Theory of Statistical Tests

Size: px
Start display at page:

Download "Theory of Statistical Tests"

Transcription

1 Ch 9. Theory of Statistical Tests 9.1 Certain Best Tests How to construct good testing. For simple hypothesis H 0 : θ = θ, H 1 : θ = θ, Page 1 of 100 where Θ = {θ, θ }

2 1. Define the best test for H 0 H NP Theorem 3. An example. Page 2 of 100

3 Use rejection region to define a test. Given C, if (x 1,, x n ) C then reject H 0, otherwise, accept H 0. The best rejection region C the best test. Page 3 of 100

4 Def µthe best rejection region C for the simple hypothesis test of level αµ For any subset A in the sample space satisfying P ((X 1,, X n A)) = α : Page 4 of 100

5 (a). P {(X 1,, X n ) C; H 0 } = α (b). P {(X 1,, X n C; H 1 )} P ((X 1,, X n ) A; H 1 ). Page 5 of 100

6 NP TheoremµX 1,, X n iid. f(x, θ), n L(θ) = f(x i, θ), i=1 where Θ = {θ, θ }. Let { } C = (x 1,, x n ) : L(θ ) L(θ ) k Page 6 of 100

7 C = { } (x 1,, x n ) : L(θ ) L(θ ) > k is a complement of C. α = P {(X 1,, X n ) C; H 0 }. Then C is a best rejection region of size α for testing the simple hypothesis H 0 H 1. Page 7 of 100

8 Proof: 0? = L(θ ) C C A L(θ A ) L(θ ) A C L(θ 1 L(θ ) 1 L(θ ) k C A k A C ) Page 8 of 100

9 = 1 k [ C L(θ ) A ] L(θ ) = 1 (α α) = 0. k Page 9 of 100

10 Example: X 1,, X n iid. N(θ, 1), and H 0 : θ = 0, H 1 : θ = 1. L(θ ) n L(θ ) = exp{ i=1 X i + n 2 } k 1 Xi 1 n 2 1 ln k =: c n Page 10 of 100

11 Take C = {(x 1,, x n ) : 1 n n x i c}. i=1 If α = 0.05, then c = 1.645/ n. P (C; H 0 ) = α, P (C; H 1 ) = P ( X 1 c 1; H 1 ) = 1 Φ( n(c 1)). Page 11 of 100

12 If n = 25, then P (C; H 1 ) = 1 Φ( ) = Φ(3.355) = Page 12 of 100

13 Generalization: H 0 and H 1 are simple hypothesis and X 1,, X n iid. L 0 = g(x 1,, x n ) is joint pdf. of X 1,, X n, L 1 = h(x 1,, x n ) is joint pdf. of X 1,, X n. Page 13 of 100

14 Then the critical region for H 0 H 1 is C = {(x 1,, x n ) : L 0 L 1 k} for some k > 0 with α = P ((x 1,, x n ) C; H 0 ). Page 14 of 100

15 9.2 Uniformly Most Powerful Tests (UMPT) H 0 H 1 Def.: C is a UMPT of α for the simple hypothesis H 0 composite hypothesis H 1 C is a best of α for test H 0 each simple hypothesis in H 1. Page 15 of 100

16 In general UMPT doesn t exist. If it exists, then NP theorem is used. Page 16 of 100

17 Example 2. Let X 1,, X n iid. N(0, θ) H 0 : θ = θ H 1 : θ > θ where Θ = {θ : θ θ }, the joint pdf. of X 1,, X n is ( )n 1 2 n L(θ) = exp{ i=1 x2 i }. 2πθ 2θ Page 17 of 100

18 For any θ > θ, k > 0, L(θ ) L(θ ) k ( θ )n 2 exp{ θ θ θ 2θ θ x 2 i } k x 2 i 2θ θ [ n ln(θ ) ln k] θ θ 2 θ =: c. Page 18 of 100

