VISUAL PHYSICS ONLINE PROBLEM P0113A

Size: px
Start display at page:

Download "VISUAL PHYSICS ONLINE PROBLEM P0113A"

Transcription

1 VISUAL PHYSICS ONLINE PROBLEM P0113A Two balls are launched from the top of a cliff. Ball A has an initial velocit of 8.00 m.s at an angle of 30.0 o w.r.t. the horizontal and ball B has an initial velocit of 10.0 m.s at 60.0 o to the horizontal. The height of the cliff above sea level is 4.00 m. Ignoring air resistance, calculate: A. The initial components of the velocit of the two balls. B. The time taken for both ball to reach their maimum heights. C. The positions of the two balls (horizontal and vertical components w.r.t Origin) when the are at their maimum heights above sea level. What are the maimum heights of the balls above sea level? D. The speed of the balls at their maimum height. E. The relative position of ball B w.r.t. ball A when ball A is at its maimum height. F. The relative velocit of ball B when ball A is at its maimum height. G. The velocities of the balls as the enter the sea water. H. The flight times for the balls to enter the water.

2 I. The horizontal distance from the base of the cliff to where the balls enter the sea water. J. Sketch the following graphs (scaled aes) for both balls: (s / s), (s / t), (s/t), (v / t), (v / t). To help ou gain a better understanding of solving numerical phsics problems, ou should work through the Matlab code to see how to approach solving such problem. Even if ou don t know about Matlab, ou will be able to figure out how I solved the problem. Take note of the letters used to identif the phsical quantities.

3 % sp_projectiles.m clear all close all clc % INPUT ====================================== g = 9.81; u = [8 10]; A = [30 60]; h = 4; a = 0; a = - g; % Initial velocites u = u.* cosd(a) u = u.* sind(a) % When both balls are their highest positions % times, velocities and displacements th = -u./ a sh = u.*th * a * th.^2 sh = u.* th % When ball A is at its highest position: time th(1) % Position of ball B sa = sh(1); sa = sh(1); sb = u(2) * th(1) sb = u(2) * th(1) + 0.5*a*tH(1)^2 sba = sb - sa sba = sb - sa sba = sqrt(sba^2 + sba^2) angleba = atan2d(sba,sba)

4 % When ball A is at its highest position: time th(1) % velocit of ball B va = u(1) va = 0 vb = u(2) vb = u(2) + a * th(1) vba = vb - va vba = vb - va vba = sqrt(vba^2 + vba^2) anglevba = atan2d(vba,vba)

5 % As the balls enter the water s = -h vaw = u(1) vaw = -sqrt(u(1)^2+2*a*s) vaw = sqrt(vaw^2+vaw^2) angleaw = atan2d(vaw,vaw) vbw = u(2) vbw = -sqrt(u(2)^2+2*a*s) vbw = sqrt(vbw^2+vbw^2) anglebw = atan2d(vbw,vbw) taw = (vaw - u(1))/a tbw = (vbw - u(2))/a saw = u(1) * taw sbw = u(2) * tbw

6 Solution

7 A Initial velocities u ucos u usin Ball A u A 6.93 m.s u 4.00 m.s A Ball B u B 5.00 m.s u 8.66 m.s B B At the maimum height, the vertical velocit is zero v 0. Time to reach ma height v u a t v 0 a g t u a Ball A t 0.41 s Ball B t 0.88 s C At the maimum height for both balls: Horizontal displacement components w.r.t the Origin calculated from s u t Vertical displacement components w.r.t. to the Origin are calculated from s u t a t 1 2 2

8 Ball A s 2.83 m s 0.82 m Ball B s 4.41 m s 3.82 m The heights above sea level are Ball A h 4.82 m Ball B h 7.82 m D At the maimum heights, the vertical components of the velocit are zero. So, the speeds of the ball are equal to their initial horizontal velocities u A 6.93 m.s u 5.00 m.s B E The position of ball A when at maimum height is t 0.41 s s 2.83 m s 0.82 m A A The position of ball B at time t 0.41 s s u t s 2.04 m B s u t a t sb 2.72 m When ball A is at its highest position, the position of ball B w.r.t to ball A is Ball A s 2.83iˆ 0.82 ˆj Ball B s 2.04iˆ 2.72 ˆj A B

9 The relative position of ball B w.r.t. ball A is ˆ s s s i ˆj m BA B A s 0.79iˆ 1.90 ˆj m BA The displacement of ball B w.r.t ball A when ball A is at its highest position is s s s 2.06 m 2 2 BA BA BA BA s BA a tan 112 s BA o w.r.t. + X ais

