Asymptotic Variance Formulas, Gamma Functions, and Order Statistics

Size: px
Start display at page:

Download "Asymptotic Variance Formulas, Gamma Functions, and Order Statistics"

Transcription

1 Statistical Models and Methods for Lifetime Data, Second Edition by Jerald F. Lawless Copyright 2003 John Wiley & Sons, Inc. APPENDIX Β Asymptotic Variance Formulas, Gamma Functions, and Order Statistics B.l ASYMPTOTIC VARIANCE FORMULAS The following results are often used in developing large-sample inference procedures. Proofs can be found, for example, in Rao (1973, Ch. 2). Here means "converges in distribution to." THEOREM Β1. Let T\ n,..., T kn be statistics such that as η -* oo MTu - 0i., 7* - 0*) -3 /V(0, Σ) where Σ = (σ,-;)***. If g(*i,...,**) is a function whose first derivatives all exist, then as η oo y/h[g(tin,, T kn ) - Ε(θι 0*)] -5- Ν (θ, ΣΣ] σ '^^) (B1) where 3g/d0 ( - means 3g(0i,..., 0*)/90/ (/ = 1,...,Jfc). Remarks 1. Often the following terminology is used: Asvar[g(7i,..., 7*»)] = T T f-^-ascov(r,, T jn ), (B2) where Asvar and Ascov denote variances and covariances in the asymptotic distributions of the indicated variables. Strictly speaking, this notation is 539

2 540 ASYMPTOTIC VARIANCE FORMULAS, Γ FUNCTIONS, ORDER STATISTICS improper since the distributions of the 7},, and g{t\,..., 7^ ) are degenerate as η -> oo. However, it is used as a convention for indicating asymptotic-based approximations that are used for finite but large n. (In (B2), Ascov(7}, Tj ) is n~ i aij, for example.) 2. The results in this section are often used when (T[,..., Tkn) = (θ\,...,6k) is a vector of maximum likelihood estimates (m.l.e.'s), based on a sample of size n. 3. The results here are stated for statistics with asymptotic normal distributions. Expressions like (B2) also hold under the weaker conditions that the variances and covariances of T\ n,..., T kn are 0(n~ r ), where r > An important special case of Theorem Β1 is given by k = 1: if *Jn(T 0) -5 N(0, a 1 ) as η oo, then if g(x) has first derivative g'(x), y/h~ [g(t n ) - 8(θ)] $ Ν [θ, g'(0)v]. (B3) This implies that, in the notation of (B2), Asvar[g(r )] = s'(0) 2 Asvar(r ). (B4) 5. The preceding results can be proved with what is sometimes referred to as the 8 method, based on Taylor series expansions. For example, the function g(t\,tkn) has expansion 8(T U,..., T^) = g(9u., 0 k ) + V <5r ; higher-order terms, where <57/ = T; n ft. The results follow from this and simple convergence results for random variables. Theorems Β1 and B2 below are sometimes referred to as delta theorems. Theorem Β1 can be generalized to the case in which there are several functions of T\,..., Tk n, a s follows. THEOREM B2. Let (T\ n,..., T k ) be statistics defined as in Theorem Bl and let gi(x\,...,x k ), i = I,..., p, be functions, all of whose first derivatives exist. Then the joint distribution of *Jn[gi(T\ n,tk ) - gi(9\,..., 0*)], i = 1,..., p, is asymptotically p-variate normal with mean 0 and covariance matrix G2G', where G has (i, j) entry G tj = dgi/d9j. Remark For two functions g\{x\,...,xk) and gi{x\,.,xk), the theorem gives, in the notation of (B2), Ascov In (Ti T k ), gi(t in,t kn )] = Τ Σ 3r l?ascov(7i, Tj ). f=t y=i W> D0 J (B5)