19 Therefore C = {(x 1,, x n ) : x 2 i c} is the best for H 0 H 1 : θ = θ, where c is determined by α. Page 19 of 100

20 X 2 P ( i c H 0 ) = α θ θ c = θ χ 2 n(α). Page 20 of 100

21 For H 1 : θ = θ, then C = {(x 1,, x n ) : x 2 i c} is the same and also the best, C is UMPT. Page 21 of 100

22 If n = 5, α = 0.05, θ = 3, H 0 : θ = 3, H 1 : θ > 3, then c = 3 χ 2 15(0.05) = 3 25 = 75. Page 22 of 100

23 Let X 1,, X n iid. f(x, θ) (θ Θ). Suppose that Y = u(x 1,, x n ) is a sufficient, then L(θ) = k 1 [u(x 1,, x n ); θ]k 2 (x 1,, x n ), Page 23 of 100

24 L(θ ) L(θ ) = k 1(u(x 1,, x n ); θ ) k 1 (u(x 1,, x n ); θ ) = k 1(y, θ ) k 1 (y, θ ). A best test or UMPT depends on u(x 1,, x n ) which is sufficient. Page 24 of 100

25 If k 1(y,θ ) is an increasing function of y k 1 (y,θ ) for θ < θ, then L(θ ) L(θ ) is called monotone likelihood ratio in the statistic Y = u(x 1,, x n ). Page 25 of 100

26 Example. X 1,, X n iid. N(θ, 1), if θ < θ, L(θ ) L(θ ) = n i=1 exp{ 1 2 (x i θ ) 2 } n i=1 exp{ 1 2 (x i θ) 2 } = exp{(θ θ ) x i n 2 θ 2 + n 2 θ 2 } Page 26 of 100 in x i.

27 Example. If f(x, θ) = exp{p(θ)k(x) + S(x) + q(θ)}, then L(θ ) L(θ ) = exp{(p(θ ) p(θ )) K(x i ) +n(q(θ ) q(θ ))}. Page 27 of 100

28 If p( ), then in Y = L(θ ) L(θ ) n K(x i ). i=1 Page 28 of 100

29 If we test H 0 : θ = θ, H 1 : θ < θ. For any θ < θ, we have L(θ ) L(θ ) k n K(x i ) c. i=1 This provides a UMPT. Page 29 of 100

30 If we test H 0 : θ = θ, H 1 : θ > θ, Contents then { K(x i ) c} is a UMPT, where c depends on α only. Page 30 of 100

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes Neyman-Pearson paradigm. Suppose that a researcher is interested in whether the new drug works. The process of determining whether the outcome of the experiment points to yes or no is called hypothesis

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses 9.2 Testing Simple Hypotheses 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the Means of Two

More information

Direction: This test is worth 250 points and each problem worth points. DO ANY SIX

Direction: This test is worth 250 points and each problem worth points. DO ANY SIX Term Test 3 December 5, 2003 Name Math 52 Student Number Direction: This test is worth 250 points and each problem worth 4 points DO ANY SIX PROBLEMS You are required to complete this test within 50 minutes

More information

Ch. 5 Hypothesis Testing

Ch. 5 Hypothesis Testing Ch. 5 Hypothesis Testing The current framework of hypothesis testing is largely due to the work of Neyman and Pearson in the late 1920s, early 30s, complementing Fisher s work on estimation. As in estimation,

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Summary of Chapters 7-9

Summary of Chapters 7-9 Summary of Chapters 7-9 Chapter 7. Interval Estimation 7.2. Confidence Intervals for Difference of Two Means Let X 1,, X n and Y 1, Y 2,, Y m be two independent random samples of sizes n and m from two

More information

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm Statistics GIDP Ph.D. Qualifying Exam Theory Jan, 06, 9:00am-:00pm Instructions: Provide answers on the supplied pads of paper; write on only one side of each sheet. Complete exactly 5 of the 6 problems.

More information

Math 152. Rumbos Fall Solutions to Assignment #12

Math 152. Rumbos Fall Solutions to Assignment #12 Math 52. umbos Fall 2009 Solutions to Assignment #2. Suppose that you observe n iid Bernoulli(p) random variables, denoted by X, X 2,..., X n. Find the LT rejection region for the test of H o : p p o versus

More information

2014/2015 Smester II ST5224 Final Exam Solution

2014/2015 Smester II ST5224 Final Exam Solution 014/015 Smester II ST54 Final Exam Solution 1 Suppose that (X 1,, X n ) is a random sample from a distribution with probability density function f(x; θ) = e (x θ) I [θ, ) (x) (i) Show that the family of

