characteristics.

More information

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange Index A. see Magnetic vector potential. Acceptor, 193 Addition of complex numbers, 19 of vectors, 3, 4 Admittance characteristic, 251 input, 211 line, 251 Ampere, definition of, 427 Ampere s circuital

More information

MAGNETIC CIRCUITS. Magnetic Circuits

MAGNETIC CIRCUITS. Magnetic Circuits Basic Electrical Theory What is a magnetic circuit? To better understand magnetic circuits, a basic understanding of the physical qualities of magnetic circuits will be necessary. EO 1.8 EO 1.9 EO 1.10

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Induction. Chapter 29. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Induction. Chapter 29. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun 29. Electromagnetic induction 1. Magnetic flux/faraday

More information

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok 1 Course Progress Introductory level Electrostatic, Coulomb s Law Electric Field, Gauss Law Magnetic field, Maxwell s Equations Current,

More information

Tutorial Sheet IV. Fig. IV_2.

Tutorial Sheet IV. Fig. IV_2. Tutorial Sheet IV 1. Two identical inductors 1 H each are connected in series as shown. Deduce the combined inductance. If a third and then a fourth are similarly connected in series with this combined

More information

Lecture Notes ELEC A6

Lecture Notes ELEC A6 Lecture Notes ELEC A6 Dr. Ramadan El-Shatshat Magnetic circuit 9/27/2006 Elec-A6 - Electromagnetic Energy Conversion 1 Magnetic Field Concepts Magnetic Fields: Magnetic fields are the fundamental mechanism

More information

Michael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law

Michael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law Michael Faraday Chapter 31 Faraday s Law Great experimental physicist and chemist 1791 1867 Contributions to early electricity include: Invention of motor, generator, and transformer Electromagnetic induction

More information

Physics 11b Lecture #13

Physics 11b Lecture #13 Physics 11b Lecture #13 Faraday s Law S&J Chapter 31 Midterm #2 Midterm #2 will be on April 7th by popular vote Covers lectures #8 through #14 inclusive Textbook chapters from 27 up to 32.4 There will

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

III.Sources of Magnetic Fields - Ampere s Law - solenoids

III.Sources of Magnetic Fields - Ampere s Law - solenoids Magnetism I. Magnetic Field - units, poles - effect on charge II. Magnetic Force on Current - parallel currents, motors III.Sources of Magnetic Fields - Ampere s Law - solenoids IV.Magnetic Induction -

More information

Electromagnetic Theory PHYS 402. Electrodynamics. Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations

Electromagnetic Theory PHYS 402. Electrodynamics. Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations Electromagnetic Theory PHYS 4 Electrodynamics Ohm s law Electromotive Force Electromagnetic Induction Maxwell s Equations 1 7.1.1 Ohms Law For the EM force Usually v is small so J = J = σ Current density

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

A BEM method for Electromagnetics in complex 3D geometries

A BEM method for Electromagnetics in complex 3D geometries A BEM method for Electromagnetics in complex 3D geometries P. L Eplattenier, I. Çaldichoury Livermore Software Technology Corporation, Livermore, CA, USA Abstract An electromagnetism module is under development

More information

Electrical polarization. Figure 19-5 [1]

Electrical polarization. Figure 19-5 [1] Electrical polarization Figure 19-5 [1] Properties of Charge Two types: positive and negative Like charges repel, opposite charges attract Charge is conserved Fundamental particles with charge: electron

More information

2.4 Experiment: The Voltaic Pile Humphry Davy s Voltaic Pile Sidebar Experiment: Electroplating Experiment: Potato

2.4 Experiment: The Voltaic Pile Humphry Davy s Voltaic Pile Sidebar Experiment: Electroplating Experiment: Potato Contents 1 Home Electrostatics... 1 1.1 Static Electricity...... 1 1.2 A Charge Detector.................................. 2 1.3 Using Plastic Wrap... 2 1.4 What Has Happened.................................