3 GAMMA FUNCTIONS 541 B.2 GAMMA FUNCTIONS We summarize a few results about the gamma function and other functions and probability distributions related to it. More details on these topics can be found in the books by Abramowitz and Stegun (1965), and Johnson et al. (1994, 1995). The gamma function is denned as / OO Γ(ζ) = / u z - x e-"du ζ > 0. (B6) Jo We note the well-known results (see Abramowitz and Stegun 1965, Ch. 6) Γ(ζ + 1) = ζγ(ζ) ζ > 0 (B7) Γ (\λ = π 1 / 2 = (Β8) log Γ(ζ) = (ζ - 1) log ζ - ζ + \ log(2*) + ± - ^ +. (Β9) It follows from (Β6) and (B7) that for ζ a positive integer, Γ(ζ+1) = ζ! The digamma function is defined as The poly gamma functions are rflogr(z) Γ(ζ) ψ (ζ) = = -p r z > 0 - ( B1 ) dz Γ(ζ) ^"Vr(z) (B) ^ (z) = j-r «=1-2,... αζ" The case η = 1 is called the trigamma function. Two useful results are ψ (l) = -γ = , 7r 2 ^'(1) = ^ (BID The incomplete gamma function is defined in this book as 1 C x l(k, x ) = u k - x e' u du k>0 x> 0. (B12) Γ (Λ) JO This is the distribution function for the one-parameter gamma distribution (1.3.17) denoted Ga(k), and takes on values between 0 and 1. I(k, x) is related to the distribution function for the χ 2 distribution with υ degrees of freedom (denoted χ 2 υ)) as follows:

4 542 ASYMPTOTIC VARIANCE FORMULAS, Γ FUNCTIONS, ORDER STATISTICS Fv(x) = Pr(X 2 v) <X) X > 0 I χ ζυ/2-\ β-ζ dz Jo 2"/ 2 Γ>/2) -'(1-1) Many software packages provide values of Γ(ζ), ψ(ζ), (B12), and (B13). B.3 ORDER STATISTICS A few results about order statistics are given here. An extended treatment and references can be found in the book by Arnold et al. (1992). Suppose that X has continuous probability density function (p.d.f.) f(x) and distribution function F(x) and that X\,..., X is a random sample from this distribution. The Xi, rearranged in order of magnitude, and denoted X(\) < X(2) < < X(n), are called the order statistics of the sample. The joint p.d.f. of..., X(t k ), where \ < l\ < li < < Ik < η and 1 < k < n, can be shown to be / *+i \k+\ k \ ι = Ι / i=l ( = 1 (B14) where X(^) < X( l2 ) < < X(i k ) and where, for convenience, we define ίο = 0, 4+1 = η + l,x(t 0 ) = -oo, and X(t k+l ) = +oo. Important special cases of (B14) are the following. 1. The joint p.d.f. of X(\),..., X( r ) (r < n) is T^jj (iv^) [1 - F(x (r) )T r. (B15) 2. The p.d.f. of X (i) (1 < i < n) is (f-dkn-o!^ 0 ^^'"' [ 1 " F ( ^» ) ] " " ' ( B 1 6 ) 3. The joint p.d.f. of Xu) and X(j), for i < j, is n! (i-i)iu-i-i)lo^nxm)fixw)f(xv)) i-l χ [F(x (j) ) - FCxw)]'-'- 1 [1 - F( Xij) )] n - j. (B17)

5 ORDER STATISTICS 543 These expressions and (B14) can be obtained directly. For example, (B17) can be found from the probability that of the η values X\,..., X n, i 1 are less than X(i), one is in (*(, ), *(, ) + Δ), j i 1 are between *(, ) + Δ and X(j), one is in (x(j), X(j) + Δ), and η j are above X(j) + A. Moments of order statistics are useful in some applications, though it is usually not possible to get simple analytical expressions. Two exceptions are for the uniform and exponential distributions, for which the following results are easily established. 1. For the uniform distribution C/(0, 1), with p.d.f. f(x) = 1 (0 < χ < 1), ( X (,. ) ) = _ i _ Var(X (,. ) ) = ( w + ^ ( n + 2 ). (B18) 2. For the standard exponential distribution, with p.d.f. /(x) = e~ x (x > 0), i i Ε(Χ (ί) ) = Σ{η-ί + \)-\ Var(X (0 ) = ^(' i=\ e=i ) _ 2 - ( B 1 9 > Several types of asymptotic results can be established for order statistics. Some involve the extreme order statistics and X( ) (e.g., Arnold et al. 1992). We mention only the case of X(,), where ι = np and 0 < ρ < 1 as η oo. The pth quantile of the distribution of X is x p = F~' (p), and it can be shown that if f(x) = F'(x) is continuous at x p and f(x p ) φ 0, then *Jn(Xu) x p ) is asymptotically normal with mean 0 and variance!7(w (B20) There is also a multivariate generalization of this.