More information

λ(x + 1)f g (x) > θ 0

λ(x + 1)f g (x) > θ 0 Stat 8111 Final Exam December 16 Eleven students took the exam, the scores were 92, 78, 4 in the 5 s, 1 in the 4 s, 1 in the 3 s and 3 in the 2 s. 1. i) Let X 1, X 2,..., X n be iid each Bernoulli(θ) where

More information

Chapter 4. Theory of Tests. 4.1 Introduction

Chapter 4. Theory of Tests. 4.1 Introduction Chapter 4 Theory of Tests 4.1 Introduction Parametric model: (X, B X, P θ ), P θ P = {P θ θ Θ} where Θ = H 0 +H 1 X = K +A : K: critical region = rejection region / A: acceptance region A decision rule

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

Hypothesis Testing: The Generalized Likelihood Ratio Test

Hypothesis Testing: The Generalized Likelihood Ratio Test Hypothesis Testing: The Generalized Likelihood Ratio Test Consider testing the hypotheses H 0 : θ Θ 0 H 1 : θ Θ \ Θ 0 Definition: The Generalized Likelihood Ratio (GLR Let L(θ be a likelihood for a random

More information

STAT 830 Hypothesis Testing

STAT 830 Hypothesis Testing STAT 830 Hypothesis Testing Richard Lockhart Simon Fraser University STAT 830 Fall 2018 Richard Lockhart (Simon Fraser University) STAT 830 Hypothesis Testing STAT 830 Fall 2018 1 / 30 Purposes of These

More information

Statistics. Statistics

Statistics. Statistics The main aims of statistics 1 1 Choosing a model 2 Estimating its parameter(s) 1 point estimates 2 interval estimates 3 Testing hypotheses Distributions used in statistics: χ 2 n-distribution 2 Let X 1,

More information

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology Singapore University of Design and Technology Lecture 9: Hypothesis testing, uniformly most powerful tests. The Neyman-Pearson framework Let P be the family of distributions of concern. The Neyman-Pearson

More information

STAT 830 Hypothesis Testing

STAT 830 Hypothesis Testing STAT 830 Hypothesis Testing Hypothesis testing is a statistical problem where you must choose, on the basis of data X, between two alternatives. We formalize this as the problem of choosing between two

More information

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your answer

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Optimal Tests of Hypotheses (Hogg Chapter Eight)

Optimal Tests of Hypotheses (Hogg Chapter Eight) Optimal Tests of Hypotheses Hogg hapter Eight STAT 406-0: Mathematical Statistics II Spring Semester 06 ontents Most Powerful Tests. Review of Hypothesis Testing............ The Neyman-Pearson Lemma............3

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 19, 2011 Lecture 17: UMVUE and the first method of derivation Estimable parameters Let ϑ be a parameter in the family P. If there exists

More information

Hypothesis testing: theory and methods

Hypothesis testing: theory and methods Statistical Methods Warsaw School of Economics November 3, 2017 Statistical hypothesis is the name of any conjecture about unknown parameters of a population distribution. The hypothesis should be verifiable

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper McGill University Faculty of Science Department of Mathematics and Statistics Part A Examination Statistics: Theory Paper Date: 10th May 2015 Instructions Time: 1pm-5pm Answer only two questions from Section

More information

Statistical Theory MT 2007 Problems 4: Solution sketches

Statistical Theory MT 2007 Problems 4: Solution sketches Statistical Theory MT 007 Problems 4: Solution sketches 1. Consider a 1-parameter exponential family model with density f(x θ) = f(x)g(θ)exp{cφ(θ)h(x)}, x X. Suppose that the prior distribution has the

More information

Lecture 16 November Application of MoUM to our 2-sided testing problem

Lecture 16 November Application of MoUM to our 2-sided testing problem STATS 300A: Theory of Statistics Fall 2015 Lecture 16 November 17 Lecturer: Lester Mackey Scribe: Reginald Long, Colin Wei Warning: These notes may contain factual and/or typographic errors. 16.1 Recap

More information

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution.