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-ELECTRICITY AND MAGNETISM 1. Electrostatics (1-58) 1.1 Coulomb s Law and Superposition Principle 1.1.1 Electric field 1.2 Gauss s law 1.2.1 Field lines and Electric flux 1.2.2 Applications 1.3

More information

Coupling Physics. Tomasz Stelmach Senior Application Engineer

Coupling Physics. Tomasz Stelmach Senior Application Engineer Coupling Physics Tomasz Stelmach Senior Application Engineer Agenda Brief look @ Multiphysics solution What is new in R18 Fluent Maxwell coupling wireless power transfer Brief look @ ANSYS Multiphysics

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 3 - MAGNETISM and INDUCTION 3 Understand the principles and properties of magnetism Magnetic field:

More information

Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM)

Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM) Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM) M. Cobianchi *1,Dr. M. Rousseau *1 and S. Xavier* 1 1 B&W Group Ltd, Worthing, West Sussex, England. *Corresponding

More information

Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction Chapter 29 Electromagnetic Induction In this chapter we investigate how changing the magnetic flux in a circuit induces an emf and a current. We learned in Chapter 25 that an electromotive force (E) is

More information

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields.

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields. 2. An isolated moving point charge produces around it.

More information

Review of Basic Electrical and Magnetic Circuit Concepts EE

Review of Basic Electrical and Magnetic Circuit Concepts EE Review of Basic Electrical and Magnetic Circuit Concepts EE 442-642 Sinusoidal Linear Circuits: Instantaneous voltage, current and power, rms values Average (real) power, reactive power, apparent power,

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

Today in Physics 122: review of DC circuits, magnetostatics, and induction

Today in Physics 122: review of DC circuits, magnetostatics, and induction Today in Physics 122: review of DC circuits, magnetostatics, and induction i Shanghai s highspeed maglev train, leaving the airport (Shanghai Metro). 12 November 2012 Physics 122, Fall 2012 1 The second

More information

Today in Physics 122: review of DC circuits, magnetostatics, and induction

Today in Physics 122: review of DC circuits, magnetostatics, and induction Today in Physics 122: review of DC circuits, magnetostatics, and induction i Shanghai s highspeed maglev train, leaving the airport (Shanghai Metro). 8 November 2012 Physics 122, Fall 2012 1 DC circuits:

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15)

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE EE6302-ELECTROMAGNETIC THEORY UNIT 4 PART A 1. Define mutual inductance and self inductance. (A/M-15) Self inductance is the ration between the induced

More information

Unit-1 Electrostatics-1

Unit-1 Electrostatics-1 1. Describe about Co-ordinate Systems. Co-ordinate Systems Unit-1 Electrostatics-1 In order to describe the spatial variations of the quantities, we require using appropriate coordinate system. A point

More information

Magnetism & Electromagnetism

Magnetism & Electromagnetism Magnetism & Electromagnetism By: Dr Rosemizi Abd Rahim Click here to watch the magnetism and electromagnetism animation video http://rmz4567.blogspot.my/2013/02/electrical-engineering.html 1 Learning Outcomes

More information

Chapter 28 Magnetic Fields Sources

Chapter 28 Magnetic Fields Sources Chapter 28 Magnetic Fields Sources All known magnetic sources are due to magnetic dipoles and inherently macroscopic current sources or microscopic spins and magnetic moments Goals for Chapter 28 Study

More information

ELECTRIC MACHINE TORQUE PRODUCTION 101

ELECTRIC MACHINE TORQUE PRODUCTION 101 ELECTRIC MACHINE TORQUE PRODUCTION 101 Best Electric Machine, 014 INTRODUCTION: The following discussion will show that the symmetrical (or true dual-ported) transformer electric machine as only provided

More information

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII Chapter 1(Electric charges & Fields) DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT 2016-17 SUBJECT- PHYSICS (042) CLASS -XII 1. Why do the electric field lines never cross each other? [2014] 2. If the total