10 F When ball A is at its height position t v v 0.41 s A 6.93 m.s A 0 m The velocit of ball B at time t 0.41 s v B u B 5.00 m.s vb ub a t vb 4.66 m.s Ball A v 6.93iˆ 0 ˆj A Ball B v 5.00iˆ 4.66 ˆj B The relative velocit of ball B w.r.t ball A is ˆ v v v i ˆj m BA B A v 1.93iˆ 4.66 ˆj m BA The velocit of ball B w.r.t ball A when ball A is at its highest position is v v v 5.04 m.s 2 2 BA BA BA BA v BA a tan 112 v BA o w.r.t. + X ais

11 G The velocities of the balls can as the enter the water can be found from the equations v u v u 2a s 2 2 Ball A v 6.93 m.s m.s 4.00 m.s 4 m u a u s v 9.72 m.s v m.s o Ball B v 5.00 m.s m.s 8.66 m.s 4 m u a u s v m.s v m.s o

12 H The time of flight can be calculated from v u a t t v u a Ball A Ball B t 1.40 s t 2.15 s I The range of the ball as the enter the water can be calculated from s Ball A Ball B u t s 9.69 m s m Note: in solving kinematics problems with constant equation ou never have to solve the quadratic equation s u t a t because ou can use a number of alternative equations v u a t 2 2 v u 2a s v u vavg s vavg t 2

13 J VISUAL PHYSICS ONLINE If ou have an feedback, comments, suggestions or corrections please Ian Cooper School of Phsics Universit of Sdne

VISUAL PHYSICS ONLINE KINEMATICS DESCRIBING MOTION

VISUAL PHYSICS ONLINE KINEMATICS DESCRIBING MOTION VISUAL PHYSICS ONLINE KINEMATICS DESCRIBING MOTION The language used to describe motion is called kinematics. Surprisingl, ver few words are needed to full the describe the motion of a Sstem. Warning:

More information

charge of opposite signs attract / charges of the same sign repel

charge of opposite signs attract / charges of the same sign repel VISUAL PHYSICS ONLINE MODULE 4.1 ELECTRICITY ELECTRIC FIELD ELECTRIC POTENTIAL QUESTIONS and PROBLEMS (with ANSWRES) ex41b ex41c electric force F E [N] charge of opposite signs attract / charges of the

More information

VISUAL PHYSICS ONLINE DYNAMICS CONSERVATION OF ENERGY AND MOMENTUM COLLISIONS / EXPLOSIONS

VISUAL PHYSICS ONLINE DYNAMICS CONSERVATION OF ENERGY AND MOMENTUM COLLISIONS / EXPLOSIONS VISUAL PHYSICS ONLINE DYNAMICS CONSERVATION OF ENERGY AND MOMENTUM COLLISIONS / EXPLOSIONS Exercise View images of conservation of momentum What story do the images tell? Select 5 good images. State why

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

For use only in [the name of your school] 2014 M2 Note. M2 Notes (Edexcel)

For use only in [the name of your school] 2014 M2 Note. M2 Notes (Edexcel) For use onl in [the name of our school] 014 M Note M Notes (Edecel) Copright www.pgmaths.co.uk - For AS, A notes and IGCSE / GCSE worksheets 1 For use onl in [the name of our school] 014 M Note Copright

More information

Scalar functions of several variables (Sect. 14.1)

Scalar functions of several variables (Sect. 14.1) Scalar functions of several variables (Sect. 14.1) Functions of several variables. On open, closed sets. Functions of two variables: Graph of the function. Level curves, contour curves. Functions of three

More information

PHYS-2010: General Physics I Course Lecture Notes Section IV

PHYS-2010: General Physics I Course Lecture Notes Section IV PHYS-010: General Phsics I Course Lecture Notes Section IV Dr. Donald G. Luttermoser East Tennessee State Universit Edition.3 Abstract These class notes are designed for use of the instructor and students

More information

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN Phsics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN EMU Phsics Department www.aovgun.com Coordinate Sstems qcartesian coordinate sstem qpolar coordinate sstem Januar 21, 2015 qfrom Cartesian to Polar coordinate

More information

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS Chapter 4 MTIN IN TW AND THREE DIMENSINS Section 4-5, 4-6 Projectile Motion Projectile Motion Analzed Important skills from this lecture: 1. Identif the projectile motion and its velocit and acceleration

More information

Relative Velocity. Exercise

Relative Velocity. Exercise PHYSICS 0 Lecture 06 Projectile Motion Tetbook Sections 4. Lecture 6 Purdue Universit, Phsics 0 1 Relative Velocit We often assume that our reference frame is attached to the Earth. What happen when the