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Hypothesis Testing Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Suppose the family of population distributions is indexed

More information

Hypothesis Testing. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA

Hypothesis Testing. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA Hypothesis Testing Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA An Example Mardia et al. (979, p. ) reprint data from Frets (9) giving the length and breadth (in

More information

STA 732: Inference. Notes 10. Parameter Estimation from a Decision Theoretic Angle. Other resources

STA 732: Inference. Notes 10. Parameter Estimation from a Decision Theoretic Angle. Other resources STA 732: Inference Notes 10. Parameter Estimation from a Decision Theoretic Angle Other resources 1 Statistical rules, loss and risk We saw that a major focus of classical statistics is comparing various

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

DA Freedman Notes on the MLE Fall 2003

DA Freedman Notes on the MLE Fall 2003 DA Freedman Notes on the MLE Fall 2003 The object here is to provide a sketch of the theory of the MLE. Rigorous presentations can be found in the references cited below. Calculus. Let f be a smooth, scalar

More information

Sufficiency 1. Sufficiency. Math Stat II

Sufficiency 1. Sufficiency. Math Stat II Sufficiency 1 Sufficiency Sufficiency 2 Outline for Sufficiency 1. Measures of Quality of Estimators 2. A sufficient Statistic for a Parameter 3. Properties of a Sufficient Statistic 4. Completeness and

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Throughout this chapter we consider a sample X taken from a population indexed by θ Θ R k. Instead of estimating the unknown parameter, we

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses.

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses. Stat 300A Theory of Statistics Homework 7: Solutions Nikos Ignatiadis Due on November 28, 208 Solutions should be complete and concisely written. Please, use a separate sheet or set of sheets for each

More information

STA 260: Statistics and Probability II

STA 260: Statistics and Probability II Al Nosedal. University of Toronto. Winter 2017 1 Properties of Point Estimators and Methods of Estimation 2 3 If you can t explain it simply, you don t understand it well enough Albert Einstein. Definition

More information

Hypothesis Testing (May 30, 2016)

Hypothesis Testing (May 30, 2016) Ch. 5 Hypothesis Testing (May 30, 2016) 1 Introduction Inference, so far as we have seen, often take the form of numerical estimates, either as single points as confidence intervals. But not always. In

More information

Hypothesis Testing. A rule for making the required choice can be described in two ways: called the rejection or critical region of the test.

Hypothesis Testing. A rule for making the required choice can be described in two ways: called the rejection or critical region of the test. Hypothesis Testing Hypothesis testing is a statistical problem where you must choose, on the basis of data X, between two alternatives. We formalize this as the problem of choosing between two hypotheses:

More information

Interval Estimation. Chapter 9

Interval Estimation. Chapter 9 Chapter 9 Interval Estimation 9.1 Introduction Definition 9.1.1 An interval estimate of a real-values parameter θ is any pair of functions, L(x 1,..., x n ) and U(x 1,..., x n ), of a sample that satisfy

More information

Ch3. Generating Random Variates with Non-Uniform Distributions

Ch3. Generating Random Variates with Non-Uniform Distributions ST4231, Semester I, 2003-2004 Ch3. Generating Random Variates with Non-Uniform Distributions This chapter mainly focuses on methods for generating non-uniform random numbers based on the built-in standard

More information

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Unbiased estimation Unbiased or asymptotically unbiased estimation plays an important role in

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

MIT Spring 2015

MIT Spring 2015 Assessing Goodness Of Fit MIT 8.443 Dr. Kempthorne Spring 205 Outline 2 Poisson Distribution Counts of events that occur at constant rate Counts in disjoint intervals/regions are independent If intervals/regions

More information

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3 Hypothesis Testing CB: chapter 8; section 0.3 Hypothesis: statement about an unknown population parameter Examples: The average age of males in Sweden is 7. (statement about population mean) The lowest

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Chapter 7. Confidence Sets Lecture 30: Pivotal quantities and confidence sets

Chapter 7. Confidence Sets Lecture 30: Pivotal quantities and confidence sets Chapter 7. Confidence Sets Lecture 30: Pivotal quantities and confidence sets Confidence sets X: a sample from a population P P. θ = θ(p): a functional from P to Θ R k for a fixed integer k. C(X): a confidence

More information

STAT 514 Solutions to Assignment #6

STAT 514 Solutions to Assignment #6 STAT 514 Solutions to Assignment #6 Question 1: Suppose that X 1,..., X n are a simple random sample from a Weibull distribution with density function f θ x) = θcx c 1 exp{ θx c }I{x > 0} for some fixed

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

STA 732: Inference. Notes 2. Neyman-Pearsonian Classical Hypothesis Testing B&D 4

STA 732: Inference. Notes 2. Neyman-Pearsonian Classical Hypothesis Testing B&D 4 STA 73: Inference Notes. Neyman-Pearsonian Classical Hypothesis Testing B&D 4 1 Testing as a rule Fisher s quantification of extremeness of observed evidence clearly lacked rigorous mathematical interpretation.