The Delta Method and Applications

The Delta Method and Applications Chapter 5 The Delta Method and Applications 5.1 Local linear approximations Suppose that a particular random sequence converges in distribution to a particular constant. The idea of using a first-order

More information

Exercises Chapter 4 Statistical Hypothesis Testing

Exercises Chapter 4 Statistical Hypothesis Testing Exercises Chapter 4 Statistical Hypothesis Testing Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans December 5, 013 Christophe Hurlin (University of Orléans) Advanced Econometrics

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

Exercises. (a) Prove that m(t) =

Exercises. (a) Prove that m(t) = Exercises 1. Lack of memory. Verify that the exponential distribution has the lack of memory property, that is, if T is exponentially distributed with parameter λ > then so is T t given that T > t for

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Math 181B Homework 1 Solution

Math 181B Homework 1 Solution Math 181B Homework 1 Solution 1. Write down the likelihood: L(λ = n λ X i e λ X i! (a One-sided test: H 0 : λ = 1 vs H 1 : λ = 0.1 The likelihood ratio: where LR = L(1 L(0.1 = 1 X i e n 1 = λ n X i e nλ

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations

The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations John R. Michael, Significance, Inc. and William R. Schucany, Southern Methodist University The mixture

More information

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0)

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0) Delta Method Often estimators are functions of other random variables, for example in the method of moments. These functions of random variables can sometimes inherit a normal approximation from the underlying

More information

Transformations and Expectations

Transformations and Expectations Transformations and Expectations 1 Distributions of Functions of a Random Variable If is a random variable with cdf F (x), then any function of, say g(), is also a random variable. Sine Y = g() is a function

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

ORDER STATISTICS, QUANTILES, AND SAMPLE QUANTILES

ORDER STATISTICS, QUANTILES, AND SAMPLE QUANTILES ORDER STATISTICS, QUANTILES, AND SAMPLE QUANTILES 1. Order statistics Let X 1,...,X n be n real-valued observations. One can always arrangetheminordertogettheorder statisticsx (1) X (2) X (n). SinceX (k)

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Lecture 32: Asymptotic confidence sets and likelihoods

Lecture 32: Asymptotic confidence sets and likelihoods Lecture 32: Asymptotic confidence sets and likelihoods Asymptotic criterion In some problems, especially in nonparametric problems, it is difficult to find a reasonable confidence set with a given confidence

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Multivariate Analysis and Likelihood Inference

Multivariate Analysis and Likelihood Inference Multivariate Analysis and Likelihood Inference Outline 1 Joint Distribution of Random Variables 2 Principal Component Analysis (PCA) 3 Multivariate Normal Distribution 4 Likelihood Inference Joint density

More information

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics Mathematics Qualifying Examination January 2015 STAT 52800 - Mathematical Statistics NOTE: Answer all questions completely and justify your derivations and steps. A calculator and statistical tables (normal,

More information

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 18.466 Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 1. MLEs in exponential families Let f(x,θ) for x X and θ Θ be a likelihood function, that is, for present purposes,

More information

[Chapter 6. Functions of Random Variables]

[Chapter 6. Functions of Random Variables] [Chapter 6. Functions of Random Variables] 6.1 Introduction 6.2 Finding the probability distribution of a function of random variables 6.3 The method of distribution functions 6.5 The method of Moment-generating

More information

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question A1 a) The marginal cdfs of F X,Y (x, y) = [1 + exp( x) + exp( y) + (1 α) exp( x y)] 1 are F X (x) = F X,Y (x, ) = [1

More information

University of Lisbon, Portugal

University of Lisbon, Portugal Development and comparative study of two near-exact approximations to the distribution of the product of an odd number of independent Beta random variables Luís M. Grilo a,, Carlos A. Coelho b, a Dep.