More information

MODULE 4.1 ELECTRICITY ELECTRICAL POTENTIAL VISUAL PHYSICS ONLINE. voltage V. electrical potential V potential difference V

MODULE 4.1 ELECTRICITY ELECTRICAL POTENTIAL VISUAL PHYSICS ONLINE. voltage V. electrical potential V potential difference V VISUAL PHYSICS ONLINE MODULE 4.1 ELECTRICITY ELECTRICAL POTENTIAL voltage V V electrical potential V potential difference V V potential drop voltage drop V V emf emf electromotive force emf Scalar quantities

More information

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas

Lesson Goals. Unit 4 Polynomial/Rational Functions Quadratic Functions (Chap 0.3) Family of Quadratic Functions. Parabolas Unit 4 Polnomial/Rational Functions Quadratic Functions (Chap 0.3) William (Bill) Finch Lesson Goals When ou have completed this lesson ou will: Graph and analze the graphs of quadratic functions. Solve

More information

Physics 101. Vectors. Lecture 2. h0r33fy. EMU Physics Department. Assist. Prof. Dr. Ali ÖVGÜN

Physics 101. Vectors. Lecture 2. h0r33fy.   EMU Physics Department. Assist. Prof. Dr. Ali ÖVGÜN Phsics 101 Lecture 2 Vectors ssist. Prof. Dr. li ÖVGÜN EMU Phsics Department h0r33f www.aovgun.com Coordinate Sstems qcartesian coordinate sstem qpolar coordinate sstem qfrom Cartesian to Polar coordinate

More information

PES 1110 Fall 2013, Spendier Lecture 5/Page 1

PES 1110 Fall 2013, Spendier Lecture 5/Page 1 PES 1110 Fall 2013, Spendier Lecture 5/Page 1 Toda: - Announcements: Quiz moved to net Monda, Sept 9th due to website glitch! - Finish chapter 3: Vectors - Chapter 4: Motion in 2D and 3D (sections 4.1-4.4)

More information

Higher. Differentiation 28

Higher. Differentiation 28 Higher Mathematics UNIT OUTCOME Differentiation Contents Differentiation 8 Introduction to Differentiation 8 Finding the Derivative 9 Differentiating with Respect to Other Variables 4 Rates of Change 4

More information

1 x

1 x Unit 1. Calculus Topic 4: Increasing and decreasing functions: turning points In topic 4 we continue with straightforward derivatives and integrals: Locate turning points where f () = 0. Determine the

More information

VISUAL PHYSICS ONLINE THE LANGUAGE OF PHYSICS SCALAR AND VECTORS

VISUAL PHYSICS ONLINE THE LANGUAGE OF PHYSICS SCALAR AND VECTORS VISUAL PHYSICS ONLINE THE LANGUAGE OF PHYSICS SCALAR AND VECTORS SCALAR QUANTITES Physical quantities that require only a number and a unit for their complete specification are known as scalar quantities.

More information

Writing Quadratic Functions in Standard Form

Writing Quadratic Functions in Standard Form Chapter Summar Ke Terms standard form (general form) of a quadratic function (.1) parabola (.1) leading coefficient (.) second differences (.) vertical motion model (.3) zeros (.3) interval (.3) open interval

More information

HSC PHYSICS ONLINE THE LANGUAGE OF PHYSICS: FRAMES OF REFERENCE

HSC PHYSICS ONLINE THE LANGUAGE OF PHYSICS: FRAMES OF REFERENCE HSC PHYSICS ONLINE THE LANGUAGE OF PHYSICS: FRAMES OF REFERENCE In studying the motion of objects you need to use scientific terms carefully as the meaning of words used in Physics often have a different

More information

2-D Vector Equations have the same form as 1-D Kinematics. f i i

2-D Vector Equations have the same form as 1-D Kinematics. f i i 2-D Vector Equations have the same form as 1-D Kinematics v = v + at f i 1 r = r + v t+ at f i i 2 2 2-D Vector Equations have the same form as 1-D Kinematics v = viˆ+ v ˆj f x y = ( v + ati ) ˆ+ ( v +

More information

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION Predict Obsere Explain Exercise 1 Take an A4 sheet of paper and a heay object (cricket ball, basketball, brick, book, etc). Predict what will

More information

2 MOTION ALONG A STRAIGHT LINE

2 MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE Download full Solution manual for Universit phsics with modern phsics 14t http://testbankcollection.com/download/solution-manual-for-universit-phsics-withmodern-phsics-14th.1.