More information

ELG4112. Electromechanical Systems and Mechatronics

ELG4112. Electromechanical Systems and Mechatronics ELG4112 Electromechanical Systems and Mechatronics 1 Introduction Based on Electromechanical Systems, Electric Machines, and Applied Mechatronics Electromechanical systems integrate the following: Electromechanical

More information

Numerical Simulation and Experimental Study of Electromagnetic Forming

Numerical Simulation and Experimental Study of Electromagnetic Forming 11 th International LS-DYNA Users Conference Metal Forming Numerical Simulation and Experimental Study of Electromagnetic Forming Jianhui Shang 1, Pierre L Eplattenier 2, Larry Wilkerson 1, Steve Hatkevich

More information

Simulating the Joining of Composite Materials by Electromagnetic Induction

Simulating the Joining of Composite Materials by Electromagnetic Induction 12 th International LS-DYNA Users Conference Electromagnetic(2) Simulating the Joining of Composite Materials by Electromagnetic Induction M. Duhovic, L. Moser, P. Mitschang, M. Maier Institut für Verbundwerkstoffe

More information

ST.JOSEPH COLLEGE OF ENGINEERING,DEPARTMENT OF ECE

ST.JOSEPH COLLEGE OF ENGINEERING,DEPARTMENT OF ECE EC6403 -ELECTROMAGNETIC FIELDS CLASS/SEM: II ECE/IV SEM UNIT I - STATIC ELECTRIC FIELD Part A - Two Marks 1. Define scalar field? A field is a system in which a particular physical function has a value

More information

fusion production of elements in stars, 345

fusion production of elements in stars, 345 I N D E X AC circuits capacitive reactance, 278 circuit frequency, 267 from wall socket, 269 fundamentals of, 267 impedance in general, 283 peak to peak voltage, 268 phase shift in RC circuit, 280-281

More information

Simulations of Electrical Arcs: Algorithms, Physical Scales, and Coupling. Henrik Nordborg HSR University of Applied Sciences Rapperswil

Simulations of Electrical Arcs: Algorithms, Physical Scales, and Coupling. Henrik Nordborg HSR University of Applied Sciences Rapperswil Simulations of Electrical Arcs: Algorithms, Physical Scales, and Coupling Henrik Nordborg HSR University of Applied Sciences Rapperswil What is an electrical arc? 2 Technical applications of arcs and industrial

More information

University Physics 227N/232N Ch 27: Inductors, towards Ch 28: AC Circuits Quiz and Homework This Week

University Physics 227N/232N Ch 27: Inductors, towards Ch 28: AC Circuits Quiz and Homework This Week Vector pointing OUT of page University Physics 227N/232N Ch 27: Inductors, towards Ch 28: AC Circuits Quiz and Homework This Week Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-odu

More information

Magnetic field and magnetic poles

Magnetic field and magnetic poles Magnetic field and magnetic poles Magnetic Field B is analogically similar to Electric Field E Electric charges (+ and -)are in analogy to magnetic poles(north:n and South:S). Paramagnetism, Diamagnetism,

More information

ELECTRICITY & MAGNETISM CHAPTER 8

ELECTRICITY & MAGNETISM CHAPTER 8 ELECTRICITY & MAGNETISM CHAPTER 8 E & M - Focus Electric Charge & Force Magnetism Current, Voltage & Power Electromagnetism Simple Electrical Circuits Voltage & Current Transformation Electric Charge &

More information

Magnetostatics III. P.Ravindran, PHY041: Electricity & Magnetism 1 January 2013: Magntostatics

Magnetostatics III. P.Ravindran, PHY041: Electricity & Magnetism 1 January 2013: Magntostatics Magnetostatics III Magnetization All magnetic phenomena are due to motion of the electric charges present in that material. A piece of magnetic material on an atomic scale have tiny currents due to electrons

More information