More information

Paul Mullowney and Alex James. Department of Mathematics and Statistics University of Canterbury Private Bag 4800 Christchurch, New Zealand

Paul Mullowney and Alex James. Department of Mathematics and Statistics University of Canterbury Private Bag 4800 Christchurch, New Zealand REsONANCES IN COMPOUND PROCESSES Paul Mullowney and Alex James Department of Mathematics and Statistics University of Canterbury Private Bag 4800 Christchurch, New Zealand Report Number: UCDMS2006/14 DECEMBER

More information

Stat 710: Mathematical Statistics Lecture 12

Stat 710: Mathematical Statistics Lecture 12 Stat 710: Mathematical Statistics Lecture 12 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 12 Feb 18, 2009 1 / 11 Lecture 12:

More information

Conditional independence of blocked ordered data

Conditional independence of blocked ordered data Conditional independence of blocked ordered data G. Iliopoulos 1 and N. Balakrishnan 2 Abstract In this paper, we prove that blocks of ordered data formed by some conditioning events are mutually independent.

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

Bayesian Modeling of Conditional Distributions

Bayesian Modeling of Conditional Distributions Bayesian Modeling of Conditional Distributions John Geweke University of Iowa Indiana University Department of Economics February 27, 2007 Outline Motivation Model description Methods of inference Earnings

More information

Chapter 7: Special Distributions

Chapter 7: Special Distributions This chater first resents some imortant distributions, and then develos the largesamle distribution theory which is crucial in estimation and statistical inference Discrete distributions The Bernoulli

More information

Recall that in order to prove Theorem 8.8, we argued that under certain regularity conditions, the following facts are true under H 0 : 1 n

Recall that in order to prove Theorem 8.8, we argued that under certain regularity conditions, the following facts are true under H 0 : 1 n Chapter 9 Hypothesis Testing 9.1 Wald, Rao, and Likelihood Ratio Tests Suppose we wish to test H 0 : θ = θ 0 against H 1 : θ θ 0. The likelihood-based results of Chapter 8 give rise to several possible

More information

Multivariate Distributions

Multivariate Distributions IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Multivariate Distributions We will study multivariate distributions in these notes, focusing 1 in particular on multivariate

More information

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018 Mathematics Ph.D. Qualifying Examination Stat 52800 Probability, January 2018 NOTE: Answers all questions completely. Justify every step. Time allowed: 3 hours. 1. Let X 1,..., X n be a random sample from

More information

Lecture 17: Likelihood ratio and asymptotic tests

Lecture 17: Likelihood ratio and asymptotic tests Lecture 17: Likelihood ratio and asymptotic tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Research Article The Laplace Likelihood Ratio Test for Heteroscedasticity

Research Article The Laplace Likelihood Ratio Test for Heteroscedasticity International Mathematics and Mathematical Sciences Volume 2011, Article ID 249564, 7 pages doi:10.1155/2011/249564 Research Article The Laplace Likelihood Ratio Test for Heteroscedasticity J. Martin van

More information

Stat 5101 Notes: Brand Name Distributions

Stat 5101 Notes: Brand Name Distributions Stat 5101 Notes: Brand Name Distributions Charles J. Geyer September 5, 2012 Contents 1 Discrete Uniform Distribution 2 2 General Discrete Uniform Distribution 2 3 Uniform Distribution 3 4 General Uniform

More information

Closed-Form Estimators for the Gamma Distribution Derived from Likelihood Equations

Closed-Form Estimators for the Gamma Distribution Derived from Likelihood Equations The American Statistician ISSN: 3-135 (Print) 1537-2731 (Online) Journal homepage: http://www.tandfonline.com/loi/utas2 Closed-Form Estimators for the Gamma Distribution Derived from Likelihood Equations

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Theory of Statistical Tests

Theory of Statistical Tests Ch 9. Theory of Statistical Tests 9.1 Certain Best Tests How to construct good testing. For simple hypothesis H 0 : θ = θ, H 1 : θ = θ, Page 1 of 100 where Θ = {θ, θ } 1. Define the best test for H 0 H

More information

04. Random Variables: Concepts

04. Random Variables: Concepts University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 215 4. Random Variables: Concepts Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued

Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations Research

More information

Stat 5101 Notes: Algorithms

Stat 5101 Notes: Algorithms Stat 5101 Notes: Algorithms Charles J. Geyer January 22, 2016 Contents 1 Calculating an Expectation or a Probability 3 1.1 From a PMF........................... 3 1.2 From a PDF...........................

More information

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions.