More information

Methods of Integration

Methods of Integration U96-b)! Use the substitution u = - to evaluate U95-b)! 4 Methods of Integration d. Evaluate 9 d using the substitution u = + 9. UNIT MATHEMATICS (HSC) METHODS OF INTEGRATION CSSA «8» U94-b)! Use the substitution

More information

Physics 40 Chapter 7 Homework Solutions

Physics 40 Chapter 7 Homework Solutions Phsics 40 Chapter 7 Homework Solutions T = F 3 g (1) T sin θ + T sin θ = Fg () 1 1 T cosθ = T cosθ (3) 1 1 Eliminate T and solve for T 1 Fgcos θ T = = T 1 3 g ( sin θ cosθ + cosθ sin θ ) sin ( θ + θ )

More information

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( )

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( ) Phsics Solutions to Chapter 5 5.. Model: Use the charge model. Solve: (a) In the process of charging b rubbing, electrons are removed from one material and transferred to the other because the are relativel

More information

1-D and 2-D Motion Test Friday 9/8

1-D and 2-D Motion Test Friday 9/8 1-D and -D Motion Test Frida 9/8 3-1 Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocit, force, momentum A scalar has onl a magnitude. Some scalar

More information

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a. Mathematics 10 Page 1 of 7 Verte form of Quadratic Relations The epression a p q defines a quadratic relation called the verte form with a horizontal translation of p units and vertical translation of

More information

Chapter 9 Notes Alg. 1H 9-A1 (Lesson 9-3) Solving Quadratic Equations by Finding the Square Root and Completing the Square

Chapter 9 Notes Alg. 1H 9-A1 (Lesson 9-3) Solving Quadratic Equations by Finding the Square Root and Completing the Square Chapter Notes Alg. H -A (Lesson -) Solving Quadratic Equations b Finding the Square Root and Completing the Square p. *Calculator Find the Square Root: take the square root of. E: Solve b finding square

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTER 3

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTER 3 Solutions to Phsics: Principles with Applications, 5/E, Giancoli Chapter 3 CHAPTE 3 1. We choose the west and south coordinate sstem shown. For the components of the resultant we have W W = D 1 + D cos

More information

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots.

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots. Name: Quadratic Functions Objective: To be able to graph a quadratic function and identif the verte and the roots. Period: Quadratic Function Function of degree. Usuall in the form: We are now going to

More information

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors)

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors) MOTION IN -DIMENSION (Projectile & Circular motion nd Vectors) INTRODUCTION The motion of an object is called two dimensional, if two of the three co-ordinates required to specif the position of the object

More information

10. The dimensional formula for c) 6% d) 7%

10. The dimensional formula for c) 6% d) 7% UNIT. One of the combinations from the fundamental phsical constants is hc G. The unit of this epression is a) kg b) m 3 c) s - d) m. If the error in the measurement of radius is %, then the error in the

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

(483 km) ( 966 km) km. tan km

(483 km) ( 966 km) km. tan km Chapter 4 8 Our coordinate system has i pointed east and j pointed north The first displacement is r (483 km)i ˆ AB and the second is r ( 966 km)j ˆ BC (a) The net displacement is r (483 km)i ˆ (966 km)j

More information

3 Polynomial and Rational Functions

3 Polynomial and Rational Functions 3 Polnomial and Rational Functions 3.1 Quadratic Functions and Models 3.2 Polnomial Functions and Their Graphs 3.3 Dividing Polnomials 3.4 Real Zeros of Polnomials 3.5 Comple Zeros and the Fundamental

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

MODULE 4.1 ELECTRICITY INTERACTION BETWEEN CHARGES

MODULE 4.1 ELECTRICITY INTERACTION BETWEEN CHARGES VISUAL PHYSICS ONLINE MODULE 4.1 ELECTRICITY INTERACTION BETWEEN CHARGES Electricity is the Soul of the Universe John Wesley (1703 1791) Questions and Problems ex41a Charge is an intrinsic property of

More information

Demo: x-t, v-t and a-t of a falling basket ball.