More information

Lecture 3. Inference about multivariate normal distribution

Lecture 3. Inference about multivariate normal distribution Lecture 3. Inference about multivariate normal distribution 3.1 Point and Interval Estimation Let X 1,..., X n be i.i.d. N p (µ, Σ). We are interested in evaluation of the maximum likelihood estimates

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 19, 010, 8:00 am - 1:00 noon Instructions: 1. You have four hours to answer questions in this examination.. You must show your

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

ST495: Survival Analysis: Hypothesis testing and confidence intervals

ST495: Survival Analysis: Hypothesis testing and confidence intervals ST495: Survival Analysis: Hypothesis testing and confidence intervals Eric B. Laber Department of Statistics, North Carolina State University April 3, 2014 I remember that one fateful day when Coach took

More information

Statistical Theory MT 2006 Problems 4: Solution sketches

Statistical Theory MT 2006 Problems 4: Solution sketches Statistical Theory MT 006 Problems 4: Solution sketches 1. Suppose that X has a Poisson distribution with unknown mean θ. Determine the conjugate prior, and associate posterior distribution, for θ. Determine

More information

Uniformly and Restricted Most Powerful Bayesian Tests

Uniformly and Restricted Most Powerful Bayesian Tests Uniformly and Restricted Most Powerful Bayesian Tests Valen E. Johnson and Scott Goddard Texas A&M University June 6, 2014 Valen E. Johnson and Scott Goddard Texas A&MUniformly University Most Powerful

More information

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015 Part IB Statistics Theorems with proof Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

STAT 801: Mathematical Statistics. Hypothesis Testing

STAT 801: Mathematical Statistics. Hypothesis Testing STAT 801: Mathematical Statistics Hypothesis Testing Hypothesis testing: a statistical problem where you must choose, on the basis o data X, between two alternatives. We ormalize this as the problem o

More information

Last Lecture - Key Questions. Biostatistics Statistical Inference Lecture 03. Minimal Sufficient Statistics

Last Lecture - Key Questions. Biostatistics Statistical Inference Lecture 03. Minimal Sufficient Statistics Last Lecture - Key Questions Biostatistics 602 - Statistical Inference Lecture 03 Hyun Min Kang January 17th, 2013 1 How do we show that a statistic is sufficient for θ? 2 What is a necessary and sufficient

More information

Expectation Maximization (EM) Algorithm. Each has it s own probability of seeing H on any one flip. Let. p 1 = P ( H on Coin 1 )

Expectation Maximization (EM) Algorithm. Each has it s own probability of seeing H on any one flip. Let. p 1 = P ( H on Coin 1 ) Expectation Maximization (EM Algorithm Motivating Example: Have two coins: Coin 1 and Coin 2 Each has it s own probability of seeing H on any one flip. Let p 1 = P ( H on Coin 1 p 2 = P ( H on Coin 2 Select

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Revision Class for Midterm Exam AMS-UCSC Th Feb 9, 2012 Winter 2012. Session 1 (Revision Class) AMS-132/206 Th Feb 9, 2012 1 / 23 Topics Topics We will

More information

Chapter 1. Statistical Spaces

Chapter 1. Statistical Spaces Chapter 1 Statistical Spaces Mathematical statistics is a science that studies the statistical regularity of random phenomena, essentially by some observation values of random variable (r.v.) X. Sometimes

More information

Statistics 3858 : Maximum Likelihood Estimators

Statistics 3858 : Maximum Likelihood Estimators Statistics 3858 : Maximum Likelihood Estimators 1 Method of Maximum Likelihood In this method we construct the so called likelihood function, that is L(θ) = L(θ; X 1, X 2,..., X n ) = f n (X 1, X 2,...,