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions. Large Sample Theory Study approximate behaviour of ˆθ by studying the function U. Notice U is sum of independent random variables. Theorem: If Y 1, Y 2,... are iid with mean µ then Yi n µ Called law of

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics. Probability Distributions Prof. Dr. Klaus Reygers (lectures) Dr. Sebastian Neubert (tutorials) Heidelberg University WS 07/8 Gaussian g(x; µ, )= p exp (x µ) https://en.wikipedia.org/wiki/normal_distribution

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VIc (19.11.07) Contents: Maximum Likelihood Fit Maximum Likelihood (I) Assume N measurements of a random variable Assume them to be independent and distributed according

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 9 for Applied Multivariate Analysis Outline Addressing ourliers 1 Addressing ourliers 2 Outliers in Multivariate samples (1) For

More information

Latent variable interactions

Latent variable interactions Latent variable interactions Bengt Muthén & Tihomir Asparouhov Mplus www.statmodel.com November 2, 2015 1 1 Latent variable interactions Structural equation modeling with latent variable interactions has

More information

Information Matrix for Pareto(IV), Burr, and Related Distributions

Information Matrix for Pareto(IV), Burr, and Related Distributions MARCEL DEKKER INC. 7 MADISON AVENUE NEW YORK NY 6 3 Marcel Dekker Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker

More information

THE STRUCTURE OF MULTIVARIATE POISSON DISTRIBUTION

THE STRUCTURE OF MULTIVARIATE POISSON DISTRIBUTION K KAWAMURA KODAI MATH J 2 (1979), 337-345 THE STRUCTURE OF MULTIVARIATE POISSON DISTRIBUTION BY KAZUTOMO KAWAMURA Summary In this paper we shall derive a multivariate Poisson distribution and we shall

More information

GARCH Models Estimation and Inference

GARCH Models Estimation and Inference GARCH Models Estimation and Inference Eduardo Rossi University of Pavia December 013 Rossi GARCH Financial Econometrics - 013 1 / 1 Likelihood function The procedure most often used in estimating θ 0 in

More information

APPENDIX A THE ESSENTIALS OF MATRIX ANALYSIS

APPENDIX A THE ESSENTIALS OF MATRIX ANALYSIS APPENDIX A THE ESSENTIALS OF MATRIX ANALYSIS A atrix is a rectangular collection of nubers. If there are η rows and coluns, we write the atrix as A n x, and the nubers of the atrix are α^, where i gives

More information

n =10,220 observations. Smaller samples analyzed here to illustrate sample size effect.

n =10,220 observations. Smaller samples analyzed here to illustrate sample size effect. Chapter 7 Parametric Likelihood Fitting Concepts: Chapter 7 Parametric Likelihood Fitting Concepts: Objectives Show how to compute a likelihood for a parametric model using discrete data. Show how to compute

More information

Statistics 3858 : Maximum Likelihood Estimators

Statistics 3858 : Maximum Likelihood Estimators Statistics 3858 : Maximum Likelihood Estimators 1 Method of Maximum Likelihood In this method we construct the so called likelihood function, that is L(θ) = L(θ; X 1, X 2,..., X n ) = f n (X 1, X 2,...,

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

5 Introduction to the Theory of Order Statistics and Rank Statistics

5 Introduction to the Theory of Order Statistics and Rank Statistics 5 Introduction to the Theory of Order Statistics and Rank Statistics This section will contain a summary of important definitions and theorems that will be useful for understanding the theory of order

More information

Structural Reliability

Structural Reliability Structural Reliability Thuong Van DANG May 28, 2018 1 / 41 2 / 41 Introduction to Structural Reliability Concept of Limit State and Reliability Review of Probability Theory First Order Second Moment Method

More information

On Reparametrization and the Gibbs Sampler

On Reparametrization and the Gibbs Sampler On Reparametrization and the Gibbs Sampler Jorge Carlos Román Department of Mathematics Vanderbilt University James P. Hobert Department of Statistics University of Florida March 2014 Brett Presnell Department

More information

Testing a Normal Covariance Matrix for Small Samples with Monotone Missing Data

Testing a Normal Covariance Matrix for Small Samples with Monotone Missing Data Applied Mathematical Sciences, Vol 3, 009, no 54, 695-70 Testing a Normal Covariance Matrix for Small Samples with Monotone Missing Data Evelina Veleva Rousse University A Kanchev Department of Numerical