Demo: x-t, v-t and a-t of a falling basket ball. Demo: x-t, v-t and a-t of a falling basket ball. I-clicker question 3-1: A particle moves with the position-versus-time graph shown. Which graph best illustrates the velocity of the particle as a function

More information

Marking Scheme (Mathematics XII )

Marking Scheme (Mathematics XII ) Sr. No. Marking Scheme (Mathematics XII 07-8) Answer Section A., (, ) A A: (, ) A A: (,),(,) Mark(s). -5. a iˆ, b ˆj. (or an other correct answer). 6 6 ( ), () ( ) ( ). Hence, is not associative. Section

More information

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Kinematics: Projectile Motion Science and Mathematics Education Research Group Supported by UBC Teaching

More information

LAB 05 Projectile Motion

LAB 05 Projectile Motion LAB 5 Projectile Motion CONTENT: 1. Introduction. Projectile motion A. Setup B. Various characteristics 3. Pre-lab: A. Activities B. Preliminar info C. Quiz 1. Introduction After introducing one-dimensional

More information

Lesson 7.1 Polynomial Degree and Finite Differences

Lesson 7.1 Polynomial Degree and Finite Differences Lesson 7.1 Polnomial Degree and Finite Differences 1. Identif the degree of each polnomial. a. 1 b. 0. 1. 3. 3 c. 0 16 0. Determine which of the epressions are polnomials. For each polnomial, state its

More information

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors.

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors. PC1221 Fundamentals of Phsics I Lectures 5 and 6 Vectors Dr Ta Seng Chuan 1 Ground ules Switch off our handphone and pager Switch off our laptop computer and keep it No talking while lecture is going on

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

20.2 Connecting Intercepts and Linear Factors

20.2 Connecting Intercepts and Linear Factors Name Class Date 20.2 Connecting Intercepts and Linear Factors Essential Question: How are -intercepts of a quadratic function and its linear factors related? Resource Locker Eplore Connecting Factors and

More information

3.1 Power Functions & Polynomial Functions

3.1 Power Functions & Polynomial Functions 3.1 Power Functions & Polynomial Functions A power function is a function that can be represented in the form f() = p, where the base is a variable and the eponent, p, is a number. The Effect of the Power

More information

National 5 Mathematics

National 5 Mathematics St Andrew s Academ Mathematics Department National 5 Mathematics UNIT 4 ASSESSMENT PREPARATION St Andrew's Academ Maths Dept 016-17 1 Practice Unit Assessment 4A for National 5 1. Simplif, giving our answer

More information

170 Test example problems CH1,2,3

170 Test example problems CH1,2,3 170 Test example problems CH1,2,3 WARNING: these are simply examples that showed up in previous semesters test. It does NOT mean that similar problems will be present in THIS semester s test. Hence, you

More information

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2 Math 3. Rolle s and Mean Value Theorems Larson Section 3. Many mathematicians refer to the Mean Value theorem as one of the if not the most important theorems in mathematics. Rolle s Theorem. Suppose f

More information

Introduction to vectors

Introduction to vectors Lecture 4 Introduction to vectors Course website: http://facult.uml.edu/andri_danlov/teaching/phsicsi Lecture Capture: http://echo360.uml.edu/danlov2013/phsics1fall.html 95.141, Fall 2013, Lecture 3 Outline

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

What part has zero acceleration? Where is the object stationary? Is there a region of constant acceleration?

What part has zero acceleration? Where is the object stationary? Is there a region of constant acceleration? What part has zero acceleration? Where is the object stationary? Is there a region of constant acceleration? What part has zero acceleration? Only if not turning Where is the object stationary? Is there

More information

recognise quadratics of the form y = kx 2 and y = (x + a) 2 + b ; a, b Î Z, from their graphs solve quadratic equations by factorisation

recognise quadratics of the form y = kx 2 and y = (x + a) 2 + b ; a, b Î Z, from their graphs solve quadratic equations by factorisation QUADRATIC FUNCTIONS B the end of this unit, ou should be able to: (a) (b) (c) (d) (e) recognise quadratics of the form = k 2 and = ( + a) 2 + b ; a, b Î Z, from their graphs identif the nature and coordinates

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-1D Spring 013 Motion in Two and Three Dimensions Lectures 5,6,7 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

Power and Gravitational Potential Energy

Power and Gravitational Potential Energy Power and Gravitational Potential Energ REVIE of Last eek s Lecture Scalar Product A B AB cos A B x x A B A z B B cos B z A ork Fs F s constant force parallel to displacement force not parallel to displacement

More information

Skills Practice Skills Practice for Lesson 1.1

Skills Practice Skills Practice for Lesson 1.1 Skills Practice Skills Practice for Lesson. Name Date Lots and Projectiles Introduction to Quadratic Functions Vocabular Give an eample of each term.. quadratic function 9 0. vertical motion equation s

More information

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below.

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. Kinematics 1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. After 25 seconds Joseph has run 200 m. Which of the following is correct at 25 seconds? Instantaneous

More information

CONSERVATION OF MOMENTUM. Object: To study the law of conservation of momentum by analyzing collisions in two dimensions.