More information

Chapter 10. Hypothesis Testing (I)

Chapter 10. Hypothesis Testing (I) Chapter 10. Hypothesis Testing (I) Hypothesis Testing, together with statistical estimation, are the two most frequently used statistical inference methods. It addresses a different type of practical problems

More information

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences FINAL EXAMINATION, APRIL 2013

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences FINAL EXAMINATION, APRIL 2013 UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences FINAL EXAMINATION, APRIL 2013 STAB57H3 Introduction to Statistics Duration: 3 hours Last Name: First Name: Student number:

More information

STAT J535: Chapter 5: Classes of Bayesian Priors

STAT J535: Chapter 5: Classes of Bayesian Priors STAT J535: Chapter 5: Classes of Bayesian Priors David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Spring 2012 The Bayesian Prior A prior distribution must be specified in a Bayesian analysis. The choice

More information

Statistics Ph.D. Qualifying Exam: Part II November 9, 2002

Statistics Ph.D. Qualifying Exam: Part II November 9, 2002 Statistics Ph.D. Qualifying Exam: Part II November 9, 2002 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part : Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Chapter 8.8.1: A factorization theorem

Chapter 8.8.1: A factorization theorem LECTURE 14 Chapter 8.8.1: A factorization theorem The characterization of a sufficient statistic in terms of the conditional distribution of the data given the statistic can be difficult to work with.

More information

Theory of Maximum Likelihood Estimation. Konstantin Kashin

Theory of Maximum Likelihood Estimation. Konstantin Kashin Gov 2001 Section 5: Theory of Maximum Likelihood Estimation Konstantin Kashin February 28, 2013 Outline Introduction Likelihood Examples of MLE Variance of MLE Asymptotic Properties What is Statistical

More information

Lecture 7 October 13

Lecture 7 October 13 STATS 300A: Theory of Statistics Fall 2015 Lecture 7 October 13 Lecturer: Lester Mackey Scribe: Jing Miao and Xiuyuan Lu 7.1 Recap So far, we have investigated various criteria for optimal inference. We

More information

Minimax lower bounds I

Minimax lower bounds I Minimax lower bounds I Kyoung Hee Kim Sungshin University 1 Preliminaries 2 General strategy 3 Le Cam, 1973 4 Assouad, 1983 5 Appendix Setting Family of probability measures {P θ : θ Θ} on a sigma field

More information

Lecture 1: Introduction

Lecture 1: Introduction Principles of Statistics Part II - Michaelmas 208 Lecturer: Quentin Berthet Lecture : Introduction This course is concerned with presenting some of the mathematical principles of statistical theory. One

More information

Topic 10: Hypothesis Testing

Topic 10: Hypothesis Testing Topic 10: Hypothesis Testing Course 003, 2016 Page 0 The Problem of Hypothesis Testing A statistical hypothesis is an assertion or conjecture about the probability distribution of one or more random variables.

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Completeness. On the other hand, the distribution of an ancillary statistic doesn t depend on θ at all.

Completeness. On the other hand, the distribution of an ancillary statistic doesn t depend on θ at all. Completeness A minimal sufficient statistic achieves the maximum amount of data reduction while retaining all the information the sample has concerning θ. On the other hand, the distribution of an ancillary

More information

parameter space Θ, depending only on X, such that Note: it is not θ that is random, but the set C(X).

parameter space Θ, depending only on X, such that Note: it is not θ that is random, but the set C(X). 4. Interval estimation The goal for interval estimation is to specify the accurary of an estimate. A 1 α confidence set for a parameter θ is a set C(X) in the parameter space Θ, depending only on X, such

More information

ECE 275B Homework # 1 Solutions Version Winter 2015

ECE 275B Homework # 1 Solutions Version Winter 2015 ECE 275B Homework # 1 Solutions Version Winter 2015 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2

More information

1 Probability Model. 1.1 Types of models to be discussed in the course

1 Probability Model. 1.1 Types of models to be discussed in the course Sufficiency January 11, 2016 Debdeep Pati 1 Probability Model Model: A family of distributions {P θ : θ Θ}. P θ (B) is the probability of the event B when the parameter takes the value θ. P θ is described

More information

Lecture 4 September 15

Lecture 4 September 15 IFT 6269: Probabilistic Graphical Models Fall 2017 Lecture 4 September 15 Lecturer: Simon Lacoste-Julien Scribe: Philippe Brouillard & Tristan Deleu 4.1 Maximum Likelihood principle Given a parametric

More information

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test.