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS040) p.4828 Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

More information

arxiv: v1 [math.st] 2 Apr 2016

arxiv: v1 [math.st] 2 Apr 2016 NON-ASYMPTOTIC RESULTS FOR CORNISH-FISHER EXPANSIONS V.V. ULYANOV, M. AOSHIMA, AND Y. FUJIKOSHI arxiv:1604.00539v1 [math.st] 2 Apr 2016 Abstract. We get the computable error bounds for generalized Cornish-Fisher

More information

STT 843 Key to Homework 1 Spring 2018

STT 843 Key to Homework 1 Spring 2018 STT 843 Key to Homework Spring 208 Due date: Feb 4, 208 42 (a Because σ = 2, σ 22 = and ρ 2 = 05, we have σ 2 = ρ 2 σ σ22 = 2/2 Then, the mean and covariance of the bivariate normal is µ = ( 0 2 and Σ

More information

Lecture 26: Likelihood ratio tests

Lecture 26: Likelihood ratio tests Lecture 26: Likelihood ratio tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f θ0 (X) > c 0 for

More information

Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring

Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring A. Ganguly, S. Mitra, D. Samanta, D. Kundu,2 Abstract Epstein [9] introduced the Type-I hybrid censoring scheme

More information

Large Sample Properties of Estimators in the Classical Linear Regression Model

Large Sample Properties of Estimators in the Classical Linear Regression Model Large Sample Properties of Estimators in the Classical Linear Regression Model 7 October 004 A. Statement of the classical linear regression model The classical linear regression model can be written in

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Theory of Statistics.

Theory of Statistics. Theory of Statistics. Homework V February 5, 00. MT 8.7.c When σ is known, ˆµ = X is an unbiased estimator for µ. If you can show that its variance attains the Cramer-Rao lower bound, then no other unbiased

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45 Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS 21 June 2010 9:45 11:45 Answer any FOUR of the questions. University-approved

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses*

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Amy G. Froelich Michael D. Larsen Iowa State University *The work presented in this talk was partially supported by

More information

STAT 6385 Survey of Nonparametric Statistics. Order Statistics, EDF and Censoring

STAT 6385 Survey of Nonparametric Statistics. Order Statistics, EDF and Censoring STAT 6385 Survey of Nonparametric Statistics Order Statistics, EDF and Censoring Quantile Function A quantile (or a percentile) of a distribution is that value of X such that a specific percentage of the

More information

Test Problems for Probability Theory ,

Test Problems for Probability Theory , 1 Test Problems for Probability Theory 01-06-16, 010-1-14 1. Write down the following probability density functions and compute their moment generating functions. (a) Binomial distribution with mean 30

More information

A Functional Central Limit Theorem for an ARMA(p, q) Process with Markov Switching

A Functional Central Limit Theorem for an ARMA(p, q) Process with Markov Switching Communications for Statistical Applications and Methods 2013, Vol 20, No 4, 339 345 DOI: http://dxdoiorg/105351/csam2013204339 A Functional Central Limit Theorem for an ARMAp, q) Process with Markov Switching

More information

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper McGill University Faculty of Science Department of Mathematics and Statistics Part A Examination Statistics: Theory Paper Date: 10th May 2015 Instructions Time: 1pm-5pm Answer only two questions from Section

More information

Lecture 25: Review. Statistics 104. April 23, Colin Rundel

Lecture 25: Review. Statistics 104. April 23, Colin Rundel Lecture 25: Review Statistics 104 Colin Rundel April 23, 2012 Joint CDF F (x, y) = P [X x, Y y] = P [(X, Y ) lies south-west of the point (x, y)] Y (x,y) X Statistics 104 (Colin Rundel) Lecture 25 April

More information

Stat 5101 Notes: Brand Name Distributions

Stat 5101 Notes: Brand Name Distributions Stat 5101 Notes: Brand Name Distributions Charles J. Geyer February 14, 2003 1 Discrete Uniform Distribution DiscreteUniform(n). Discrete. Rationale Equally likely outcomes. The interval 1, 2,..., n of