CONSERVATION OF MOMENTUM. Object: To study the law of conservation of momentum by analyzing collisions in two dimensions. CONSERVATION OF MOMENTUM Object: To study the law of conservation of momentum by analyzing collisions in two dimensions. Apparatus: Digital scale, Ramp, two steel balls, one hollow or plastic ball, C-clamp,

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus. Worksheet All work must be shown in this course for full credit. Unsupported answers ma receive NO credit.. What is the definition of a derivative?. What is the alternative definition of a

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

7.2 Connecting Intercepts and Linear Factors

7.2 Connecting Intercepts and Linear Factors Name Class Date 7.2 Connecting Intercepts and Linear Factors Essential Question: How are -intercepts of a quadratic function and its linear factors related? Resource Locker Eplore Connecting Factors and

More information

Physics 207, Lecture 4, Sept. 15

Physics 207, Lecture 4, Sept. 15 Phsics 07, Lecture 4, Sept. 15 Goals for hapts.. 3 & 4 Perform vector algebra (addition & subtraction) graphicall or b, & z components Interconvert between artesian and Polar coordinates Distinguish position-time

More information

Getting ready for Exam 1 - review

Getting ready for Exam 1 - review Getting read for Eam - review For Eam, stud ALL the homework, including supplements and in class activities from sections..5 and.,.. Good Review Problems from our book: Pages 6-9: 0 all, 7 7 all (don t

More information

Higher. Functions and Graphs. Functions and Graphs 15

Higher. Functions and Graphs. Functions and Graphs 15 Higher Mathematics UNIT UTCME Functions and Graphs Contents Functions and Graphs 5 Set Theor 5 Functions 6 Inverse Functions 9 4 Eponential Functions 0 5 Introduction to Logarithms 0 6 Radians 7 Eact Values

More information

VISUAL PHYSICS ONLINE THERMODYNAMICS SECOND LAW OF THERMODYNAMICS ENTROPY

VISUAL PHYSICS ONLINE THERMODYNAMICS SECOND LAW OF THERMODYNAMICS ENTROPY VISUAL PHYSICS ONLINE THERMODYNAMICS SECOND LAW OF THERMODYNAMICS ENTROPY The Second Law of Thermodynamics is one of the fundamental laws which describes the workings of our universe. Not like other laws

More information

Derivatives 2: The Derivative at a Point

Derivatives 2: The Derivative at a Point Derivatives 2: The Derivative at a Point 69 Derivatives 2: The Derivative at a Point Model 1: Review of Velocit In the previous activit we eplored position functions (distance versus time) and learned

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 8 Maintaining Mathematical Proficienc Graph the linear equation. 1. = 5. = + 3 3. 1 = + 3. = + Evaluate the epression when =. 5. + 8. + 3 7. 3 8. 5 + 8 9. 8 10. 5 + 3 11. + + 1. 3 + +

More information

Physics 40 HW#3 Chapter 3 Problems from Knight you should do (but don t turn in): Ch 3 Problems: 7, 10, 15, 23, 33, 37, 40, 42, 43

Physics 40 HW#3 Chapter 3 Problems from Knight you should do (but don t turn in): Ch 3 Problems: 7, 10, 15, 23, 33, 37, 40, 42, 43 Physics 40 HW#3 Chapter 3 Problems from Knight you should do (but don t turn in): Ch 3 Problems: 7, 10, 15, 23, 33, 37, 40, 42, 43 7, 10, 15, 23, 33, 37, 40, 42, 43 3.7. Visualiz e: Solve: (a) v = (10

More information

REVIEW KEY VOCABULARY REVIEW EXAMPLES AND EXERCISES

REVIEW KEY VOCABULARY REVIEW EXAMPLES AND EXERCISES Etra Eample. Graph.. 6. 7. (, ) (, ) REVIEW KEY VOCABULARY quadratic function, p. 6 standard form of a quadratic function, p. 6 parabola, p. 6 verte, p. 6 ais of smmetr, p. 6 minimum, maimum value, p.