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test. Economics 52 Econometrics Professor N.M. Kiefer LECTURE 1: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING NEYMAN-PEARSON LEMMA: Lesson: Good tests are based on the likelihood ratio. The proof is easy in the

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 32 Lecture 14 : Variational Bayes

More information

Negative binomial distribution and multiplicities in p p( p) collisions

Negative binomial distribution and multiplicities in p p( p) collisions Negative binomial distribution and multiplicities in p p( p) collisions Institute of Theoretical Physics University of Wroc law Zakopane June 12, 2011 Summary s are performed for the hypothesis that charged-particle

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VIc (19.11.07) Contents: Maximum Likelihood Fit Maximum Likelihood (I) Assume N measurements of a random variable Assume them to be independent and distributed according

More information

Introduction to Bayesian Computation

Introduction to Bayesian Computation Introduction to Bayesian Computation Dr. Jarad Niemi STAT 544 - Iowa State University March 20, 2018 Jarad Niemi (STAT544@ISU) Introduction to Bayesian Computation March 20, 2018 1 / 30 Bayesian computation

More information

The EM Algorithm for the Finite Mixture of Exponential Distribution Models

The EM Algorithm for the Finite Mixture of Exponential Distribution Models Int. J. Contemp. Math. Sciences, Vol. 9, 2014, no. 2, 57-64 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2014.312133 The EM Algorithm for the Finite Mixture of Exponential Distribution

More information

1 Probability Model. 1.1 Types of models to be discussed in the course

1 Probability Model. 1.1 Types of models to be discussed in the course Sufficiency January 18, 016 Debdeep Pati 1 Probability Model Model: A family of distributions P θ : θ Θ}. P θ (B) is the probability of the event B when the parameter takes the value θ. P θ is described

More information

Exact Statistical Inference in. Parametric Models

Exact Statistical Inference in. Parametric Models Exact Statistical Inference in Parametric Models Audun Sektnan December 2016 Specialization Project Department of Mathematical Sciences Norwegian University of Science and Technology Supervisor: Professor

More information

MATH5745 Multivariate Methods Lecture 07

MATH5745 Multivariate Methods Lecture 07 MATH5745 Multivariate Methods Lecture 07 Tests of hypothesis on covariance matrix March 16, 2018 MATH5745 Multivariate Methods Lecture 07 March 16, 2018 1 / 39 Test on covariance matrices: Introduction

More information

A = {(x, u) : 0 u f(x)},

A = {(x, u) : 0 u f(x)}, Draw x uniformly from the region {x : f(x) u }. Markov Chain Monte Carlo Lecture 5 Slice sampler: Suppose that one is interested in sampling from a density f(x), x X. Recall that sampling x f(x) is equivalent

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Assumptions of classical multiple regression model

Assumptions of classical multiple regression model ESD: Recitation #7 Assumptions of classical multiple regression model Linearity Full rank Exogeneity of independent variables Homoscedasticity and non autocorrellation Exogenously generated data Normal

More information

ECE 275B Homework # 1 Solutions Winter 2018

ECE 275B Homework # 1 Solutions Winter 2018 ECE 275B Homework # 1 Solutions Winter 2018 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2 < < x n Thus,

More information

6.1 Variational representation of f-divergences

6.1 Variational representation of f-divergences ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 6: Variational representation, HCR and CR lower bounds Lecturer: Yihong Wu Scribe: Georgios Rovatsos, Feb 11, 2016

More information

Optimization Methods II. EM algorithms.

Optimization Methods II. EM algorithms. Aula 7. Optimization Methods II. 0 Optimization Methods II. EM algorithms. Anatoli Iambartsev IME-USP Aula 7. Optimization Methods II. 1 [RC] Missing-data models. Demarginalization. The term EM algorithms

More information

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS Abstract. We will introduce a class of distributions that will contain many of the discrete and continuous we are familiar with. This class will help

More information