More information

Estimators of the regression parameters of the zeta distribution

Estimators of the regression parameters of the zeta distribution Insurance: Mathematics and Economics 30 2002) 439 450 Estimators of the regression parameters of the zeta distribution Louis G. Doray, Michel Arsenault Département de Mathématiques et de Statistique, Université

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

Lecture 21: Convergence of transformations and generating a random variable

Lecture 21: Convergence of transformations and generating a random variable Lecture 21: Convergence of transformations and generating a random variable If Z n converges to Z in some sense, we often need to check whether h(z n ) converges to h(z ) in the same sense. Continuous

More information

Notes on a skew-symmetric inverse double Weibull distribution

Notes on a skew-symmetric inverse double Weibull distribution Journal of the Korean Data & Information Science Society 2009, 20(2), 459 465 한국데이터정보과학회지 Notes on a skew-symmetric inverse double Weibull distribution Jungsoo Woo 1 Department of Statistics, Yeungnam

More information

Continuous Distributions

Continuous Distributions A normal distribution and other density functions involving exponential forms play the most important role in probability and statistics. They are related in a certain way, as summarized in a diagram later

More information

To calculate the distribution of the seismic moment at a site, we assume that on a

To calculate the distribution of the seismic moment at a site, we assume that on a KAGAN : EARTHQUAKE SLIP DISTRIBUTION X - 1 Appendix A: Seismic Moment Distribution at a Site To calculate the distribution of the seismic moment at a site, we assume that on a fault zone of total length

More information

Fisher Information & Efficiency

Fisher Information & Efficiency Fisher Information & Efficiency Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA 1 Introduction Let f(x θ) be the pdf of X for θ Θ; at times we will also consider a

More information

Stat 5102 Final Exam May 14, 2015

Stat 5102 Final Exam May 14, 2015 Stat 5102 Final Exam May 14, 2015 Name Student ID The exam is closed book and closed notes. You may use three 8 1 11 2 sheets of paper with formulas, etc. You may also use the handouts on brand name distributions

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

NONLINEAR EQUATIONS AND TAYLOR S THEOREM

NONLINEAR EQUATIONS AND TAYLOR S THEOREM APPENDIX C NONLINEAR EQUATIONS AND TAYLOR S THEOREM C.1 INTRODUCTION In adjustment computations it is frequently necessary to deal with nonlinear equations. For example, some observation equations relate

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

MIMO Capacities : Eigenvalue Computation through Representation Theory

MIMO Capacities : Eigenvalue Computation through Representation Theory MIMO Capacities : Eigenvalue Computation through Representation Theory Jayanta Kumar Pal, Donald Richards SAMSI Multivariate distributions working group Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

More information

Preliminary statistics

Preliminary statistics 1 Preliminary statistics The solution of a geophysical inverse problem can be obtained by a combination of information from observed data, the theoretical relation between data and earth parameters (models),

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 20, 2009, 8:00 am - 2:00 noon Instructions:. You have four hours to answer questions in this examination. 2. You must show

More information

An Introduction to Multivariate Statistical Analysis

An Introduction to Multivariate Statistical Analysis An Introduction to Multivariate Statistical Analysis Third Edition T. W. ANDERSON Stanford University Department of Statistics Stanford, CA WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

STA 4322 Exam I Name: Introduction to Statistics Theory

STA 4322 Exam I Name: Introduction to Statistics Theory STA 4322 Exam I Name: Introduction to Statistics Theory Fall 2013 UF-ID: Instructions: There are 100 total points. You must show your work to receive credit. Read each part of each question carefully.

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 7 Maximum Likelihood Estimation 7. Consistency If X is a random variable (or vector) with density or mass function f θ (x) that depends on a parameter θ, then the function f θ (X) viewed as a function

More information

SOME SPECIFIC PROBABILITY DISTRIBUTIONS. 1 2πσ. 2 e 1 2 ( x µ

SOME SPECIFIC PROBABILITY DISTRIBUTIONS. 1 2πσ. 2 e 1 2 ( x µ SOME SPECIFIC PROBABILITY DISTRIBUTIONS. Normal random variables.. Probability Density Function. The random variable is said to be normally distributed with mean µ and variance abbreviated by x N[µ, ]

More information

Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data

Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data International Mathematical Forum, 3, 2008, no. 33, 1643-1654 Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data A. Al-khedhairi Department of Statistics and O.R. Faculty

More information