More information

Physics 218: Midterm#1

Physics 218: Midterm#1 Physics 218: Midterm#1 February 25 th, 2015 Please read the instructions below, but do not open the exam until told to do so. Rules of the Exam: 1. You have 75 minutes to complete the exam. 2. Formulae

More information

Halliday/Resnick/Walker 7e Chapter 4

Halliday/Resnick/Walker 7e Chapter 4 HRW 7e Chapter 4 Page of Hallida/Resnick/Walker 7e Chapter 4 3. The initial position vector r o satisfies r r = r, which results in o o r = r r = (3.j ˆ 4.k) ˆ (.i ˆ 3.j ˆ + 6. k) ˆ =.ˆi + 6.ˆj k ˆ where

More information

5.2 Solving Linear-Quadratic Systems

5.2 Solving Linear-Quadratic Systems Name Class Date 5. Solving Linear-Quadratic Sstems Essential Question: How can ou solve a sstem composed of a linear equation in two variables and a quadratic equation in two variables? Resource Locker

More information

1. Without the use of your calculator, evaluate each of the following quadratic functions for the specified input values. (c) ( )

1. Without the use of your calculator, evaluate each of the following quadratic functions for the specified input values. (c) ( ) Name: Date: QUADRATIC FUNCTION REVIEW FLUENCY Algebra II 1. Without the use of our calculator, evaluate each of the following quadratic functions for the specified input values. (a) g( x) g g ( 5) ( 3)

More information

Solve Quadratics Using the Formula

Solve Quadratics Using the Formula Clip 6 Solve Quadratics Using the Formula a + b + c = 0, = b± b 4 ac a ) Solve the equation + 4 + = 0 Give our answers correct to decimal places. ) Solve the equation + 8 + 6 = 0 ) Solve the equation =

More information

means Name a function whose derivative is 2x. x 4, and so forth.

means Name a function whose derivative is 2x. x 4, and so forth. AP Slope Fields Worksheet Slope fields give us a great wa to visualize a famil of antiderivatives, solutions of differential equations. d Solving means Name a function whose derivative is. d Answers might

More information

Fair Game Review. Chapter 8. Graph the linear equation. Big Ideas Math Algebra Record and Practice Journal

Fair Game Review. Chapter 8. Graph the linear equation. Big Ideas Math Algebra Record and Practice Journal Name Date Chapter Graph the linear equation. Fair Game Review. =. = +. =. =. = +. = + Copright Big Ideas Learning, LLC Big Ideas Math Algebra Name Date Chapter Fair Game Review (continued) Evaluate the

More information

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension Phsics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension What concepts did ou find most difficult, or what would ou like to be sure we discuss in lecture? Acceleration vectors. Will ou go over

More information

Unit 1, Lessons 2-5: Vectors in Two Dimensions

Unit 1, Lessons 2-5: Vectors in Two Dimensions Unit 1, Lessons 2-5: Vectors in Two Dimensions Textbook Sign-Out Put your name in it and let s go! Check-In Any questions from last day s homework? Vector Addition 1. Find the resultant displacement

More information

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1 Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

More information

1. Given the function f (x) = x 2 3bx + (c + 2), determine the values of b and c such that f (1) = 0 and f (3) = 0.

1. Given the function f (x) = x 2 3bx + (c + 2), determine the values of b and c such that f (1) = 0 and f (3) = 0. Chapter Review IB Questions 1. Given the function f () = 3b + (c + ), determine the values of b and c such that f = 0 and f = 0. (Total 4 marks). Consider the function ƒ : 3 5 + k. (a) Write down ƒ ().

More information

CHAPTER 3: Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors HAPTER 3: Kinematics in Two Dimensions; Vectors Solution Guide to WebAssign Problems 3.1 [] The truck has a displacement of 18 + (16) blocks north and 1 blocks east. The resultant has a magnitude of +

More information

Exam 1 Practice SOLUTIONS Physics 111Q.B

Exam 1 Practice SOLUTIONS Physics 111Q.B Exam 1 Practice SOLUTIONS Physics 111Q.B Instructions This is a collection of practice problems for the first exam. The first exam will consist of 7-10 multiple choice questions followed by 1-3 problems

More information

When we throw a ball :

When we throw a ball : PROJECTILE MOTION When we throw a ball : There is a constant velocity horizontal motion And there is an accelerated vertical motion These components act independently of each other PROJECTILE MOTION A

More information

Mth Quadratic functions and quadratic equations

Mth Quadratic functions and quadratic equations Mth 0 - Quadratic functions and quadratic equations Name Find the product. 1) 8a3(2a3 + 2 + 12a) 2) ( + 4)( + 6) 3) (3p - 1)(9p2 + 3p + 1) 4) (32 + 4-4)(2-3 + 3) ) (4a - 7)2 Factor completel. 6) 92-4 7)

More information

Integration Past Papers Unit 2 Outcome 2

Integration Past Papers Unit 2 Outcome 2 Integration Past Papers Unit 2 utcome 2 Multiple Choice Questions Each correct answer in this section is worth two marks.. Evaluate A. 2 B. 7 6 C. 2 D. 2 4 /2 d. 2. The diagram shows the area bounded b

More information

Quadratics in Vertex Form Unit 1

Quadratics in Vertex Form Unit 1 1 U n i t 1 11C Date: Name: Tentative TEST date Quadratics in Verte Form Unit 1 Reflect previous TEST mark, Overall mark now. Looking back, what can ou improve upon? Learning Goals/Success Criteria Use

More information

Chapter 3 Vectors 3-1

Chapter 3 Vectors 3-1 Chapter 3 Vectors Chapter 3 Vectors... 2 3.1 Vector Analysis... 2 3.1.1 Introduction to Vectors... 2 3.1.2 Properties of Vectors... 2 3.2 Cartesian Coordinate System... 6 3.2.1 Cartesian Coordinates...

More information

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6

( ) ( ) A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given by = ( 6.0m ) ˆ ( 8.0m ) Solution A D) 6 E) 6 A i ˆj. What is the unit vector  that points in the direction of A? 1) The vector A is given b ( 6.m ) ˆ ( 8.m ) A ˆ i ˆ ˆ j A ˆ i ˆ ˆ j C) A ˆ ( 1 ) ( i ˆ ˆ j) D) Aˆ.6 iˆ+.8 ˆj E) Aˆ.6 iˆ.8 ˆj A) (.6m

More information

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2 Physics C -D Kinematics Name: AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors Specify

More information

The details of the derivation of the equations of conics are com-

The details of the derivation of the equations of conics are com- Part 6 Conic sections Introduction Consider the double cone shown in the diagram, joined at the verte. These cones are right circular cones in the sense that slicing the double cones with planes at right-angles

More information

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

Projectile Motion. Practice test Reminder: test Feb 8, 7-10pm! me if you have conflicts! Your intuitive understanding of the Physical world

Projectile Motion. Practice test Reminder: test Feb 8, 7-10pm!  me if you have conflicts! Your intuitive understanding of the Physical world v a = -9.8 m/s Projectile Motion Good practice problems in book: 3.3, 3.5, 3.7, 3.9, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.55 Practice test Reminder: test Feb 8, 7-10pm! Email me if you have conflicts!

More information

Introduction to Rational Functions

Introduction to Rational Functions Introduction to Rational Functions The net class of functions that we will investigate is the rational functions. We will eplore the following ideas: Definition of rational function. The basic (untransformed)

More information

By the end of this set of exercises, you should be able to. recognise the graphs of sine, cosine and tangent functions

By the end of this set of exercises, you should be able to. recognise the graphs of sine, cosine and tangent functions FURTHER TRIGONOMETRY B the end of this set of eercises, ou should be able to (a) recognise the graphs of sine, cosine and tangent functions sketch and identif other trigonometric functions solve simple

More information

MATHEMATICS. Time allowed : 3 hours Maximum Marks: 100

MATHEMATICS. Time allowed : 3 hours Maximum Marks: 100 MATHEMATICS Time allowed : 3 hours Maimum Marks: 00 General Instructions:. All questions are compulsory.. This question paper contains 9 questions. 3. Questions 4 in Section A are very short-answer type

More information

Section 4.1 Increasing and Decreasing Functions

Section 4.1 Increasing and Decreasing Functions Section.1 Increasing and Decreasing Functions The graph of the quadratic function f 1 is a parabola. If we imagine a particle moving along this parabola from left to right, we can see that, while the -coordinates

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

Q3.1. A. 100 m B. 200 m C. 600 m D m E. zero. 500 m. 400 m. 300 m Pearson Education, Inc.

Q3.1. A. 100 m B. 200 m C. 600 m D m E. zero. 500 m. 400 m. 300 m Pearson Education, Inc. Q3.1 P 400 m Q A bicyclist starts at point P and travels around a triangular path that takes her through points Q and R before returning to point P. What is the magnitude of her net displacement for the

More information

Lesson 9.1 Using the Distance Formula

Lesson 9.1 Using the Distance Formula Lesson. Using the Distance Formula. Find the eact distance between each pair of points. a. (0, 0) and (, ) b. (0, 0) and (7, ) c. (, 8) and (, ) d. (, ) and (, 7) e. (, 7) and (8, ) f. (8, ) and (, 0)

More information

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a:

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a: SECTION.5 CONTINUITY 9.5 CONTINUITY We noticed in Section.3 that the it of a function as approaches a can often be found simpl b calculating the value of the function at a. Functions with this propert

More information